TATE CLASSES AND ENDOSCOPY FOR GSp, OVER TOTALLY REAL FIELDS

NAOMI SWEETING

ABSTRACT. The theory of endoscopy predicts the existence of large families of Tate classes on certain
products of Shimura varieties, and it is natural to ask in what cases one can construct algebraic cycles
giving rise to these Tate classes. This paper takes up the case of Tate classes arising from the Yoshida lift:
these are Tate cycles in middle degree on the Shimura variety for the group Resg,q(GL2 X GSpy), where
F' is a totally real field. A special case is the family of Tate classes which reflect the appearance of two-
dimensional Galois representations in the middle cohomology of both a modular curve and a Siegel modular
threefold. We show that a natural algebraic cycle generates exactly the Tate classes which are associated
to generic members of the endoscopic L-packets on GSp47F. In the non-generic case, we give an alternate
construction, which shows that the predicted Tate classes arise from Hodge cycles.
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1. INTRODUCTION

Let F' be a totally real number field of degree d, and let G = GSp, p. The unique elliptic endoscopic
group for G is M = (GLy X GLz /G,,)F, where G,,, is embedded anti-diagonally and the L-embedding is
induced by

(1) M = GL5(C) x¢x GLy(C) = GSp,(C) = G.

The functorial transfer of cuspidal automorphic forms from M to G has been studied by Roberts [31] and
Weissauer [38]. For any (unordered) pair of distinct cuspidal automorphic representations 7y, mo of GLa(AF)
with the same central character, one obtains an L-packet (71, ) of cuspidal automorphic representations
of GSp,(Ar). The members Ilg (71, m) of this L-packet are indexed by finite sets S of places of F at which
both 7; are discrete series, such that |S| is even. The unique generic member of the L-packet II(7y,7s) is
HQ) (71'1, ) ) .

Let GSp, = Resp/qg G be the restriction of scalars, with the natural Shimura datum, and let

S(GSp,) = ]&n Sk(GSp,)
K

be the resulting pro-algebraic Shimura variety over QQ, where K ranges over compact open subgroups of
GSp,(Af). (For the rest of the introduction, the same notation will apply when GSp, is replaced by any
Q-group H with a Shimura datum.) If 7; and 7 correspond to Hilbert modular forms of sufficiently regular
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weights, then the representations ITg(mq,m2) contribute to the interior cohomology of S(GSp,) in middle
degree 3d.

As we will recall later in the introduction, the g (7, 71'2)}/ X 7; s-isotypic part of the étale cohomology
of S(GSp,) x S(GL3) contains Galois-invariant classes, where ¢ = 1 or 2 depending on Sy, the set of finite
places in S. The goal of this paper is to investigate whether these classes have a geometric origin, as suggested
by the Tate conjecture in the case of trivial coefficients.

The natural candidate is the sub-Shimura variety S(H) C S(GSp,) x S(GLs), where:

(2) H := GLy xg,, GLy —% GSp, x GLs.
Here ¢ : H — GSp, is the standard inclusion and p : H — GLg is the first projection.

Theorem A (Theorem 7.2.5). Let my and mo be cuspidal automorphic representations of GLa(Afg) corre-
sponding to Hilbert modular forms of weights my = (M1 4 )vjoe and Mo = (Ma2,y)yjc With M1, > Mo, +2 >4
for all v and all m;, of the same parity, and suppose w1 and Ty have equal central character. Then the
Mg (7, 7r2)¥ X o, s -isotypic component of

[S(H)] € H*(S(GSp,) x S(GL2),V{s, 3.4, 3).8 ®Vim,—2.5) (see below)
is nontrivial if and only if Sy = 0.

We now explain the conditions on the weights in Theorem A and the meaning of the class [S(H)]. The
condition for Ilg(m,m2) to appear cohomology is that my ,, mz,, and |my, — ma,| are all at least 2 for
each v|oo, and all m;, have the same parity; in this case the local component at v of IIg(my, m2) belongs to
a discrete series L-packet of weight ({1, {2 ,) for GSp,(F’,), where

miw + ma.q |m1,v - m2,v| + 4
el,’u =5 EQ,U = .
2 2
If F is a coefficient field for 1, w2, and IIg (71, m2) containing the field Q(my, ms) of (5.3.1), then the weights
(£1,£2) = (£1,0,02,0)v)cc and m; determine local systems of E-vector spaces Vg, —3.¢,—3),5 and Vp,, 2 g on

i

S(GSp,) and S(GLz2), respectively; the notation is explained in (3.6.3). Note that V(velf3,er3) ¥V, 2 E

is trivial if and only if 7; and o have parallel weights 4 and 2, respectively, in which case [S(H)] is just the
algebraic cycle class.

More generally, the pullback (¢, p)*V&l_Mz_?)), 5 8 Vi, 2 p contains the constant local system on S(H)
(with multiplicity one) if and only if m; ,, > mg , for all v, in which case the cycle class [S(H)] appearing in
Theorem A is defined using the adjunction map (¢, p)«Eg gy — V(\Zl—:s,eQ—B),E X Vim,—2,E. So the conditions
on mi and ms in Theorem A are the minimum required to formulate the statement.

Under these conditions, Galois-invariant classes appear in the Ilg (771,7r2)}/ X 7o, p-isotypic part of étale
cohomology if and only if |Sy| is even. However, Theorem A asserts that only in the case Sy = ) (corre-
sponding to the unique generic member of the L-packet II(71,72)) do these classes arise from the special
cycle S(H). For the case Sy # (), we are not able to produce any nontrivial algebraic cycle classes. However,
we give an alternative construction that shows the Galois-invariant classes arise from Hodge cycles.

Theorem B (Theorem 10.2.4). Let m and mo be as in Theorem A, and let S be a set of places of F at
which both m; are discrete series, such that |S¢| > 2 is even. Then there exists a Hodge class

0# & e HY(S(GSpy) x S(GL2), VY, 54, 3y X Vim,—2,8(2d))[[s(m1,72)} Ko 4]
such that, for all finite places X of E, the image of & in A-adic étale cohomology is Gal(Q/F¢)-invariant.

In fact, Theorem 10.2.4 in the text produces a cohomology class defined over the subfield Q(my, ms) C E;
for instance, in the case of trivial coefficients, the £ in Theorem B is the IIg(m, 7T2)}/|Z|7T27 #-isotypic component
of a Hodge-Tate class defined over Q.

Expected Galois representations. For the reader’s convenience, we recall the expectations of Kottwitz’s
conjectures [19] for the Galois representations in étale cohomology associated to mq, me, and Ilg(my,m2).
Suppose the weights of 71 and o are m; and mg, where myq ,, Mo, and |my, —ma,| are all at least 2 for
all v|oo and all m;, have the same parity. We normalize the m; so that their common central character w
has the infinity type wsm,, in the notation of (2.1.4). Let A be a finite places of the coefficient field E, and set
P = Pmy D Pry, Where pr, are the usual A-adic Galois representations associated to Hilbert modular forms,
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normalized to have determinant y~'w with y the cyclotomic character. Then let (prr, V) and (p;, Vi) be
the tensor induction of pr and pr,, respectively, from Gal(Q/F) to Gal(Q/Q). We have natural inclusions
Vi—= V.

Consider the involution s € End(pr, V') such that, in the vth factor of the decomposition

(3) V= @)oo P,

s acts as —1 on pr, and 1 on pr, if my , > mo,, and vice versa if m; , < mo,. Taking s-eigenspaces induces
a decomposition V =V @ V~. The predicted contributions to étale cohomology are:

V1t (=d), |Sf|even,

Hom <HS(7T1»7r2)fvHgt%!(S(GSpél)@a V(el—z,zg—?)),EA)) = {V‘(—d) 18] odd

(4)
Hom (ﬂ'i,f, Hédt,!(S(GLQ)@, Vmi—Q,EA)) = ‘/Z

If my, > ma, for all v, then we have Vo C VT, hence there should exist nontrivial maps of Galois
representations

(5) HE(S(GSpy)g: Vie,—3,02—3). 55 () [Ms (1, 72) /] = HE ((S(GL2)g, Vim,y—2,5, ) [72,f]

whenever |S¢| is even. Theorems A and B yield, by Poincaré duality, a geometric construction of nontrivial
maps (5). In the text (Theorems 7.2.5 and 10.2.4), we actually show that the maps we construct are non-
degenerate in the sense that their images generate the GLo(Af, f)-module Hgty,(S(GLg)@, Vima—2,8,)72,f];
this is equivalent to nontriviality only if V5 is irreducible.

One could also ask for an analogue of Theorem B that uses 71, the higher-weight representation, in the
place of my, or relaxes the condition that m; , > mg, for all places v. Our construction does not appear to
yield any results in this direction.

Comparison with previous work. In the case when F' = Q, S =, and m; and 7 correspond to classical
modular forms of weights 4 and 2, Theorem A was proven by Lemma [23], using a different method.

In the setting of Jacquet-Langlands transfers for cohomological representations of inner forms of GL3 r,
an analogue of Theorem B was proven by Ichino and Prasanna [14]. For the transfer between quaternion
algebras B; and Bs which are split at exactly one archimedean place, the Shimura varieties associated
to B and BJ are curves. The resulting Tate classes are known to arise from cycles by Faltings’s isogeny
theorem [3], but no more explicit construction of these algebraic cycles is known. When the relevant Shimura
varieties have higher dimension, Ichino and Prasanna showed that the Jacquet-Langlands transfers (for
general cohomological weights) are induced by Hodge cycles. Their construction is similar to the one used
to prove Theorem B. However, in the Jacquet-Langlands setting there is no natural algebraic cycle such as
S(H), so there is no analogue of Theorem A.

In an earlier version of this paper, Theorem B was stated conditionally on Arthur’s conjectures; the result
is now unconditional.

Overview of the proofs. Both Theorem A and Theorem B rely on the explicit realization of IIg (7, 72)
as a theta lift from a four-dimensional orthogonal group, cf. [31, 38]. Indeed, if |S] is even, then there is
a quaternion algebra B over F' ramified exactly at the places in S, and the orthogonal group GSO(B) ~
B* x BX/G,, is an inner form of M. The automorphic representation Ilg(my,T2) is the theta lift of 78 K72
from GSO(B) to GSp, j, where 7B is the Jacquet-Langlands transfer of 7; to B*. This is crucial because
it allows for the calculation of period integrals involving ITg(m, ms).

Proof of Theorem A. Since the non-vanishing of [S(H)] may be detected in de Rham cohomology, the

theorem is essentially a statement about periods of g (7, m) K 7y along the subgroup H C GSp, x GLs .
That is, we must compute integrals of the form

(6) Ps(v, 8) 5:/ Y(e(h))B(p(h))dh, ~ € g(m,m2), B €.
Zu(Ap)H(F)\H(AF)

Because IIg(m,m2) is a theta lift from GSO(B), we can compute (6) using the seesaw diagram:
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GSp, GSO(B) xg,, GSO(B)

T

GL2 XGom GL2 GSO(B)

Here the vertical lines are inclusions and the diagonals are dual reductive pairs inside GSp,4. Formally, the
seesaw identity would read:

(7) Ps(0(a), B) = /{PGSO(B)] 0(8)(9)0(1)(9)a(g) dg, a € m ®@m, BEmy,

where the theta lifts on the right are from GLy to GSO(B), and the theta lifts on both sides depend on
choices of Schwartz functions which must be made compatibly. The integral defining (1) is divergent, so a
regularization step is necessary to interpret (7). However, after regularization, §(1) can be recognized as 0
if B is not split (i.e. if S # @), and as a certain Eisenstein series on GSO(B) if B is split. The integral (7)
then unfolds to an Euler product which allows us to evaluate it explicitly. The result of the calculation is:

Theorem C (Theorems 6.2.2, 6.5.2). Let w1, w2, and 7 be cuspidal automorphic representations of GL2(Ar)
such that m; and ™" have the same central character, and let S be a finite set of (possibly archimedean) places
of F' at which both 7; are discrete series, such that |S| is even. Consider the period pairing

(8) Ps(v,5) 1=/ V(e(h))B(p(h)) dh, ~v € g(m,m2), B €m,

Zu(Ap)H(F)\H(AF)

where dh is normalized as in (6.1.1).

(1) If Ps(~y,B) #0, then S =0, i.e. lg(m,m2) is generic, and 7 is isomorphic to either my or wy.

(2) Suppose given factorizable Schwartz functions
bi = @ppin € S(Ma(Ap)), i=1,2
and factorizable vectors
a=@ya, €M T2, B=Q,B, €Ty.

Then the theta lift 04,4, (a) lies in (w1, m2) and, for a sufficiently large finite set S of places of
F,

P®(9¢1®¢2(a>7ﬁ) = 2|DF|1/2 :

7T_dLS(lﬂTl x my ) L% (1, Ad ) H Zy (1,0, P20, O, Bu)
Cg(z veES 1= qgl

Here Z,(¢1,v, P20, 0, By) s an explicit local zeta integral which is nonzero for appropriate choices
of test data; ¢1 @ o is the tensor product Schwartz function in S(Ma(Ar)?); the theta lift 0y, e, ()
is defined in §4; and the other notations are introduced in (2.1.1).

Remark. The L-values appearing in Theorem C are nonzero by the classical result of Shahidi [33].

In fact, Theorem C amounts to a special case of the nontempered Gan-Gross-Prasad conjectures in [6]:
if m and 7y have trivial central character, then Ilg(m;,m) descends to PGSp, = SOs, and the period (6)
reduces to a period for the split GGP pair SO4 C SOj . Although Ilg (7, m2) is tempered, the automorphic
representation of SO4 corresponding to the forms S(p(h)) on H is not, and so this period falls outside the
scope of the usual GGP conjecture.

To deduce Theorem A from Theorem C, one additional ingredient is needed. In the period integrals
(6), one really wants to consider only vectors v and 8 that contribute to cohomology, which in our case is
equivalent to generating a certain K-type at archimedean places. The most delicate part is to write such a
vector 7y as a theta lift 0,(c), which requires a careful choice of archimedean component for the Schwartz
function ¢ (determined using local Howe duality). Once we know which ¢ to consider, we can evaluate the
relevant archimedean zeta integrals to show that the periods (6) are nontrivial.
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Proof of Theorem B. For simplicity, assume 7, and mo have parallel weights 4 and 2, respectively, so all
coefficients are trivial. The main difficulty in the proof of Theorem B is to find a nontrivial family of Hodge
classes on S(GSp,) x S(GLs) (besides the ones coming from the algebraic cycle S(H)). Once we have a good
supply of Hodge classes, the proof that they are nontrivial uses similar methods to the proof of Theorem
A. To construct this family of Hodge classes, we use certain nontempered, cohomological automorphic
representations of GSpg(Ar) which contribute to cohomology of S(GSpg) in degree 4d.

More precisely, let S = S¢S with |S¢| even, and let B be the quaternion algebra over F' which is ramified
exactly at Sy. Assume Sy # (), i.e. B is nonsplit. Then for any auxiliary automorphic representation 7 of
PB(Ap)* of parallel weight 6, we consider ©(7X 1), the theta lift from GSO(B) to GSpg of the automorphic
representation 7 X 1 of GSO(B) ~ B* x B*/G,,. Let S(m) be the set of automorphic representations
of GSpg(Ar) which are nearly equivalent to a constituent of ©(m X 1). To connect these automorphic
representations to the cohomology of S(GSp,) x S(GLs2), we use the correspondence of Shimura varieties

S(GSpg) <= S(H) “% S(GSpy) x S(GLy),
where H = GSp, Xg,, GL2 C GSpg, and ¢2 is open and closed. Thus we obtain a well-defined map

L2,%0L]

H*(S(GSpg), E) —— H*(S(GSp,) x S(GL2), E)

9
®) — H*(5(GSp,) x S(GLy), E)[Ilg(m,m2) ¥ Ko ¢].

For any II € S(), let

Hdg(II) = im <H4d(5(GSpa),@)[ﬁf] O, 1'(5(GSp,) x S(GSp,). Q)s(my, m2)} B 772,f]>a

Hdg(m)g = Y. > Hdg(ID).

cEAUH(C/Q) Ties (o)
Since Hdg(7)g is stable under the action of Aut(Q/E) on the coefficients, we can descend to a subspace
Hdg(m) € H*(S(GSp,) x S(GSp,), E)[s(m1, m2)} Ko f].
We prove that:
(10) Gal(Q/F°) acts trivially on Hdg(m)(2d) ® Q, C Hgltd(S(GSp4)@ x S(GSp,)g, Qu(2d))
(where the inclusion comes from the Betti-étale comparison theorem) and
(11) Hdg(7) is a trivial sub-Hodge-structure of H*4(S(GSp,) x S(GSp,), E).

In fact, (11) follows from (10) by the étale-de Rham comparison — proved for automorphic local systems
on general Shimura varieties in [2] — and its compatibility with the map (9). To prove (10), it suffices to
consider

Hdg(IT) ©g Q, C HA'(S(GSpy)g x S(GLa)g, Q) [s(m, m)} K, f],

for any 7 as above, any e s (7), and any embedding Q < Q,. Suppose that p # ¢ splits completely in I’ and
that ﬁv is spherical for all v|p. Then the generalized Eichler-Shimura relation proven by Lee [21, 22] provides
a polynomial P(X) such that P(Frob,) =0 on H* (S(GSp(;),@@)[ﬁf]. The coefficients of P(X) depend on
the Satake parameters of II, for v|p, which in turn are determined by those of m, via the spherical theta
correspondence for orthogonal-symplectic similitude pairs (Proposition 4.3.3). It turns out that P(X) has a
unique root of weight 4d, which is p~2¢. On the other hand, Hgtd(S(GSp4)@ x S(GSp,)g: Q) [Mg(my,m2) YK

f
ma,¢] is pure of weight 4d, because IIg(m,m2) and my are both tempered. (By contrast, the cohomology

HEY(S (GSp6)@, @g)[ﬁf] need not be pure, because ﬁf can be non-tempered and even non-cuspidal.) In
particular, the purity of Hgtd(S(GSp4)@ x S(GSp,)g; Q) [Mg(my, m2) ¢ Mo, ¢] implies that Frob, = p~2d on
Hdg(II) ®g Q, for all p as above, which shows (10) by the Chebotarev density theorem.

It remains to show that some element £ € Hdg(nw) induces a nonzero map as claimed in Theorem B.
Similarly to the proof of Theorem A, we reduce this question to showing that the triple product period
integral

(12) / - a(a)(ha h/)ﬂ(h)’Y(h/) d(h7 h,)a acm X ]]-7 5 € HS(W17772)7 Y € 7T;/
[Z7\H]



6 NAOMI SWEETING

is nonzero for some choice of m and some choice of test vectors «, (3, and ~y. Here H is parametrized by
pairs (h,h') € GSp, x GLg, and the theta lift, which again depends on a choice of Schwartz function, is from
GSO(B) to GSpg. The relevant seesaw diagram for this period is:

GSpg GSO(B) xg, GSO(B)

=

GSp, xe,, GLo GSO(B)

The seesaw identity reduces (12) to

(13) / a(9)8(8)(9)8(7)(9) dg.
[PGSO(B)]

where the theta lifts are now from GSp, and GL3 to GSO(B). (Under the assumption that B is nonsplit, all
the integrals involved in the seesaw identity converge absolutely.) The theta lift #(+) runs over (7)Y X (x£)V
as 7 varies, and the image of the theta lift (3) includes P X 7 as 8 varies. We choose « to be a Hilbert
modular eigenform on PB*(Ap) such that (ff - f£ a)pes # 0, where ff € 7P and f£ € (xf)V are
holomorphic newforms, and let m be the automorphic representation generated by «. Having made this
choice of m and «, it follows that (13) is nonzero for appropriate choices of 5 and ~.

Arithmetic implications. This work was originally motivated by a question of Weissauer in [37], which
can be paraphrased as follows: if F' = QQ and 75 is the automorphic representation associated to an elliptic
curve F/Q, then the motive associated to E appears attached to members of the L-packet II(mq,m2) in
the cohomology of S(GSp,). Can we then use Shimura curves on S(GSp,) to construct interesting Selmer
classes for F in the spirit of Heegner points? Theorem A implies that, when applied to quaternionic Shimura
curves and a generic representation Ilg(my,ms), this construction would recover the Heegner points on E.
Indeed, all appearances of the motive of E attached to generic representations ITy(m, o) are fully accounted
for by Hecke translates of the correspondence from S(GSp,) to the modular curve S(GLg2) induced by (2),
and nonsplit quaternionic Shimura curves on S(GSp,) are necessarily sent to CM divisors on S(GL32) under
this correspondence. It is an intriguing question whether Weissauer’s construction yields interesting Selmer
classes when applied to quaternionic Shimura curves and the non-generic members of the L-packets II(7y, 72).

Organization of the paper. In §2, we give some basic notations and conventions. In §3, we recall the
plectic version of Matsushima’s formula and its relation to vector-valued automorphic forms. In §4, we give
notations and conventions for similitude theta lifts. This section also contains a proof of the L-functoriality for
similitude theta lifts of certain spherical representations from orthogonal to symplectic groups (Proposition
4.3.3); this is well-known to experts but we were not able to find a suitable reference. In §5, we recall the
construction of the Yoshida lift L-packets via theta lifts, and compute the plectic Hodge structures associated
to Ilg(m1, m2) . The material up to this point is necessary for all the main results. However, the proofs of
Theorems C and A, which are given in §6 and §7, respectively, are logically independent of the proof of
Theorem B. The only exceptions are some results on the archimedean theta correspondence in §7.1. In §8,
we study the nontempered representations used for the construction of Hodge classes. In §9, we compute
the vector-valued triple product periods that are necessary for the nonvanishing of the Hodge classes. The
proof of Theorem B is completed in §10.

Acknowledgements. The author is grateful to Mark Kisin, for his consistently valuable advice and en-
couragement; Wei Zhang, for pointing out the relation of Theorem C to the nontempered GGP conjecture;
and Kai-Wen Lan, Si Ying Lee, Siyan Daniel Li-Huerta, Kevin Lin, Atsushi Ichino, Aaron Pollack, Kartik
Prasanna, Alexander Petrov, Matteo Tamiozzo, and Salim Tayou, for a variety of helpful conversations and
correspondence. This work was supported by NSF Grants #DGE1745303 and #DMS2401823.

2. PRELIMINARIES

2.1. Basic notations.
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2.1.1. Throughout this article, F' is a fixed totally real number field of degree d and discriminant Dg, Op
is its ring of integers, and Ay is its ring of adeles. For each place v of F', denote by F, the completion; if
v is non-archimedean, O, is the valuation ring of F,, w, € O, is the uniformizer, and ¢, = #0, /w,. For
archimedean v, ¢, = 1. The Haar measure on the additive group A is the product measure da = [], da.,
where da, is the Haar measure on F, such that O, has volume 1 if v is nonarchimedean, and da, is the
standard measure on F, = R if v is archimedean.

2.1.2. If G is an algebraic group over F, [G] denotes the adelic quotient G(F)\G(Ar). If dg denotes a Haar
measure on G(Ap), then we write dg as well for the quotient Haar measure on [G] (where G(F') is given the
counting measure).

2.1.3. We fix the additive character ) = 1 o tr of F\Ag, where 1)y : Q\A — C is the unique unramified
character such that vy(z) = €™ for x € R.

2.1.4. For any m, let w,, : R* — R* be the character
tes 2l

If m = (My) |00, let wm : (FF @ R)* — R* be the character ®,|ocwm,. These characters will be used as the
central characters for “nearly unitary” normalizations of automorphic forms appearing in cohomology.

2.1.5. If V is a vector space over a local field k (either Archimedean or non-Archimedean), then S (V) is
the Schwartz space of functions on V. If V is a vector space over F' and v is a place of F, then Sg, (V)
denotes the space of Schwartz functions on V ®p F,. Likewise, we write Spgr(V) for the tensor product of
the Schwartz spaces Sg, (V') as v ranges over archimedean places of F.

2.2. Conventions for GL, and SL,.
2.2.1. The standard Borel and unipotent subgroups of GLy are denoted B and N, respectively; B denotes the

image of B in PGLy . We shall abbreviate by ¢ — h. the section of det : GLy — G, given by h, = <(1) 2) .

2.2.2. For each non-archimedean place v of F', we normalize the Haar measure dg, on PGLo(F),) to assign
volume 1 to PGLy(0,), and likewise for SLo(F),). For non-archimedean v, we choose the Haar measure dg,
on PGLy(F,) = PGLy(R) given by:

d _dadtdf (1 a\(t O cosf  sinf
(14) Go=""2 97 o 1)\o 1) \—sin® cosh)"
a€R,teR*,0€0,7).
On SLy(F,) = SLa(R), we choose the Haar measure dg, given by:
d _ dadtdf (1 @\ (V2 0 cosf  sinf
(15) o= "9z » = o 1 0 tY2)\—sinf cosf)’
a € R,t € Ryg,0 € [0,2m).
2.2.3. For the standard compact subgroup SO(2) of SLz(R), we denote by ., : SO(2) — C* the character

<—C(s)isn90 zg; Z) — (cos@ +isind)™.
2.3. Conventions for symplectic groups.
J
2.3.1. Let J be the matrix (_01 (1)) . Then, for any field k, the block-diagonal matrix defines
J
a symplectic pairing on the k-space Wa, 1, = (€1, - , €2y) such that
Wang = (e1,€3, -+ ;ean—1) © (€2,€4, -+, €2n)

is a decomposition into maximal isotropic subspaces; we refer to Wa,, 1, as the standard symplectic space of
dimension 2n. The symplectic group Spy,, ;, and the general symplectic group GSp,,, 5, are the isometry and
similitude groups, respectively, of Wa,, .. When not otherwise specified, k = F'.
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2.3.2. The maximal compact-modulo-center subgroup of the symplectic group GSpy, g is K, =~ (U(n) x
R*)/{%1}, consisting of the matrices whose 2 x 2 blocks commute with J. When K, is viewed as a
subgroup of GSp,,, (F,) we write it K, ,. There is a maximal compact torus T’ C U(n) such that

arJ
t= , o €R
and
We parameterize the weights of U(n) by tuples of integers (mq,--- ,m,,), corresponding to the character
ard
= My o My Oy
anJ

When n = 1, the character y,, ®w,,! on U(1) x ZgL, descends to a character of K;, which we will also
denote by x,,; we hope that this will cause no confusion.

3. COHOMOLOGY OF SHIMURA VARIETIES
3.1. Shimura varieties and local systems.

3.1.1. Let (G,X) be a Shimura datum with reflex field Ey, and let 4 : Resc/r Gn,c — Gr be the corre-
sponding cocharacter. Given a neat compact open subgroup K C G(Ag, ), we have a smooth algebraic
Shimura variety Sk (G, X) defined over Ejy, such that

Sk (G, X)(C) = GQ\G(Agf) x X/K.
We will usually drop X from the notation for Sk (G, X), and write

(16) S(G) = 1im Sy ()
K

for the pro-algebraic Shimura variety.

3.1.2. Following the convention of [2, §5.1], let Z(G) C G be the center, with neutral connected component
Z(G)° C Z(G). Define Zs(G) C Z(G)° to be the smallest subtorus such that Z(G)°/Z,(G) has the same
Q-split and R-split ranks, and let G¢ = G/Z,(G).

Let F C C be any subfield, and let p be an algebraic representation of G¢ on an E-vector space V; then
for each level subgroup K as above we have the Betti local system Vi on Sk (G)¢ whose total space over C
is
(17) G(Q)\G(Ag,5) x X x V/K.

By the discussion in [2, p. 535], to V is also associated an algebraic vector bundle V¢ gar, x over Sk (G)c
equipped with a connection and a canonical filtration, whose complex analytification is associated under the
Riemann-Hilbert correspondence to the complex local system Vg ¢ := Vg ®p C.

Finally, if E' is a number field and A is a finite prime of E, write V i for the étale local system on Sk (G)
whose base change to Sk (G)c coincides with Vx ® F), and VA,K,@ for V\ k ®g, Q. A choice of prime /£
and isomorphism ¢ : Q, = C determines a prime A of E, and in this context we omit A from the notation
and write simply VK,@@'

Each of the constructions described above is compatible with the maps Sk (G) — Sk (G) for neat compact
open subgroups K C K’ C G(Ag,f), and we drop the subscript K to denote the corresponding objects for
the pro-algebraic variety S(G). We abbreviate the Betti cohomology of V by

H'(S(@),V) = H'(S(G)(C), V).

Theorem 3.1.3. Fiz a prime £, an isomorphism 1o : Q, = C, and an algebraic representation p of G¢ on
an E-vector space V', for a number field E C C containing Ey. Let X be the prime of E induced by . Then
for each i, there is a canonical isomorphism of G(Ag,r)-modules, compatible with the canonical filtrations
and Gal(Q,/E))-actions on both sides:

Hét(S(G)@eaVA) ®g, Bar = HZiR(S(G)Cﬂ Ve dr) ®C,L;1 Bar.
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In particular, the Oth graded piece is an isomorphism

H,(S(G)g, V2) @B, Q = ®; g1 Hyg (S(G)e, Vear) Oc -1 Qo(—j)-

Moreover, these isomorphisms are functorial in V' and compatible with pullbacks induced by maps of Shimura
data.

Proof. The stated isomorphism and the functoriality in V' are immediate from [2, Theorem 1.1, Theorem
5.3.1]. Tt remains to check that Theorem 1.1 of op. cit. is compatible wiih pullback.! For this, let X be a
smooth algebraic variety over an f-adic field k, with a compactification X such that the complement of X

is a normal crossing divisor, and let Dglé  be the functor of loc. cit.. Then for any Q-étale local system L

on X, the rigid analytification of DSE (IL) is the restriction of a filtered vector bundle with log connection

DyR,log,x (L) on the rigid analytification of X, where L is as in [2, Corollary 3.2.10], cf. [2, §4.1]. Now
suppose Y is another smooth algebraic variety over k with a map f : Y — X, and choose a compactification
Y of Y as above so that f extends to f:Y — X. We claim that there is a canonical isomorphism

(18) FPDYE (L) = DY L (f7'L).

Indeed, by the canonical adjunction morphism in [2, Lemma 3.5.3], we have a morphism of filtered vector
bundles with log connection ?*D dR,log,Y(E) — Dyr 1o gy(?_lEL which is algebraizable by the rigid analytic
GAGA theorem of [18]. The restriction of the resulting morphism gives the desired map (18), which is an
isomorphism because its analytification is so, cf. [24, Theorem 3.8].

Once we have (18), it suffices to show that the following diagram commutes, where the horizontal arrows
are provided by [2, Theorem 1.1]:

i ~ i 1
H (Xg,.L) ®g, Bar —— Hip (X, Dgg x (L)) ®q, Bar
Hip (Y, [* D3 (L) ®q, Bar
Hus)
H},(Yg,, L) ®g, Ban —— Hig(Y, D3 (f L)) ®q, Bar
This commutativity can be checked by hand by tracing through the construction of the horizontal arrows

in [2, §3]. O

3.2. The structure of cohomology as a G(Ag,s)-module. We continue to fix an E-linear algebraic
representation (p, V') of G¢ as in (3.1.2).

3.2.1. If II; is a C[G(Ap,s)]-module, II; is defined over E C C if there exists a E[G(Ap, ¢)]-module HJIZJ such
that HJ]ZJ ®g C ~1I;. In this case, we write:

(19) H:;(S(G), V)Hf = HomE[G(AF,f)] (H?, H:;(S(G), V),

where H; denotes compactly supported, inner, or singular cohomology as ? = ¢, !, or . The maximal
Hf—isotypic component, which we write as

H7 (S(G), V)[lg],
is then isomorphic to

H’f(s(G% V)Hsf Y Hgf'

We thank Kai-Wen Lan for explaining the following argument.
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3.2.2. An irreducible admissible complex G(Agq,¢)-representation II; is said to be FEisenstein if IIy is a
subquotient of a parabolic induction Indggﬁﬁ’; ; m¢, for a parabolic subgroup P = M N of G and a cuspidal
automorphic representation 7 of M(Ag). For any admissible E[G(Aq,;)]-module H, we say H is Eisenstein
if all irreducible constituents of H @ C are.

If IT is an automorphic representation of G(Ag, ¢) with IT; non-Eisenstein and defined over E, then for all
i > 0, it follows from Franke’s proof of the Borel conjecture [5, Theorem 18] that the maximal II¢-isotypic
submodule

(20) H'(S(G),V)[lly] € H'(S(G),V)
is a direct summand.
Lemma 3.2.3. Let V be the automorphic local system on S(G) associated to an E-linear G°-representation
(V,p). Then:

(1) The E[G(Aq,s)]-module

H'(S(G),V)/H{(S(G),V)
s Eisenstein.
(2) There exists an E[G(Aqg,f)]-stable direct summand H'(S(G),V)o C H'(S(G),V) such that

and
HY(S(G),V)o®eC= P H(S(G) Vo),

IIfnon-
Eisenstein

where Iy runs over the finite parts of automorphic representations of G(Ag, ).

Proof. Part (1) is well-known; a lucid exposition may be found in the preprint [9, Chapter 9]. For (2), by
(1) it suffices to note that the property of being non-Eisenstein is stable under Aut(C/Q). O

3.3. Mixed Hodge structures.

3.3.1. With notation as in (3.1.2), consider the following conditions on the representation (p,V):
(1) E is a number field contained in R.
(2) The composite map
Gm,r = Resc/r Gm,c = Gr — GL(V ®g R) = GL(V ®5 R)
is given by z — 2™ for some integer m.
Under these conditions, the canonical filtration on V¢ gr,x makes Vi into a polarizable variation of Hodge

structures of weight m with coefficients in . Both conditions are satisfied for the local systems on symplectic
Shimura varieties defined in §3.6 below.

3.3.2. By Saito’s theory of mixed Hodge modules [32], under conditions (1) and (2) above, the Betti coho-
mology H*(S(G),V) is a mixed Hodge structure with coefficients in E. We write We H*(S(G), V) for the
weight filtration and F*H!(S(G), Ve) for the Hodge filtration. By definition, a Hodge class in H!(S(G), V)
is a Hodge class for the pure Hodge structure Wi, H'(S(G), V).

3.4. Plectic Hodge structures.

3.4.1. We now let G be a reductive group over F', and set G = Resp;g GFr. Since
(21) G(R) = H G(Fv) = H GU(R)a
v|oco v|oco
a Shimura datum (G, X) is necessarily a product X >~ [],  X,. If K, C G,(R) denotes the stabilizer of a
distinguished point h, € X, then the stabilizer of the corresponding point h € X is

K, = HKU.

v|oco
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3.4.2. Let (p,V) be an algebraic representation of G¢ as in (3.1.2). Matsushima’s formula for the L? coho-
mology of S(G) is

(22) Hip(S(G),Ve) 2 @D maise(r) - 7y @ H (Lie G; Koo, w8 @ V).
T=Tf QMoo

Here 7 runs over cuspidal automorphic representations of G(A), mqis.(7) refers to the multiplicity in the
discrete spectrum, and 752 is the dense subspace of smooth vectors. Moreover (22) is equivariant for the
natural actions of G(AF, f) on both sides. Suppose V¢ = ®,V,,, where V,, are C-vector spaces equipped with
algebraic representations p, of G,(R), such that p factors as

(23) p:G(F) = G(F®R) ~ HG 200 T Aut(v,

Since the Lie algebra of G is ], g, the right hand side of (22) has a decomposition (cf. [26, §16]):

(24) D B rmascln) 7 & Q) HP ¥ (go, Koy 75 @ V)

p,q TrRToo v|oco

Here p and q are plectic Hodge types, i.e. tuples of positive integers (py)yjoc and (gv)y|oo- Then (22) induces
a plectic Hodge decomposition on H(Q)(S(G), Ve), written:

(25) H5) (S(G),Ve) = D HEH(S(G), Ve).

Remark 3.4.3. Because this decomposition does not take into account any variation of Hodge structures
on Vg, it does not compare with the canonical mixed Hodge structure on H*(S(G), V) recalled in §3.3 above.
For this reason, (25) should be viewed more as a computational tool then as a suitable definition of “the”
plectic Hodge structure on H("z)(S(G)7 Ve).

3.5. Realizing automorphic forms in cohomology.

3.5.1. The complex structure on X, induces a decomposition
90,C = too @ Pou,+ D Po,—-
We define
(26) APIpG = Qoo (AR 4 @ APy ),
and let (0?9, AP?) be the corresponding natural representation of K,. The smooth vector bundle Q* of
differential forms on S(G) has a decomposition
QF = @y 0P,

where the vector bundle QP2 of (p, g)-forms on S(G) corresponds to the local system whose complex points
are:

GF)\G(Ap,s) x G(R) x AP9pg/ K
In particular, the space I'(2)(Q2P? ® Vc) of L? global (p, q)-forms with coefficients in V¢ is identified with:

@) {FeCF(Car) © Ve NP0 ¢ flrgk) = p()eP (k™) fg). Yy € GF). b € Ko }.
Here C7)(G(Ar)) is the space of smooth L? functions on G(Ar); by definition, we have:

(28) L2)(QP9 & Ve) » HiGH(S(G), Vo).

Finally, we remark that there is a canonical isomorphism:
(A)(G(Ar)) ® Ve|k., ® APt ) Ko Ty L)(2P7® V)
¢ = fo, fo(9) = p(goc)d(9)-

Here p(goo) is defined via the decomposition (23). By composing with (28), we obtain a realization of
vector-valued automorphic forms in cohomology:

(30) (A2)(C(AF)) ® Vel ® APIpE) K= = HEI(S(G), V).

(29)
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3.6. Symplectic Shimura varieties.
3.6.1. When G = GSp,,,, equipped with its usual Shimura datum, the subgroup K is just
(31) K, =[] Knw C GSpy, (F @ R).

v

We establish some notation for local systems on S(GSp,,). Suppose given a tuple A = (Ay)y|00, Where
Ay = (M1, - ,Mp ) is a dominant weight of Sp,, z. We define (py,,Vy,) to be the unique irreducible C-
linear algebraic representation of GSp,,, whose restriction to Sp,,, has weight A, and whose central character
I8 Wy 4efm,, 0 the notation of (2.1.4). This defines a representation (px,Vx) of GSp,,, according to
(23), which clearly descends to F©.

Proposition 3.6.2. The representation (px, V) descends to a Q(A)-linear representation of GSp,,,, where
Q(A) is the fized field of
{0 € Aut(C/Q) : Ao = Ay Yv|oo}.

Proof. The proof of [36, Proposition 1.3] applies unchanged. |

3.6.3. When the parity of .7 | m;, is independent of v, then (px, Va) descends to a Q(A)-linear represen-
tation of the quotient GSp3,, of GSp,,,, cf. (3.1.2). We then obtain a Q(A)-local system Vy on S(GSp,,,)
such that V¢ arises from the tuple of representations (py,, Vy,) of GSp,, (F,) according to (23).

3.7. The case G = GLs,.

3.7.1. We recall some basic results on the cohomology of S(G) in the simplest case, G = GLs = GSp, . For
a tuple of integers m = (my)y|oc With m, > 2 and all m, of the same parity, define Q(m) to be the fixed
field of

(32) {0 € Aut(C/Q) : my., = My, Yv|oo}.
We then obtain from §3.6 a Q(m)-local system Vp, o on S(GLz), where m — 2 = (m, — 2),|00

3.7.2. Let (p(+),¢(+)) = (1,0) and (p(—),q(—)) = (0,1), and define (p(€), g(€)) to be the plectic Hodge
type (po(€v), quv(€v))vjoc, for any choice of signs € = (€,)yjoc- Let Xem be the character of K; from (2.3.2).
Then we have:

dim¢c Homg, (X—ema /\p(e)’q(e)paL2 ® Vm—z,c) =1,
(33)
dimc Homg, (X\iem’ /\l_p(e)’l_q(e)PELz ® anz—2,<c) =1

Let m be a cuspidal automorphic representation of GLa(Ar) of weight m, whose central character has infinity
type wm. Then combining (30) with (33) yields maps, well-defined up to scalars:

cle : (1@ X-em )" = HL O (S(GL), Vim—2.0)[7/]
ol (1 @ XY ) %Hl)"“” 1)(S(GLy), Vo 0)lrY]
)

Here (1 —p(€),1 —q(€)) = (p(—€), g(—¢€)) is the plectic Hodge type (1 —p(ey), 1 — q(€y))y|oo- The following
is well-known:

(34)

Proposition 3.7.3. For each €, the maps in (34) are isomorphisms, and

HEA(S(GLa), Vin—a.0) ] = HBI(S(GLa), Vi, o)yl =0

if (p,q) is not of the form (p(€),q(€)) for some €. Moreover, if wy is defined over E D Q(m), then there
are GLo(Ap, )-equivariant isomorphisms
H{ (S(GL2),Vim—2,p)lrf] ®p C 2= H{,)(S(GL2), Vim—2,c)[my]
and
HZ(S(GL2),Vin—2,p)[ry] = H*(S(GL2), Vin—2,p)[nf] = H{ (S(G), Vim—2)[ms],

and similarly for Vy, , 5 and Ty
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4. SIMILITUDE THETA LIFTING

4.1. Local Weil representation and local theta lift.

4.1.1. Let e = 41, and let V', W be vector spaces over a field k equipped with nondegenerate e-symmetric
and (—e)-symmetric pairings, respectively. We assume dim W = 2n and dim V' = 2m are even, and that W
is equipped with a complete polarization

(35) W =W, &W,y, Wy=W;

For simplicity, assume as well that the discriminant character of V is trivial (as will be the case in our
applications). Let G1 = G1(V), G = G(V) be the connected isometry and similitude groups, respectively,
of V, and likewise Hy = H{ (W) and H = H(W). Let P = P(W;) C H(W) be the parabolic subgroup
stabilizing Wy, P its intersection with Hy, and N C P; its unipotent radical. Also set

(36) Ro={(h,9) € HxG : vg(h) =va(g)},

where vg : G — G, and vy : H — G,,, are the similitude characters.

4.1.2. Assume that k is a local field. Then, for any nontrivial additive character 1 of k, the Weil represen-
tation w = ww, vy, of Hi(k) x G1(k) is realized on the Schwartz space S, (W2 ® V'); in this model, the action
of the parabolic P; x G; C Hy x Gy stabilizing W7 x V is described as follows.

w(L, g)¢(x) = ¢(g~ ), g € Gi(k),
(37) w(n, 1)p(z) = ¢ (3(n(z),2)) - ¢(x), n € N(k) C Hom(Wa, W),
w(h(a), Né(x) = |det(a)["(a'x), a € GLWL)(K) C Pi(k),

where GL(W) is viewed as the Levi factor of P; by the standard embedding

(38) o ha) = (8 a0t> € P

The representation w extends naturally to Ry(k) by defining

(39 (6 sty ) 6 = et ™0l ™'2)
for all g € G(k), cf. [30, §3]. Note that w is trivial on the center {(\,\)} C Ry.

4.1.3. Suppose that V =V} @ V4 is also split; then the preceding construction also defines an action of Ry (k)
on Sg(W ® V3) by interchanging the roles of V and W. These two representations are isomorphic via the
partial Fourier transform. More precisely, consider the map F : Sx(Wa ® V) — Sp(W ® Va) defined by

(40) ¢ = 9/57 (5(35171’2) = /W i ¢(Za$2)¢(<za$1>) dZa

where 1 € W1 ® Vi, 20 € Wy ® V5, and dz is the self-dual Haar measure with respect to ¢,. Then it is
well-known that F intertwines the actions of Hy (k) x G1(k) on both sides, and it is immediate to check that

it intertwines the actions of
1 0 1 0
(o )6 3)emw

according to the definition (39); so F is equivariant for all of Ro(k).

4.1.4. If 7 is an irreducible admissible representation of H(k), then the local theta lift ©(7) = O,y (7) is
the largest semisimple representation of G(k) such that there is a surjection

wW’V’wk — 7Tv X @(Tr)

of admissible Ry (k)-representations. Symmetrically, if o is an irreducible admissible representation of G(k),
then the local theta lift ©(c) = Oy (o) is the largest semisimple representation of H(k) admitting a
surjection wyy,v,y, — O(c) Ko, The theta lift does not depend on v, by [31, Proposition 1.9].
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4.1.5. We remark that the Weil representation extends naturally to the full isometry groups of V' and W,
not just the neutral connected components; we denote these by G} = G} (V) and H{ = H{(W). Similarly, if
G’ and H' denote the full similitude groups, then the Weil representation extends to the subgroup

o ={(hg) € H xG" : virr(h) = ver(9)}-
The theta lift is usually defined in the literature using G’, H', and Rj. The drawback of working with
neutral connected components of similitude groups is that we no longer have Howe duality, and in particular

the local theta lift may be reducible. However, using connected similitude groups is more convenient for our
global calculations.

4.2. Global Weil representation and global theta lifts.

4.2.1. Now turning to the global situation, assume k = F in (4.1.1). Fix Op-lattices W; C W;, for i = 1,
2, and ¥V C V. The adelic Schwartz space Sa,(W2 ® V) is the restricted tensor product of the local
Schwartz spaces Sg, (W2 ® V') with respect to the indicator function of (Ws ® V) ®p,. O,. The global Weil
representation of Ry(Ar), realized on Sy, (W2 ® V), is defined as the restricted tensor product of the local
Weil representations (using the characters ¢, determined by the fixed global character ). Recall the
automorphic realization of w, given by the theta kernel:

(41) 0(h7g7 ¢) = Z W(h7g)¢($), (h7g) € RO(AF)7 (b GSAF(W2®V)'

€W, (F)RV (F)
If V is also split, then we again have the alternate model Sy . (W ® V3), related to Sp,. (W2 ®V) by the adelic
partial Fourier transform. Note that

0(h,g:¢) =0(h,g;0) = Y. w(h,g)d(x)

zeWRVs

by Poisson summation.

4.2.2. Let f € Ag(H(AF)) be an automorphic cusp form and choose any ¢ € Sy, (Wa ® V). Then, fixing a
Haar measure dhy on H;(Ap), the similitude theta lift 6,4(f) to G is the automorphic function

(42) g 0(h1ho, g; @) f(hiho) dh1, g € G(AF),
[H1]
where hg € H(AF) is any element such that vy (ho) = va(g).
Likewise, if f € Ao(G(AF)) is an automorphic cusp form and dg; is a Haar measure on G1(A), then the
similitude theta lift 6,(f) to H is the automorphic function

h = o 0(h, 9190:9) f(9190) dgr, h € H(Ap),
1

where g9 € G(AF) is any element such that vg(go) = vy (h).

If 7 is a cuspidal automorphic representation of H(Ap), then the similitude theta lift ©(7) = Ow,v ()
is the subspace of A(G(AF)) spanned by the theta lifts 64(f) for f € m and ¢ € Sy, (Wo @ V); if 7 is a
cuspidal automorphic representation of G(Ar), we similarly define ©(7) = Oy (m) to be the subspace of
A(H(AF)) spanned by the theta lifts 0,(f) for f € 7 and ¢ € Sp,. (W2 ® V). A key property of the global
theta lift is its compatibility with the local theta lift. Although this is well-known, we include a proof for
the reader’s convenience.

Proposition 4.2.3. Let 7 be a cuspidal automorphic representation of either G(Ar) or H(AF), and suppose
that ©(m) lies in the L? subspace. Then for any automorphic representation o = ®' o, C O(r), 0, is a
constituent of O(m,) for all v.

Proof. Suppose 7 is a representation of G(Ar); the other case is the same. We consider the map of Ry(Ag)-
representations:

Sa,(We@V)@r®oY —C

PR f®f — 05(f)(h)f (h)dh.

[Zu\H]
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This map is well-defined and nontrivial by assumption. By duality, it also gives a nontrivial map
Sp,(Wo®@V) = 1Ko,
which is evidently a restricted tensor product. This implies the proposition. O

4.2.4. The theta lift defined in (4.2.2) generalizes readily to vector-valued automorphic forms. Suppose
K CG(F®R) and L C H(F ®R) are subgroups which are compact modulo center, and let

(L x K)o = (L x K)NRo(F®R).

Suppose given finite-dimensional representations o and 7 of L and K, and let f € (Ao(H(Ar)) ® 0)* be a
vector-valued automorphic form. Then for a vector-valued Schwartz function

¢ € (Sper(Wa @ V) @ oV @ ) LK)

)

and a Schwartz function
o €SAFJ(W2®V) = Q! Sp,(Wa® V),

vioo
we may define
0s;00(f) € (A(G(AR)) @ 7)"
by the same formula (42) as for the scalar-valued theta lift. The vector-valued theta lift from G to H is
defined in the same way.

4.3. Spherical theta correspondence for similitudes.

4.3.1. We shall require an explicit description of the spherical similitude theta correspondence in certain
cases. Continuing the notation of (4.1.1), assume k is a nonarchimedean local field, that v is unramified,
and that V =V} @ V4 is a split orthogonal space (so that e = +). For this subsection, we will need to work
with the disconnected isometry and similitude groups G} = O(V) and G’ = GO(V).

Now choose bases {e1, - ,en} and {f1, -, fn} of Vi and W7, respectively, and let {e},---,eX } and
{fi, -+, fr} be the dual bases of Vo and Ws. Let Tz, C GL(V4) C Gy and Ty, € GL(W;) C H;y be the
standard diagonal tori; then we choose the maximal tori for G, H, and Ry given (with respect to the bases
{617"' 7em76>{7"' ve;kn} and {flv"' 7fnvff7"' af;:}) by:

Te =Tg, X Gy = {diag(scl,--~ 7xm,)\xfl,-~- ,)\a:;ll)}

(43) TH = TH1 X Gm = {dlag(yh U 7yn7"<‘./y1717 e 7I€y;1)}
TRO =Ty XGm T ~ TG1 X TH1 X G

4.3.2. To fix notation, we recall the unramified principal series of G and H. The unramified characters of

T, (k) are parameterized by tuples x1 = (a1, , ) € (C*)™, where
m
Xl(diag(xla sy Ty, 'Tl_la e 7I;1)) = Ha;)rdwi.
i=1
The unramified characters of Ti(k) are parameterized by x = (a1, , Gy, s) € (C*)™T1 where

m

m
x(diag(zy, - - - 7$M7Am;1, . 7)\.%'_1)) — gordA Ha?rdzi.
i=1

Similarly, the unramified characters of T, (k) (resp. Ty (k)) are parametrized by p1 = (81, -+, Bn) € (C*)™
(resp. 1= (B1, -+, Bn,t) € (C*)"*1), and the unramified characters of Tx, (k) are parameterized by

n= (Bla e 7ﬁn70417 e ,am,u) S (Cx)n+m+1'
Note that the character X x of Ty (k) x T (k) pulls back to the character

HexX = (ﬁl?"' 767170‘1"" ,Oém,St)
of Tr, (k) under the inclusion T, C Ty x T¢.
For Borel subgroups Bg = T¢Ng C G and By = Ty Ny C H, the (normalized) principal series repre-
sentations Indggf()k) x and Indgg?k) 1 possess unique irreducible spherical subquotients denoted m, and o,
respectively; note m, and o, depend only on the Weyl orbits of x and p.

Proposition 4.3.3. Suppose m < n, e =+, and that the residue field of k has odd cardinality q.
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(1) Let m, be the spherical representation of G(k) associated to x = (a1, -+ ,m, ), and suppose that
T = Indg(%) Ty 18 irreducible with multiplicity-free restriction to G (k). Then if O(m,) # 0, O(my )

is the spherical representation o, of H(k) for

_ (2 -
o= (al,. Qs 4, q2, . ’qn m,,sq (m*—m)/4—(n +n)/4+nm/2).

(2) If m <3 and 7' is irreducible, then m |qr (1) is multiplicity-free.

Proof. We first show (1). By [30, Theorem 4.4] and [31, Proposition 1.11], our assumptions on , imply that
©(my) is irreducible and spherical if it is nonzero; then ©(m, ) = o, for some 1, and it remains to determine

o

As in [28, §4], let 0 = (01, -+ ,04,) € C™, and consider for all R(o;) > 0 the family of integrals:
(44) I(o,¢) = /ff) Zaiifi* ®e; + Z zij fi ®¢€; H |aii| 7™ A% ag, Hdzz‘j,
i=1 1<i<j<m i=1 i<j

where ¢ € S (W2 ® V). Let Bg be the unique Borel subgroup that stabilizes the complete isotropic flag
(em) C {emsm—1) C -+ C Vp; and similarly for By. A direct calculation shows that, if R(o;) > 0 for all 4,

Zs(9)(h, g) = 1(0,w(h, 9)¢)

defines an R{(k)-intertwining map from w to the induced representation

— Rg (k)
I, = IndT}‘;O(k),(NHxNG)(k) n(o),
77(0-) = (q01+1im3 e ’q0i+iim7 e aqgm7Qa q2a e 7qnim7
qualfl’ . 7quorifi7 . 7q70m7qf(m27m)/47(n2+n)/4+nm/2) e ((CX)n+m+1'

Now choose a hyperspecial subgroup Kg; of R (k) (arising from choices of self-dual lattices in W and V),
and let H be the Hecke algebra of C-valued, K -biinvariant functions on Rj,. For all o as in the claim, the
Hecke action on the unique spherical vector in I, defines an algebra morphism z, : H — C. It follows from
the discussion in [28, p. 493] that the support of the H-module

K g
Sk(WQ X V) Ro
is contained in the Zariski closure of the points z, of SpecH. On the other hand, the Satake isomorphism
identifies complex points of SpecH with R{-Weyl orbits of parameters n = (81, -, Bm,Q1, -, 0, u) as
above. By assumption, there is a surjection

Si(Wa®V) —» 7r¥ Xo,,

and hence the character y =1 -y lies in the Zariski closure of the Weyl orbit of the parameters 7(c) in the

claim. However, the yu listed in the proposition is the only one (up to H-Weyl action) satisfying this property.
This proves (1).
For (2), by [8, Lemma 2.1] it suffices to show that

#{p:G’(k)%(CX s playmwy =1, 7rx®pg7rx} < 4.

So suppose given such a p. Since 7T;< is the unique spherical constituent of Indgéflz) X5 77;( ® p is a constituent

of Indgc(?lz) X ® p. For this induced representation to contain a spherical vector, p must be unramified. In

particular it is of the form pgo v for an unramified character pg of k*. By considering central characters of
my and my, ® p, we also have pj' = 1; hence there are at most m choices of p, and m < 4 by assumption. [

5. YOSHIDA LIFTS ON GSp,

5.1. Some four-dimensional orthogonal spaces.
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5.1.1. Let B be a quaternion algebra, possibly split, over a field k. Then B comes equipped with a norm
N : B — k and an involution b — b* such that bb* = N(b) for all b € B. The k-orthogonal space Vp
associated to B is isomorphic to B as a vector space, with the inner product defined by

(45) (bl, bg) = tl‘(blb;) = blb; + beT

When B is split, we often drop the subscript and abbreviate V' = Vyy,.

5.1.2. One has a map of algebraic groups over k:
(46) pz : B* x B* = GO(Vp)
defined by
pz(bl,bg) T = blﬂjb;, x € VB.
The kernel of pz is the antidiagonally embedded G,,, and pz is a surjection onto the connected similitude
group GSO(Vp).
If k is a local field, then irreducible admissible representations of GSO(Vg)(k) are all of the form 71 K 7o,

where 7; are irreducible admissible representations of B> of the same central character; if k = F, the same
is true of automorphic representations of GSO(Vp)(AF).

5.2. Elliptic endoscopic L-parameters.

5.2.1. The unique elliptic endoscopic group of GSp, 5 is GSO(V), equipped with the L-embedding:
(47) LGSO(V) = (GLy xg,, GL2)(C) x Gal(F/F) < GSp4(C) x Gal(F/F) = LGSp,.

The Langlands functoriality principle for the map (47) then suggests that, to an automorphic representation
m = m Wy of GSO(V)(Ap), one can associate an L-packet of automorphic representations II(m, ) of
GSp,(AF). These L-packets and their local analogues are constructed via similitude theta lifting in [31, 38].
More precisely, for each place v of F' and each irreducible admissible representation 7y , X3 ,, of GSO(V)(F,),
one associates a local L-packet

(48) {HJF('/TLIM7T2,v)7H7(7Tl,va772,v)} )

where by convention II™ (7 4, m2,) = 0 unless both 7, , are discrete series. For all v, II* (7 ,,72,,) is the
unique generic member of the L-packet, and is explicitly given by the (nonzero, irreducible) local similitude
theta lift:

(49) O (1,0, T2.0) = Ovw, (11,0 K 7a,).

If m;, are both discrete series, then they admit Jacquet-Langlands transfers va to B*, where B is the
non-split quaternion algebra over F,,. In this case, we have

(50) I (71,0, T20) = Ovywy (T4, T5),s

a nonzero irreducible representation. We remark that the central character of Hi(m,v, Tg,v) is the common
central character of m; , (since the central character of the Weil representation is trivial). The L-packets
associated to m, and ), = ma, W 1, coincide, but otherwise are all disjoint. Globally, given a cuspidal
automorphic representation m; X mo of GSO(V)(Ap) and a finite set S of places where ; are both discrete
series, we form the adelic representation
I
(51) Hs(ﬂ'l, 7T2) = ® H+(7T17U, 7'(2,1,) X ® I~ (7'('171), 7'('2,1,).
vgS vES

Theorem 5.2.2. Let my X mo be a cuspidal automorphic representation of GSO(V)(Ag), where m; % ma.
Then the automorphic multiplicity of g (71, m2) is given by:

1, if |S] is even,

mdisc(HS(ﬂ—lv 7(-2)) - mcusp(HS(’/Tla 772)) = {07 Zf ‘S| is odd.

The representations Il (my, ma) constitute a full near equivalence class in the discrete spectrum of A(2)(GSpy(Ar)).
They are not CAP, and are generic if and only if S = 0. Moreoever, if |S| is even,

HS(T‘-laﬂ-Q) = GVB,Wzl (TrlB X 7723)7
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where B is the unique F-quaternion algebra ramified at the set of primes S and P are the Jacquet-Langlands
transfers of m; to B* (AF).

Proof. That Ilg(my,m2) is not CAP is [38, Lemma 5.2]. The multiplicity formula, and the fact that IIg(7, m2)
is a full near equivalence class, is [38, Theorem 5.2]. The genericity assertion follows from [38, Theorems 4.1
and 4.5(c), Corollary 4.16]. The nonvanishing of the global theta lift is [38, Corollary 5.5]; note that, given
Ovy.w, (TP B al) £ 0, it is cuspidal if 7 # 78 by [38, Theorem 4.3], and hence abstractly isomorphic to
IIg(m, m2) by Proposition 4.2.3. O

5.3. Yoshida lifts in cohomology.

5.3.1. Fix tuples my = (m1,4)yjec and mg = (M2,4)y|ee Of integers such that my ., > ma, +2 > 4 for all v
and all m; , have the same parity. Let 71, 72 be cuspidal automorphic representations of GLa(Af) of weights
my and mg, respectively, with equal central characters of infinity type wy,,. For v|oo, the Yoshida lifts
% (71, T2,0) of (5.2.1) form the discrete series L-packet of weight (£;,#£2) on GSp,, where
/ o mi + ma.
1,0 — 2 )
miy — M2y + 4

62,1) = 9 ’
and £; = (fiy)vjeo- More precisely, the restriction of II7(my ,,72,,) to Spy(F,) is the direct sum of the
holomorphic and anti-holomorphic discrete series with Harish-Chandra parameters A+p = ({1, —1, {3, —2)
and (2 — lo4,1 — 41 ,). (Here, p = (2,1) is the half-sum of the standard choice of positive roots for Spy.)
The restriction of II* (71,4, 72,,) to Spy(F),) is the direct sum of two generic discrete series representations
with Harish-Chandra parameters A+ p = (¢1,, — 1,2 — {2 ,) and (bo, — 2,1 — {1 ).

For a set Sy of finite places of F' at which 7; are both discrete series, set

(52)

/
HSf = ® H+(7rl,v77r2,v) & ® Hi(’”l,v,’”?,v)-

vgS; veSy

vtoo
We consider the local system Vg, _3 4,3y of Q(1m1, m2)-vector spaces on S(GSp,) according to the conven-
tions of §3.6 (the fields Q(m;) are defined in (3.7.1), and Q(my, m2) is the compositum).

For each v|oo, let TZ ilayr YESDL To be the unique irreducible representation of K, of central

1

i

Similarly, let UZ 0y, TESP. 0y, . be the unique irreducible representation of K, of central character
w,b whose restriction to U(2) has highest weight (—/3 ,, —f1.4), resp. ({14, /2.,). Note that the duals of the

mMi v

character w,,} = w[i.lv whose restriction to U(2) has highest weight (¢2, — 2, —¢1 ), resp. ({1,4,2 — la,).

Ko ,-types 7'51[ .0, , appear with multiplicity one in II* (71,4, T2,), and the duals of the K ,-types O'Z W,

2,v
appear with multiplicity one in II™ (7 ,,m2,), cf. [10, Table 2.2.1].

For a subset Soo C {v]|oo} and a collection of signs € = {¢, } define the Ks-representation

v|oo ?
€ — €y €v
(53) Tll’e%soc ._ ® O—Zl‘vvelv ® ® Tel,v7€2,v.
VES vZ€Soo
v|oo

Thus TG, 05,5, 1S dual to a Ks-type of IIg(m,m2) with multiplicity one, if Sy, is the set of archimedean
places in S.

5.3.2. Now let (p(€, Sx), q(€, S~ )) be the plectic Hodge type determined by:
(370)a € = +,v € S,
(271)u Ev:-f—,'l}gsoo,

(172)7 ev:_7U¢SOO7
(0,3), €, =—,0 € Seo.

Thus (p(e, 0), q(e,0) = (p(e) + 1,g(€) + 1) in the notation of (3.7.1). An easy calculation shows that

(54) (pv(ea Soo)7Qv(6aSoo)) -

(55) dim Homg, (7—51712’300’ ‘/(21_3!2_3)7@ ® /\p(e’S”)’q(e’S”")Pasm) =1.
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Hence, if S = Sy U Sy is a finite set of places of F' with |S| even, combining (30) and (55) yields a map
(well-defined up to a scalar):

€ € K €,000),94(€,000
(56) cl§ : (Ms(my,m) @ 7, 4,5.) = HE TS0 (S(GSp,), Vig, —3.0,-3).0) [T, .

Proposition 5.3.3. The map cl§ is an isomorphism of G(Ap, )-representations, and moreover

HE (S(GSPy), Vie,—3,0,-3),c)Ms, ] = 0

if (p,q) is not of the form (p(€, Sx),q(€, Sxo)) for some So such that |Sy L S| is even.
Proof. That cl§ is an injection follows from [35, Proposition 5.4] and the calculation of Casimir operators

for G, cf. [10, p. 67]. The surjectivity and the vanishing of other plectic Hodge types follows from (24),
Theorem 5.2.2, and the calculation of the nonvanishing (g, K3) cohomology groups:

dim H*°(g, Ko; 1T, (71,0, 72,0) @ Vie, y—3,05.,—3),c) = dim H*? (g, Ko 11, (71,0, T2,0) ® Vig, ,—3,65.,—3),c) = 1,
dim H*' (g, Ko; 1L} (71,0, T2.0) ® Vi, y—3.05 o —3),c) = dim H"?(g, Ko; II (1,0, T2,0) @ Vie, ,—3,05.0—3),c) = L.
The dimensions of these cohomology groups can be calculated from the main results of [35], and are also
recalled in [34, §1]. O
5.3.4. Finally, we relate the Ilg,-isotypic parts of the L? and singular cohomology.

Proposition 5.3.5. Assume Il is defined over E, where Q(mq, ms) C E C C. Then there exist GSp,(Ap,f)-
equivariant isomorphisms

H{ (S(GSPy4), Ve, -3,6,-3),8) [Ils;] ®p C = H5) (S(GSPy4), Ve, 3,0, -3),c) [Is,]
and
HZ(S(GSpy), Vie,-3,,-3),8) [Ils,; ] ~H*(S(GSpy), Vie,-3,0,-3),)[Ls,]
~H (S(GSP4), Ve, —3.6,-3),1)[ILs;].
Proof. By Theorem 5.2.2,
H:usp(S(GSp4)7 V(& 73,2273),(C) [Hsf] = H(*2) (S(Gsp4)7 V(& *3,22*3),C) [Hsf]?

and the first statement follows by the discussion in [34, p. 293]. The second assertion is an immediate
consequence of Lemma 3.2.3 (and Poincaré duality), since Ils, is not Eisenstein. O

6. PERIODS OF YOSHIDA LIFTS

6.1. The period problem.

6.1.1. Let m; X g be a cuspidal automorphic representation of GSO(V)(AF), and let 7 be an auxiliary
cuspidal automorphic representation of GLo(Afp) such that 7V and m; have the same central character.
Consider the subgroup

H = GL,y XGm GL, C GSp4

and the period integral Pg z, . : Ig(m1,m2) @ m — C defined by

(57) Psmmsn(@ )= [ alh )50 d(h. 1),

[Zu\H]
where H(Ar) C GSp,(AF) is parameterized by pairs (h,h') € GLa(Afp) x GLa(Ar) such that det(h) =
det(h'). When 7, 72, and 7 are clear from context, we drop them from the notation Pg r, r,.». The goal
of this section is to calculate Pg r, x, » explicitly (Theorems 6.2.2 and 6.5.2). The result is applied to the
cohomology of Shimura varieties in the next section.

6.1.2. Of course, we must specify a Haar measure on [Z\ H] for (57) to be well-defined. Let C = A S F*\A%,
and let dc be the Haar measure on C assigning volume 1 to the image of Op. As the measure on [Zu\H], we
take the measure induced by pullback from the surjection [SLg] x [SLg] x C — [Zg\H]. The Haar measure
on SLs is described in (2.2.2).
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6.1.3. Before we begin the calculation of (57), we explain the seesaw diagram that lies behind it:

GSp, GSO(Vp) xg,, GSO(Vp)

>
H GSO(Vg)

Here B is the quaternion algebra ramified at S, the vertical lines are inclusions, and the diagonals are
similitude dual pairs inside GSpg; the diagram corresponds to the two decompositions

WiV =Wy V@ W ® Vg

of Wig. Since Ilg(my,m2) is spanned by theta lifts 0,(f1 ® fa) for f; € 2, we wish to apply the formal
seesaw identity:

(58) 0p(f1 @ f)la, BR L) g = (f1 ® f2,05(8 @ 1)|aso(vs))Gso(V)s

Here f ® 1 is the automorphic form (h,h’) — B(h) on H. Now, the theta lift from H to GSO(Vg) xg,,
GSO(Vp) is simply two copies of the theta lift from GLy to GSO(Vg); restriction to the diagonal amounts
to multiplying the theta lifts of 8 and 1 on GSO(Vg). The theta lift of 5 to GSO(Vg) will be a vector
in 78 X 78, where 78 is the Jacquet-Langlands transfer. However, the theta lift of the constant function
is formally divergent; to regularize it, we need a certain second-term Siegel-Weil formula. Ignoring this
technicality, the theta lift 6,(5 ® 1) restricted to the diagonal GSO(Vg) should be the product of a vector
in 78 X 7P and an Eisenstein series on GSO(V3). Of course, the Eisenstein series can only exist when B is
split, so (57) should vanish identically unless S = (). But when S = {), integrating 6,(8 ® 1) against the form
f1 ® fo gives a Rankin-Selberg integral that unfolds to an Euler product and ultimately an L-function.

Thus to compute Pg x, =, we first must dispatch the trivial case S # 0, and then study the theta lift
of both cusp forms and constant functions from GLg to GSO(V'). This is the content of the next three
subsections.

6.2. Calculation of period integral: trivial case.
6.2.1. The trivial case S # () can be handled easily:
Theorem 6.2.2. If S # (), then Ps is identically zero.

Proof. Let B be the quaternion algebra over F' ramified exactly at S (recall |S| is even). By Theorem 5.2.2,
it suffices to show the vanishing of all integrals of the form

I69.) = [ 6ula)hh)- FR)A(h 1),
[Zu\H]

for ¢ € Su({ez,e4) ® B) and g € 7P X 7P, Let us fix a place v at which B ramifies, and a Schwartz

function ¢¥ € Sp,»(W2 ® B). Then, holding the other data f,g fixed as well, consider the linear map

I, : Sp,(W2 ® B) — C defined by

(59) bv = 1(¢" @ u, [, 9)-

Now I, clearly factors through the maximal quotient @ of Sp, (W2 ® B) = Sp,(B @ B) on which {1} x
SLy(F,) C H(F,) C GSpy(F,) acts trivially. We claim this quotient is trivial. Indeed, the action of the
Borel subgroup of {1} x SLy(F3,) is explicitly described by:

w <1 x ((1) g‘) ,1> o (br,b2) = ¥ <;nN(b2)> v (b1, b2)
o (1 (5 ,00) 1) o= laPoun.ab).

Since B, is anisotropic, it follows from the first equation that Sgp, (Ws ® B) — @ factors through ¢, +—
¢v(b1,0); then the second equation implies @ = 0. Therefore I, is identically zero for all choices of (¢?, f, g),
and in particular (since the adelic Schwartz space is generated by factorizable Schwartz functions) all the
period integrals I(¢, f, g) vanish as well. |

(60)

6.3. Lifts of cuspidal representations from GL; to GSO(V).
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6.3.1. Since V is split, the Weil representation for the pair (W2, V') has the alternate model given by the
complete polarization V = V; @& V5, where

iei ) w0 )

6.3.2. Let m be a cuspidal automorphic representation of GLo(Ap). It is well-known that the theta lift
O(r) € Ao(GSO(V)(AFr)) is isomorphic to the automorphic representation © X 7 of GSO(V)(AFp); for
instance, this follows from strong multiplicity one for GL; and a calculation of local Langlands parameters
analogous to Proposition 4.3.3(1). To obtain our ultimate period formula, we will require the following
calculation:

Lemma 6.3.3. Let ¢ = ®,¢, € Sa({e2) @ W) and f = ®,f, € 7 be factorizable vectors, and choose a
factorization

W'/hf(h) = HWf,v(hv)v h = (hv) € GLQ(AF)

of the global Whittaker function of f (so that Wy (hy)(1) =1 for almost allv). Then the Whittaker coefficient
of 04(f) along the standard unipotent subgroup N x N C pz(GLqa x GLg) is given by:

Oo(N (D) nxnp-1xv—1 =] ] ( /S - )Wf,v(hvh%)w(hvhcv,g)cz?(l,o,0, 1) dhv> :

v

¢ = (¢y) = det(g).
Proof. We compute in two steps. First, for (h,g) € Ro(AF),
i 0o = [ Y wlhing)dle)uin)dn
M zeweve

-/ XD bl )l )b, s, 2 v do
FANAR (21 w1,

22,Ww2)

S wlhg)ele)

(z1,w1,22,w2)

zlw27w122:71
~ESLa (F)

Here dn is the Haar measure on N such that [IV] has volume 1. Now, using the identity

w(nh, g)6(1,0,0,~1) = w(h, pz(1,7)9)$(1,0,0,~1), (g,h) € Ry, n € N(A),

we obtain:
05 (f)(9) NNt it = /[ | /[S O, p2(1,m)g56) -t () () dhdn
N Lo
- / / w(hhe, p(1,m)9)3(1,0,0, ~L)(n) f(hhe) dh dn
[N] JSL2(A)
:/ / w(hhe, g)H(1,0,0, —1)p(n) f(n~ ' hh.) dndh
[N] SLQ(A)
- / w(hhe, g)3(1,0,0,~1) Wy (hh.) dh,
SLz(A)
which gives the lemma. O

6.4. A Siegel-Weil identity for GSO(V).
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6.4.1. Degenerate principal series for GSO(V). The maximal isotropic subspace V; C V of (61) has stabilizer
(62) P = pz(B X GLQ) C GSO(V)
Let v be a place of F', and consider the (normalized) induced representation

GO(V)(Fy) ss
I,(s)= IndP(}gv))( ) 0p, -
We also consider the induced representations I, (s) = Indg&(}f") 0%. Let 7 € GO(V)(F,) be an element such
that:

(63) 7% = Land 7pz(g1,92)7 = Pz (92, 91)-
Then the representations I,,(s) and I, (s) are related by the following observation.

Proposition 6.4.2. The map
M, : I,(s) = L,(s) ® I,(s)
defined by
My(p)(9) = (p(Pz(9, 1)), p(TPz(1,9)))

is a linear isomorphism and an intertwining map of GLa(F,)x GLa(Fy,) representations, if GLa(F,)x GLa(Fy)
acts on the left through the quotient GLo(F,) x GLo(F,) = GSO(V)(F,) and on the right through the first
(resp. second) projection on the first (resp. second) factor.

Then by the well-known theory of principal series for GLs, we deduce:

Corollary 6.4.3. For all places v, the representation I,(1/2) has a unique irreducible subrepresentation,
and the corresponding quotient is the direct sum of the trivial character and the sign character of GO(V)(Fy).

6.4.4. Let I0(1/2) be the kernel of the projection from I,,(1/2) to the sign character.
Consider the map

[]: Sk, ({e2) ® V) — I,,(1/2)
defined by
[6)(9) = w(hu(g), 9)(0).

A standard calculation shows that [] is equivariant for the action of Ry(F,) C GL2(F,) x GO(V)(F,) on
both sides, where R} (F,) acts on I,,(1/2) through the projection R - GO(V). We may then extend [¢] to
a holomorphic section [¢](s) € I,(s) by requiring the restriction of [¢](s) to the maximal compact subgroup
Ky € GO(V)(F,) to be independent of s.

Lemma 6.4.5. For any place v of F':

(1) The image of ¢ + [¢p] is I°(1/2).
(2) We have dim Homgy, (r,)xso(r,) (SF, ((e2) ® V), C) = dim Hompg, (r,)(SF, ({e2) ® V), C) = 1.

Proof. Suppose first that v is nonarchimedean. Then (1) follows from comparing [7, Proposition 5.2(iii)]
with Corollary 6.4.3. By [29, Theorem II.1.1], [-] realizes its image as the maximal quotient of S, ({e2) ® V)
on which SLy(F,) acts trivially, so (2) follows from (1).

Now suppose v is archimedean, and let Sr, ((e2) ® V)gr,(r,) be the maximal quotient on which SLy(F),)
acts trivially. By [13, Theorem 1A], Sk, ({e2) ® V)s1,(r,) has a unique irreducible quotient p; moreover, the
proof of this theorem in §4 of op. cit. implies that p contains a spherical vector for the maximal compact
subgroup of O(V)(Fy). (For the latter claim, see also [13, §7(b)] and the explicit description of the K-
type correspondence in [10, Proposition 4.2.1].) Since Sr, ({(e2) ® V)s1,(r,) surjects onto the image of [-] by
definition, we conclude that the image of [-] is contained in I?(1/2) and contains a spherical vector, hence
(1) holds. Finally, (2) is immediate from (1), Corollary 6.4.3, and the fact that Sg,({e2) ® V)s1,(r,) has a
unique irreducible quotient. |
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6.4.6. Eisenstein series on GSO(V). Let I(s) = Indgaf:))(AF) 9% be the global parabolic induction, and for

holomorphic sections ¢(s) € I(s) consider the Eisenstein series:
(64) E@g.si9)= Y, #s)(19). g€GSO(V)(Arp),
YEP(F)\ GO(V)(F)

which converges for R(s) > 0. We also consider I(s) = Indg(ngp ) % and, for holomorphic sections ¢(s) €

I(s), the corresponding family of Eisenstein series:
(65) E(g,s¢) = > ¢(s)(79); g € GLa2(AF).
YEB(F)\ GL2(F)

Let

M = (My, M) : I(s) — I(s)® I(s)
be the intertwining map given by
Mi(p)(9) = »(pz(9,1))
Mz (p)(9) = p(1P2(1,9)),
where 7 € O(V)(F) satisfies (63). This is a restricted tensor product of local maps M, = (M ,, M2 ).

(66)

Proposition 6.4.7. We have

E(pz(91,92); 5, %) = E(g15 5, M1(p)) + E(g23 5, Ma(¢))
as functions on C x GLa(Ap) X GLa(AfR) for R(s) > 0 and holomorphic sections ¢ € I(s). O

By Proposition 6.4.7 and the well-known theory of Eisenstein series for GLa, E(g, s; ¢) has a meromorphic
continuation to s € C, with at most a simple pole at s = % Let

(67) []: Sar((e2) @ V) = I(1/2)

be the tensor product of the local maps, and similarly for [](s). For each ¢ € Sa.({e2) ® V), we consider
the Laurent series expansion:

(68) E(g,5:[8) = 2199 4 4 gig) 4, g e GSO(V)(AR).

Lemma 6.4.8. For each ¢, A_1(g;®) is a constant function of g. Moreover, the linear map
Ap: Sap((e2) @ V) = A(GSO(V)(AF))
is an Ro(Ap)-intertwining operator modulo constant functions.

Proof. The first claim is immediate from Proposition 6.4.7. For the second, the proof of |7, Proposition 6.4]
applies almost verbatim, taking into account Lemma 6.4.5(1). O

6.4.9. The spherical Eisenstein series. Let ¢°(s) € I(s) be the unique GLy(OF) - SO(2)-spherical section
such that ¢%(s)(1) = 1, and let

(69) Eo(g,s) = E(g,5:¢")

be the resulting Eisenstein series on GLa(Ap). We record the following;:

Proposition 6.4.10. The residue of Eg(h,s) at s = % is given by:

_ 7 Ress—1 Cr(s)
2|Dp|2¢r(2)

Proof. Although this is standard, we give a sketch for the reader’s convenience. In the Fourier expansion of
Ey(h, s), the non-constant Fourier coefficients are holomorphic. We therefore wish to calculate

1

Res,_1 ————
2 Vol([N]) Jiw

Ey(n,s)dn,
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where dn is the Haar measure on N(Ap) induced by the identification N(Ar) ~ Ar and (2.1.1). Unfolding,
we obtain (using the Bruhat decomposition of GL3):

# n,s)dn = 1 OS n)dn
VoI([N]) Jig Eo(n, s)d Vol([V ])/ WEB(F)E\:GLZ(F;O (s)(yn)d

1 o 1
l([N])/ ® (s)(n)dn+vol([N / Z )(wpan) dn

aeN(Q)

o<

1 0 1 0
1([N])/ i (s)(n) dn + Vol([N])/ AF)<P () (won) dn,

0 1
w=(4 )

is the Weyl element. The first term is holomorphic in s, so we may discard it and compute:

; OS wWon n
VOI([N]) ];[/N(FU)@ ( )( 0 v)d v

where dn,, is the standard Haar measure assigning volume one to O,. By the Gindikin-Karpelevich formula
(e.g. [4, Chapter 7]), this product is

1 (s —1/2)\ %y 1 — ;2! 1 r'(s) \* ¢p(29)
o (T Hl e = oy (e ) G

Taking residue at s = 5, we obtain

§

where

_ 7 Ress—1 Cr(s)
2Vol([N])Cr(2)
Finally, we may calculate
Vol([N) = Vol(F\A/Op) = Vol(R?/Op) = |Dp|*
by strong approximation. O

6.4.11. Regularized theta integrals. We now recall the regularization, due to Kudla and Rallis [20], of the
(non-convergent) theta integral

g /[ Ol 9:6) dhs, g € GSO(V)(hr).
SLo

where ¢ € Sa,.((e2) ® V). The first step of the regularization is to define a certain central element z of the
universal enveloping algebra of sly; for the precise definition, see [20, §5.1]. Kudla-Rallis’ regularized theta
integral (adapted to the similitude case) is then:

1
(70) I(g,s;0) = R @2 1) /[SLQ] 0(g, h1hy(g);w(2)9)Eo(h1, s) dhy,
g € GSO(V)(Ap).

(The factor of 4s% — 1 is designed to cancel the effect of w(z), cf. [20, §5.5]. Our normalization of s differs
from loc. cit. by a factor of two.) The regularized integral I(g, s; ¢) is a meromorphic function of s whose
poles coincide with the poles of Eg(hq,s). The Laurent expansion about s = % has the form:

B—?(ga(é) + B—l(gvl(b) +BO(97¢)+

-3 e

(71) I(g,s;¢) =

By definition, the linear maps
(72) By :San({e2) @ V) = A(GSO(V)(AFR))
are GSO(V')(AF)-equivariant, where g € GSO(V)(AF) acts on the left by ¢ = w(hy(g), 9)¢
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Theorem 6.4.12 (Gan-Qiu-Takeda). For all ¢ € Su,.({e2) ® V) and all g € GSO(V)(AF), we have:

B_5(g,¢) = Vol([SL2]|)A-1(g, ¢)
B_1(g, ¢) = Vol([SLz]) Ao(g, ¢) + C(v(9), ®),

where the volume of [SLs] is taken with respect to dhy, and C(v(g),¢) € C is a constant.

Proof. Fix ¢; it follows immediately from [7, Theorem 1.2] that the identities hold for all g € SO(V)(AFp),
and for some constant C(1,¢). By Lemma 6.4.8, A_;(-,¢) is constant, so the map ¢ — B_5(1, ¢) defines
an SLa(Ap) x SO(V)(Ap)-invariant linear functional on Sy, ({e2) ® V). In particular, ¢ — B_s(1,¢) is
invariant for Ry(Ar) by Lemma 6.4.5(2), and we conclude that B_s(g, ¢) is a constant function of g, so the
first identity holds.

For the second identity, for all a € A%, fix g, € GSO(V)(Ap) with v(g,) = a. Then by Lemma 6.4.8, for
all g € GSO(V)(AFr) with v(g) = a we have

(73) Ao(g,¢) = Ao(g9, " w(ha, ga)¢) + Ci(a, ¢)

for some constant C(a,®); similarly, because B_s is constant, B_; is an intertwining operator modulo
constants, and in particular we have

(74) B_i1(9,9) = B-1(99 ", w(ha, 9a)9) + Ca(a, ¢)
for some constant Cs(a, ¢). Combining (73) and (74) with the identity for isometry groups gives
B_1(g,¢) = Vol([SLz]) (Ao (g, ¢) — C1(a, ¢)) + C(1,w(ha; ga)¢) + C2(a, ¢)

for all g with v(g) = a, which proves the theorem. O
6.5. Calculation of the period: nontrivial case.

6.5.1. We now assume that S = (), so that IT = Iy(my,72) is generic, and compute Py r; ry 7

Theorem 6.5.2. (1) Choose vectors ¢1 € Sp,({e2) @ V), ¢ € Sap({ea) ®V), a € m R g, and 5 € 7.
Then:

2

P@,#l,ﬂz,ﬂ' (9¢71®¢2 (Oé), 6) = \/als:l ~/[PGSO(V)] E(g7 S5 [¢2])a(g)9¢1 (ﬁ) (g) dg,

where PGSO(V)(Ap) = PGLa(Ap) X PGLo(AR) is given the product Haar measure.
(2) Ppry mo . s identically zero unless w is isomorphic to either wy or my .
(8) Suppose we are given factorizations:

¢1 = ®v¢1,v S SAF (V)7 ¢2 = ®v¢2,v € SAF (V)7

o= Ry, € m Ky, 6:®v6v 671—%/7
along with decompositions of the global Whittaker functions:

aNXN,zlJXw(g) = HWa,v<gv)7 g= (gv) € GSO(V)(AF)a

B (h) = [[Wow(ho), b= (h,) € GLy(A).

Then for a sufficiently large finite set of primes S, we have:

L5, m x wy)L5 (1, Ad o) H Zo(D1,0, 92,0, s Bu)
Cg(Q) vES 1_(]171

where Zy (1,0, P20, O, Bu) is the local zeta integral:

Po(0s, @6, (), B) = 2| Dp|? - 1

/ / W o (9) W (hahe)o(hihes 9)d1.0(1, 0,0, — 1) (g2) M o 9.0 (91) dir dyg
(75) J(NxN\PGSO(V))(F,) J SL2(F,)

¢ =det(g192), 9 =pz(91,92)-
Here ©°(go) is the standard spherical section of 1(1/2).
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(4) The L-values L° (1,711 x 7)) and L°(1,Ad ) are nonzero. Moreover, for each place v, there exist
choices of ¢; v, o, and B, such that

ZU(¢1,U7 ¢2,va Ay, B’u) 7é 0.

Proof. First, fix the Haar measure dg on SO(V')(Ap) such that, under the surjective natural map [SO(V')] x
C — [PGSO(V)] = [PGLg] x [PGLy], the Haar measure on [PGL2| x [PGL3] induced from (2.2.2) pulls back
to dg dec. We expand:

(+) Poorsmae Ooncoi (@), B) = / s 90 () (b, W) B () s,

[Zu\H]

which by definition is:

@=/ 0, 4: 6100, g; 62)a(9) B(h) dg d(h, ')
Zy\H] J[GSO(V)» ()]

:// / / O0(hhe, gge; $1)0(h' he, gge; d2)(gge)B(h) dh dg dh/ de
C J[SLa| 4 [SO(V)] v [SL2]
— [ bR g 62105, ()95 )algg0) dg an’de

¢ J[sLs] J[s0(v)]

Now, by the reasoning of [20, §5.5], the latter integral is equal to the residue at s = % of:

1
T o fo g, P00 9852162 ol )8, (3) (05 dg e

which is meromorphic for $(s) > 0. Here  is as in Proposition 6.4.10. Now, by the principle of meromorphic
continuation, we may interchange the integrals over SLy and SO(V'), and obtain:

() = / B_1(g, é2)o(g)0s, (8)(g) dg
[PGSO(V)]

— Val,_ / E(g. 5: [92))0(9)0, (5)(9) d.
[PGSO(V)]

by Theorem 6.4.12 and the cuspidality of «. This is (1). For (2), since 04, (3)(g) lies in the automorphic
representation 7’ X 7’ of GSO(V)(AF), it is a linear combination of functions of the form

pz(91,92) = f1(91)f2(g2), fien'.

Combining this observation with Proposition 6.4.7, it follows that (*) is a linear combination of integrals of
the form

val,y | Bg1, 5: My [6a))a(02(91, 92)) f1 (90) fo(02) Ao g,

(76) [PGLy x PGLo)

Vals:%/ E(g2, s; Ma[¢2])e(pz (91, 92)) f1(91) f2(g2) dgu dga.
[PGLQ X PGLQ]

These clearly both vanish unless f> lies in either 7y or 7y, which proves (2). In order to prove (3), suppose
7w = my. We replace (*) with an equivalent integral that can be unfolded:

(*) = *ReS / E(g1, s; Mil¢2]) Eo(92, 8)a(9)0,, (8)(9) dg, 9= pz(91,92)
[PGSO(V)]

R

1
= —Res,_1

Res,y [ My [62)()(92) () (92) 00 .6 (9)01s (B) v v -2 (9) .
N(A)x N(A)\ PGSO(V)(A)

This factors into an Euler product

( *Res HZ ¢1,U7¢2,v7av»ﬂv)a
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where the local zeta integrals are (applying Lemma 6.3.3):

/ / Wa,v(g)Wﬁ,v(hlhc)w(hlhcag);ﬁ\l(la0707_1)¢0(92)M1[¢2](g1)dh1 dg
(77) (NxN\PGSO(V))(F,) / SL2(F,)

c=det(g9192), 9=pz(91,92)-

At an unramified place v such that Wy, ,,, Wg 4, ¢; ., are all the standard spherical vectors, the inner integral
L Wasluhew(huhe,g)1(1,0,0.-1) dby
SLa(Fy)

is exactly the standard spherical Whittaker function for 7y X 7y, by the unramified theta correspondence.
Then, the standard Rankin-Selberg calculations (see e.g. [15, Proposition 2.3]) show that we have the Euler
factor

Ly(s+ i, mRnry)Ly(s+ 1 mRny)

Zv(87¢1,v7¢2,'u7av76v) = 1 q,g .
- Yuv

Now the formula (3) follows by comparing with Proposition 6.4.10. The non-vanishing of the L-values in (4)
is well-known; see for instance [33] and [12]. The non-vanishing of the local zeta integrals at ramified places
also follows from the non-vanishing for Rankin-Selberg local zeta integrals, cf. [16]. d

7. PROOF OF MAIN RESULT: SPECIAL CYCLES IN THE GENERIC CASE

In this section, we apply the results of §6 to the cohomology of Shimura varieties. Since the Schwartz
functions at the Archimedean places must be chosen rather carefully to obtain automorphic forms that
contribute to cohomology, we begin with several local calculations.

7.1. Archimedean calculations.

7.1.1. We first establish some general conventions for the local Weil representation for the pair (V, Wa,,) over
R, where V = V},. Fix coordinates on Ws, ® V' by:

(@1,"' 7§2n) — Zei®§i7

_ T Y
I, = (xivyhziawi) — (Zi wi> .

(78)

Let K, C G = GSp,,, g be asin (2.3.2), let H = GSO(V), let Ry be asin (4.1.1), and let L = Zg-pz(SO(2) x
SO(2)) € H(R). Also let Ly C L be the kernel of vy restricted to L, so that Ly = pz(SO(2) x SO(2)). For
any integers mq, mg with mq = msg (mod 2), let X, ,m, be the character of L which is given by w;& = w;é
on Zy and by Xm,; 8 Xm, on Ly. Finally let (K x L)g = (K x L) N Ry.

7.1.2. Let S%(n) C Sg,({e2, -+ ,e2,) ® V) be the subspace of Schwartz functions of the form

B(Lg, -+ Lyy) = P(Zg, -+ s Tgy,) exp(—7(|zo | + -+ + |29, ),

where p is a polynomial, and let S9(n) C S°(n) be the subset such that p is homogeneous of degree d. As a
(to, (K, x L)g)-module, S°(n) is isomorphic to the Fock space F(n) of complex polynomials in 4n variables,
see [13, §2]; the isomorphism does not preserve degrees, but it does carry S2;(n) = ®,<4S? (n) isomorphically
onto F<g4(n), the subspace of polynomials of degree less than or equal to d. The following proposition is the
key fact we will need about the structure of the (K, x L)o-module S2,(n).

Proposition 7.1.3. (1) Suppose the U(n)-representation of highest weight (a1, - -+ , an) appears in S (n).
Then lay| + -+ + |an| < d. -
(2) If m1 = mgy (mod 2) are integers such that mi; = tmso if n =1, define
_ Imutma| ) fma — my|
2 ’ 2 ’
and let T be the unique representation of K, whose restriction to R* is w, ! and which has weight
(a,0,---,0,—b) when restricted to U(n). Then

)(KnxL)O

dim (S%a-&-b(n) RXRTE® Xynl,mz =L
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Proof. This follows from [10, Proposition 4.2.1]; see Remark 3.2.2 of op. cit. to translate the O(2) x O(2)
parameters into pz(SO(2) x SO(2))-parameters. O

In our calculations below, we will need two explicit Schwartz functions, described by the next two propo-
sitions.
Proposition 7.1.4. Suppose n =1 and m > 0, and choose € € {+1}. Then:
(1) A generator for the one-dimensional space
(2,1 (1) ® Xem ® Xy egn) 7 H0
s given by
P (@, 2,w) = (& + €iy + iz — ew)™ exp(—7z[?).
(2) If m > 2 and 7., is the discrete series representation of GLa(R) of weight m > 2, then the local theta
correspondence yields a map

S({e2) @ V) = (1 B 7)Y Bt
of Ro(R)-representations, under which ¢S, has nontrivial image.
Proof. For (1), it suffices to show that for all
(k,pz(k1,k2)) € U(1) x pz(SO(2) x SO(2)) C SLa(Fy) x SO(V)(F),

we have:

w(k, pz(k1,k2)) b5, = X—em(k)Xm (k1) Xem (k2)d5, -
The action of pz(SO(2) x SO(2)) can be checked directly.
For the action of U(1) C SLg, we calculate on the Lie algebra level using the following formulas for
differential dw of the Weil representation:

wl(0 0y . L (o &
@ 0)°7) 2w \0z0y Owdx)’
dw ((8 (1)> ,0) = 2mi(zw — yz).

dw ((_01 é) ,O) Or, = —imeps,,
(1) follows.

For (2), the local theta correspondence between GSp,(R) = GL2(R) and GSO(V) is well-known, see
e.g. [10, Proposition 4.4.2], and the non-vanishing of the image of ¢¢, follows from the discussion in [13, p.
545). O

—_

Since

Proposition 7.1.5. Let m > 0 be an even integer. Then the Schwartz function

Om = (& +12)° + (y +iw)?) * exp(—7z[*) € 5,(1)
satisfies
w(kapZ(klv k2))¢9n = Xm(k1)¢2’b

Proof. This is a direct calculation, similar to Proposition 7.1.4. ]

7.1.6. For the remainder of this subsection, fix n = 2. We now define the vector-valued Schwartz functions
adapted to constructing cohomology classes on Shimura varieties as in §3, and compute a related local zeta
integral. Asin (5.3.1), let my > mg > 2 be integers such that m; = ms (mod 2), and let

mi+m
b=

mi1—mo + 4
EQZf.

Fix a choice of sign € € {£}, and let 7, , be the representation of Ky defined in (5.3.1). Let ¢y, ,,, be a
generator of the one-dimensional space

(K2x L)
(Soﬁml (2) ® Tghez ® Xxl11_€m2) ’ ’.
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We denote by &y, ,n, € S<m1( ) the projection to the component of 7; , of weight (—em2,0) for the
maximal torus of U(2). Both 5, ... and $y,, .., are well-defined only up to scalar.

Remark 7.1.7. In practice, it would suffice to make a single choice of € at this point; we have included
both for maximum clarity and for the convenience of the reader.

Calculating 7, ., explicitly would be highly tedious; a convenient shortcut is given by the following
proposition.

Proposition 7.1.8. Let m,,, denote the discrete series representation of GLa(R) of weight m; and central
character wy,,. Then under the canonical projection

S<m1( ) — (ﬂ-ml IXWWM)V ®H+(,’Tm1a7rm2)

arising from the archimedean local theta correspondence, the image of ¢S @ ¢m1 _m, lies in the linear span
of the image of P, 1, -

In fact, both images are nontrivial; see Remark 7.1.10.

Proof. By Propositions 7.1.4 and 7.1.5, ¢,.¢ ®¢%, _,. is a vector of weight (my, —ems) for pz(SO(2) x SO(2))
and of weight (ems, 0) for the maximal torus of U(2). Since the pz(SO(2) x SO(2))-type (mq, —emg) appears
with multiplicity one in my,, K7y, , and since the dual of 77, ,, appears with multiplicity one in I (Tmy s Ty )s
it suffices to show that the only U(2)-type appearing in both

( ) (¢m2®¢m1 mg) CS<m,1( )

and ITF (7, , Ty ) iS 76, 0,lU(2)- Indeed, if a U(2)-type of highest weight (a, b) appears in U(2)- ((bmz ® ¢m1 mz)
then we have |a| + |b| < my (Proposition 7.1.3), a+b = emg, and a > emgy > b. Hence the possible (a, b) are:

(a,b) = {(m270), (mo+1,-1),...,(f1,2 — £s), €=,

(79) (O, 7777,2), (1,7m2 71),...,(62 72,761), € = —.

On the other hand, recall that IT* (7, , T, ) |sp, (r) 18 & direct sum of two discrete series representations, with
Harish-Chandra parameters A+ p = (¢1, — 1,2 —{s,) and ({3, — 2,1 — {1 ,). By the Blattner formula [11],
it follows that the only U(2)-types in (79) that can appear in I (m,,, , T, ) are (¢1,2 —¥f2) and (fo —2, —{1),
precisely the duals of 77, ,, . O

Finally, for our later applications, we now calculate an archimedean local zeta integral related to ¢,,S ®

in_mz. For each integer n > 2 and pair of signs ¢,d € {£}, let W¢ »o be the normalized weight en vector
in the ¢°-Whitaker model of the discrete series representation of GLy(R) of weight n; thus
. edt!/? 0 n/2 —om . —edt!/? 0
(80) n,p® ( 0 t_1/2 =t /26 ? t’ n,pd 0 t_1/2 = O’ vt > 07

see [27, Proposition 3.2.1].

Proposition 7.1.9. With notation as above, let v|oo be a place of F and identify F, ~R. Then
<¢m25 mi— m27W @ Wy ma, m2 1/’) 7&0

w-

my,Y

Proof. First, we consider the inner integral for Z, ((;5 Q@ W, v W )

mo? m1 mao? ma,p

1(91792) :/ w(hth’pZ(gla92))(2)\;;2(17070’_1)Wm w(h h )dhlv
SLa(Fy)

¢ = det(g1) det(ga).

Because the proof of Lemma 6.3.3 identifies (g1, g2) with a local Whittaker function in the discrete series
representation m,,, X m,,,, by Proposition 7.1.4 we have

(82) (g1.92) = AW, (g0)W, 0 i (92)
for a scalar X\ # 0.

(81)
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By the equivariance properties of ¢¥, L—ma>

Mo [60,, -, € Indg 2@ - ]12

is a section of weight my — mg for SO(2). Thus it is determined by:

mi1—msa

( )!
(83) = My, [@ s — ) /¢m1 Cmy (2,9,0,0) dzdy = W#O.

s

Now, our local zeta integral is given by

(84) /\</N\pc;L (F)Wm (90 M [, ) (g0) W (91)d91>

' (/ ég,w(gz)WmS,w1(92)800(92)@2) :
N\ PGLa(F,)

Since both integrands are right SO(2)-invariant, and since the Haar measure on PGLy(R) is given by

_dadtdf (1 a\ [t O cosf sinf %
> g_(O 1) (0 1) (sin@ cos@)’ teR*,0€[0,m),

we obtain
)\[1, (/ tm,1 —drt dt> (/ tm271€747rt dt)
0 0
85 m me
(85) (s z,_1)!(m2—1)!7&0
(4#)% ’
as claimed.

O

Remark 7.1.10. Proposition 7.1.9 implies that ¢, ® d)ml m», has nonzero image under the local theta
correspondence map of Proposition 7.1.8; otherwise, the local zeta integral in Proposition 7.1.9 would have to
vanish by Theorem 6.5.2, the local-global compatibility of the theta correspondence, and an easy globalization
argument.

7.2. Cohomological span of special cycle.

7.2.1. Let H = GL2 xg,, GL2 C GSp,, viewed as an algebraic group over F'. Then H possesses a Shimura

m

datum, and we have a natural embedding of pro-algebraic varieties
t: S(H) = S(GSp,) x S(GLy),

induced from the map on the level of groups: (hi,hs) — ((h1,hs), h1). For all weights mq, mqy as in (5.3.1)
above, abbreviate by Wa,, m, the Betti local system V&173,e273) X Vim,—2 on S(GSp,)c x S(GL3)c. Note
that, by [17, Theorem 2.5], the constant local system Q(my, ms) on S(H) is a direct factor with multiplicity

one of the pullback t*(Win, ,m,), and in particular, we have a composite map (well-defined up to a scalar):
(86) H*(S(GSp,) x S(GLy), W, — HY(S(H), (W), — HY(S(H),Q(m,my)).

may, mz) my, mg))

Definition 7.2.2. The cycle class [Z] € H*¥(S(GSpy) x S(GL2), Wi, .m,)(2d) is the image of the funda-
mental class of S(H) under the map

H°(S(H),Q(mq,mz)) — H*(S(GSp,) x S(GL3), Win, m,)(2d)
induced by the dual of (86). We write
(2] : H3(S(GSP4), Vie,—3.6,-3))(d) = H'(S(GLy), Vi, 2)

for the induced map.
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7.2.3. Let m be an automorphic cuspidal representation of GLy(Af) of weight mo whose central character
agrees with that of m and 7y. If 7 is defined over F, recall that the trace map induces a perfect pairing:

®7) () : HXS(GL2),Vim,—2,5)[rs] x HY(S(GLa), Vi, 2 p)lrf] — HY(S(GL2),E) — E(d).
Proposition 7.2.4. Let m be as above, and let m,m2 be as in (5.8.1), with Il = Tlg(my,ms), for some

S = 857U S such that |S| is even.

(1) For choices of signs €,€', let st Tf, 4, 5. — C be the projection onto the weight (—€'m2,0)-
component (hence o is trivial unless Soo = 0 and € = €' ). Then the following diagram commutes up
to a nonzero scalar:

K> ) Se o ®id
(H ® 7-[51 7e2,soc) ® (7-‘—\/ ® XKE’m2>K ’ H ® 7-(-\/
clg ®cl,
H(%d) (S(GSP4)7 V(£1*3,lzf3),(C) [Hsf] ® Héiz) (S(GL2)> VXzQ—Q,(C) [ﬂ—}/]
H3(S(GSpy), Vie,—3,6,-3),¢)[lls,] © HI(S(GL2), V., o0)l7}] Ps
(2], ®id
H¥(S(GLy), Vm,—2.c) © HY(S(GL2),VY,, 5¢)
('7'>
C C

(2) Suppose Soo =0 and € = €. After fizing isomorphisms

Iy ~ (H®Te€1_’£27@)K2 , 7T}/ ~ (wv ®X¥€m2)Kl ,

the composites with the map from (1):

@) = (IO 40)" © (1 ©x )" —C

are independent of € up to a nonzero scalar.

Proof. Let £ : Vig,_3.4,-3) ® Vi, o = Q(my, my) be an H(F)-invariant projection.
The composite map:

(88) T;1,22,Soo ® X\ie’mg - /\p(€7soo)1q(€7soo)pasp4 ® /\171)(6 )717q(€ )pEL’z ® ‘/(£1—3,£2—3) ® V7>/7¢2_2
B \P(eSo)+1-P(e) a(eSe) H1ma(e)y . =,

is a map of U(1)% x U(1)%modules, where the action on X _em,, AP€ )9 pqr and Vp,,_s is through
projection to the first factor. In particular, (88) is trivial unless Soo = () and € = €, in which case
it is proportional to the projection onto the weight (—ems,0)-component of T;hez,@; moreover, a direct
calculation shows it is nonzero. In particular, it follows formally that (up to a nonzero constant depending
on the normalizations):

([2]. cle(@), cle (B)) = /[H] Se.e'(@)(t(hr, ha)) - B(h) d(ha, he)

for all
a € (H & T;LZQ,SOO)KQ ’ 6 € (Trv ® X\—/E/m'z)Kl

)

which is (1).
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For (2), let

€v
ge = v 1 € GSpy(F @ R) C GSpy(AF),g. = (6” 1) € GLy(F ®R) C GLa(Ap).
v|oco
v|oco
We have an obvious commutative diagram

K1 Se,fs®id
—

K>
(H & T;l 7227@) ® (ﬂ-\/ ® X\iemz) e Wv

|

K> K, 54,-®id
(H ® TZ,£27®) ® (Fv ® Xxmz) '

Do

in which the vertical arrows are translation by (ge, g-) and + stands for the constant sign (+),|co. However,
since (ge, g.) lies in H(Ap) C GSpy(Ar) x GL2(Ap), this translation has no effect on the period integral
Pg, and (2) follows. O

Theorem 7.2.5. Let w1, 72, ™ be cuspidal automorphic representations of G'(A) of weights my = (M1 ) v|ocs
my = (Ma,y)v|ec, and My, respectively, where my , > Mo, +2 > 4 for all vloo and all m;, have the same
parity. Define £1 and £y as in (52). Assume that the central characters of w1, ma, and 7 agree, and have
infinity type wm,. Let lg, be as in (5.5.1) for a set Sy of finite places of F'. Then, for any coefficient field
E D Q(mq,ms) such that I, 7r;, and © are defined over E, the induced map

(2], : HP'(S(GSPy), Vie,~3,6,-3))(d)[Is,] = H{(S(GL2), Vim,-2)[7]

is trivial unless m = mo and Sy = 0. In the latter case, [Z]. takes the form:

- IRs
Iy @ H(S(GSpy), Vie, -3,6,-3))1, (d) = ma 7 © H{(S(GLa), Vi, —2)rs
where s is an surjection and £ is a nontrivial E-linear map.

Proof. Without loss of generality, suppose EE = C. By Proposition 7.2.4, Theorem 6.2.2, and Theorem 6.5.2,
we immediately reduce to the case Sy = ) and m = mo. In this case, write II = Ilg(m,m2). Under the
decomposition

P1(S(GSPy), Vi, -3.0,-3).0)[Tf] = @@Hg)es 1a(5=)(5(GSPy), Vies 3,0, —3),c) 1]

provided by Propositions 5.3.3 and 5.3.5, Proposition 7.2.4(1) implies that [Z], is trivial on components
with S # 0, and maps B0 (S(GSp,), Vie, —5.0,-3).0) (@)[T] to BV (S(GLy), Vi, —2.0)[ma ¢].
Moreover, by Proposition 7.2.4(2) and Proposition 3.7.3, [Z]. is a pure tensor £ ® s, and s is surjective
provided it is nontrivial. Thus, for any single choice of €, it suffices to show that

HE D (S(GSPa), Vies 5,53 ) [T] © Hiy) "1 (S(GLo), Vim, 2.0 ]

(89) ” (2]
—

is nontrivial.

Indeed, let
"Pgo = ®1)\oo¢$rzl,1,,m2,,, € SF®]R(<62764> & V) & Tz,eg,@ ® X¥n17—5m27
where oy . is the vector-valued Schwartz function of (7.1.6). Also let
K
(90) O : SAF,f(<€2’ €4> ® V) - (H ® Tiehez,@) ’

be the C-linear map
br = 0p,00e (f1 @ f2),
where f; € m and fy € my are nonzero newforms of weights —my and ems, respectively.
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Now Proposition 7.2.4 implies that the composite map

0 ®id K L
SAF,f(<627€4> Y V) ® (7‘[‘;/ Y X\iemg)Kl — (H ® Tlel,lg,@) ’ ® (7'(';/ Y X\iemg)K

(91) (CIRIAN
is given by
(92) b5 @B Po0s,07: (f1 @ f2), 8)

up to a nonzero scalar, where

€y

—e _ —
ono - ®’U<pm1_’v,m2ﬂ,

for @5;;1,1””1211’ € Sr,({e2,e4) ® V) as in (7.1.6). Now let
Poo = ®( gy @ d)?nl,vfm;v) € Sper((e2, e4) @ V).
v|oo

We wish to show that (92) is nontrivial; by Proposition 7.1.8, it suffices to show instead that the map
o5 @B = Py(bs;00. (f1 ® f2), B)

is nontrivial. However, this is immediate from Theorem 6.5.2 and Proposition 7.1.9. (Il

8. NON-TEMPERED THETA LIFTS ON GSpg
8.1. Theta lift from GSO(Vp) to GSpg.

8.1.1. For the remainder of this section, fix a non-split quaternion algebra B over F', and let 7 be a tempered
automorphic representation of PB*. We consider the representation 7 X 1 of GSO(Vp)(Ap) ~ (B* x
B*/G,)(Ar) and its theta lift ©(r X 1) to GSpg(Ap); this is well-defined because Vg is anisotropic, and
descends to PGSpg(Arp) because the similitude theta lift preserves central characters. We remark that
O(7 X 1) need not be irreducible (because we are using the connected similitude group GSO(Vg)).

Proposition 8.1.2. The theta lift ©(7 X 1) lies in the L? subspace of A(PGSpg(AF)).

By the usual criterion for square-integrability [25, Lemma 1.4.11], we must check that, for each standard
parabolic subgroup P = M N of GSpg, the characters of Z(M) appearing in the cuspidal component of the
normalized Jacquet module

O(rR 1)y ®65"?
all lie in the interior of the cone spanned by the negatives of the characters appearing in the action of Z (M)
on N. Since 7 X 1 is not a theta lift from GSpy, = GLg, [29, Theorem I.1.1] implies that the Jacquet modules
are given by:

|-]20/(r K1), M =GSp, x GL;

0, otherwise.

(93) O(r X 1)y = {

Here ©'(7 X 1) denotes the theta lift to GSp,, and | - | is the norm character of GL; . On the other hand, the
action of Z(M) on N is through positive powers of |-|, and 6p = |-|%; thus the criterion for square-integrability
is satisfied.

Proposition 8.1.3. Suppose II is an irreducible constituent of ©(xX1). Then for all non-archimedean v of
odd residue characteristic, if m, is unramified with Satake parameters {a, a’l}, then 1L, is unramified with
a Langlands parameter ¢, such that, under the composite

Wi, 2% PGSpg = Spin; ~% GLg,
the eigenvalues of Frob, (with multiplicity) are g 2aF ¢F 1, and 1.

Proof. Propositions 8.1.2 and 4.2.3 imply that II, is an irreducible constituent of 6, (m, X 1) for all v.
Since m, is tempered at all unramified v, Indggg(/‘)/()f}’%) my X 1 is irreducible. Adopting the notation of
(4.3.2) with G = GSO(V) and H = GSpg, 7, ¥ 1 is the spherical representation 7, for the unramified
character of Tg(F,) defined by (¢*/2a,q /%2a,a™'). Then Proposition 4.3.3 implies that O, (r, X 1) is

the irreducible representation o, with u = (¢'/2a, ¢~ "/%a,q,a"'q7/?). Recall that any u determines an
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unramified Langlands parameter for H: the characters x;, A\ € Homp, (T, G,,) correspond to cocharacters
in Homg (G, Ti), and any unramified character p = (81, 82, 83, t) may be viewed as the element

A(t) H 2:(8;) € Ty (C).

Then the Langlands parameter of o, is the conjugacy class of the unramified map
buWp, — Ty (C) < H(C)

such that ¢(Frob,) is the element corresponding to u. Now, the eigenvalues of rypin © ¢, (Frob,) on C® are
given by t[],c g Bi as S ranges over subsets of {1,2,3}; the proposition follows.
(|

8.2. Contributions to the cohomology of Shimura varieties.

8.2.1. Consider the Shimura variety for GSpg as in §3.6, and let k = (ky),|c be a tuple of integers with
k, > 3 for all v. Following the notation of (3.4.1), we obtain a local system V(x_3 x—30) of Q(k)-vector
spaces. Let o, be the unique irreducible representation of K3, with trivial central character and whose
restriction to U(3) has highest weight (k,,0,—k,), and let o be the representation ®,|c0%, of Kz. One
calculates that

(94) dim Hom g, (O'k7 Vik—3,k-3,0),c ® Az’zpaspﬁ) =1,

where (2, 2) is the constant plectic Hodge type. Thus we have, from (30), a class map
K

(95) (A(2)(GSpg(Ar)) @ ox) " — Hiz; (S(GSPg), Vik—s.k-5.0).0):

8.2.2. We now choose a totally indefinite, non-split quaternion algebra B over F. Let m be an auxiliary
automorphic representation of PB* (Ar) of weight 2k = (2ky)y|oo-

Lemma 8.2.3. Fiz a prime { and an isomorphism ¢ : Q, = C. Let II be a discrete automorphic represen-
tation of GSpg(Ar) which is nearly equivalent to a constituent of the theta lift :*O(m X 1), and let H be any
Q,[Gal(Q/F°) x GSpg(Ap,s)]-stable subgquotient of

4 ~
Hgt (S(GSPG)@7 V(k—3,k—3,0),@)[nf]
which is pure of weight 4d. Then Gal(Q/F¢) acts on H via x~2¢, where x is the £-adic cyclotomic character.

Proof. Let K = [[ K, C GSpg(Ap,f) be a neat compact open subgroup. It suffices to show that Frob,, acts
as p~2¢ on H¥ for almost all p such that p splits completely in F¢ and K, is hyperspecial. Assume without

loss of generality that ﬁp is unramified with local Langlands parameter
¢p : Wo, — ¥ GSpg = GSpin, (C)* x Wy,,

and consider the 8d-dimensional representation defined by the composite:

r®d
(96) W, 22 GSping (C)? 2% GLga(C).

In light of our chosen isomorphism Q, = C, (96) defines an 8d-dimensional f-adic unramified local Galois
representation V,. By [22, §2], since p splits in F°, the action of the geometric Frobenius Frob,, ! on
H(Sk (GSpg)g:; V(k73’k73’0)’@2)[ﬁf] satisfies the characteristic polynomial of p® Frob,' on V. Now by
Proposition 8.1.3, for almost every such p the representation V,, is given by

Q (Q(-1) 8T ©Tu(1) & palr, © palr, (1)),

v|p
where p, is the 2-dimensional /-adic Galois representation associated to m, which we normalize to have
weight one. (Recall, e.g. from [1], that p, is pure since it appears in the cohomology of a compact Shimura
curve; for this we use that the Jacquet-Langlands transfer JL() is discrete series at some finite place of F,
because B is nonsplit.) On the other hand, we have assumed that H is pure of weight 4d, and H¥ is a
subquotient of Hétd(SK(GSpG)@, V(k—3,k—3,0),@)[ﬁf] because the K-invariants functor is exact; comparing
with the weights in V,,, it follows that Frob, acts as p~2%on HX. |
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9. TRIPLE PRODUCT PERIODS
9.1. The vector-valued period problem.

9.1.1. Let m1, m2, m1, ma, €1, €2, €, 75, 4,, and oy, be as in (5.3.1) and (8.2.1) for k = £;, and let B be
a non-split totally indefinite quaternion algebra over F, ramified at a set S of places of F' at which m; are
both discrete series.

9.1.2. For auxiliary automorphic representations w of PB(Ap)* of weight 2¢;, we will consider triple product
period integrals of ©(w X 1) along the subgroup

(97) H = (GSp, Xg,, GL3) C GSpy.
The maximal compact-modulo-center subgroup of H (FQR)is
(98) (Ky x K1) = (K x K1) N H(F @R).

To define the vector-valued period integral, note that (by the classical branching law for unitary groups),
the space

(99) Hom(Kz xK1)o (o-el ® Tlel N2 Y X\iemg’ (C)

is one-dimensional, say with generator se.
We then define, for any auxiliary representation m of PB(Ap)* of weight 2€;, the triple product period:

B 1 (0, By) = /@ se(a(g,9') ® Blg) ®1(g)) dg.g') #0,

a€(O(rN1)®ap), B (st @m)@TE )" 2 7 (M @xYem,)

(100)

Since we will not give a precise formula for ﬁgmw and are only interested in its non-vanishing, we ignore
the problem of normalization. The non-vanishing of (100), for a good choice of =, is the key input to the
non-vanishing of the Hodge classes we construct in the next section.

9.1.3. The strategy for calculating (100) is to use the seesaw diagram:
GSO(Vg) xg,, GSO(Vp) GSpg

—

GSO(Vp) H
There are two main inputs to the non-vanishing of our period integral (for a good choice of 7): the first
is a vector-valued version of the usual global seesaw identity, and the second is a non-vanishing result for
the vector-valued theta lifts along the “other” diagonal in the seesaw diagram, i.e. from GSp, and GL; to
GSO(Vp).

9.2. Vector-valued seesaw identity.

9.2.1. Continuing with the notation from (7.1.1), let m; > mg + 2 > 4 be integers such that m; = mq
(mod 2), with ¢; and ¢3 as in (7.1.6). Let o4, be the unique representation of K3 of trivial central character
and whose restriction to U(3) has highest weight (¢1,0, —¢;1). Let

B, € (825, (3) ® 0, ® X—20,,0) L0
be a generator, which makes sense by Proposition 7.1.3. If (Ko x Kj)o is the intersection of K3 with
GSpy g XG,, GLa R inside GSpg g, then we have, for any € = +1,
(101) dim Hom g, x k), (041,7';1’@2 ® XYEmZ) =1;
let s’ denote a generator. Also let (K3 x K1 x L)g = (K2 X K1)g x LN (K3 % L)o.

Proposition 9.2.2. The Schwartz function

_ . Kayx Ky xL
s'(8e,) € (Sr((e2,e4,€6) @ V) @ Tf, gy @ XY cny ® X7241,o)( 2xfaxo

€

is a nonzero scalar multiple of the tensor product ¢y, ... @ ¢y, .
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Proof. Assume e = +; the other case is similar. Let ¢ € S<2£ (3) be the contraction of ¢y, ., ® ¢y,, with
any nonzero vector of pure weight. Then ¢ generates the irreducible U(2) x U(1)-representation of highest
weight (f2 — 2, —¢1,m3). We wish to show that U(3) - ¢ is the irreducible U(3)-representation of highest
Welght (fl, 0, —El).

First, if U(3) - ¢ = V4 @ Vs is any nontrivial U(3)-stable decomposition, then the irreducible U(2) x U(1)-
representation (U(2) x U(1))-¢ must project nontrivially to both V; and V5. Hence if the U(3)-representation
with highest weight (a,b, ¢) appears in U(3) - ¢, it follows (using the branching law for unitary groups) that

a2€2—22b2—€120,

(102) a+b+c=0.

On the other hand, considering Proposition 7.1.3(2), we have

(103) la| + [b] + || < 2¢4.

The combination of (102) and (103) force ¢ = —¢;. On the other hand, by [10, Proposition 4.2.1], if
(a,b,c) appears in S°(3) with ¢ < —1 then either b = a = 1 or b = 0. Since a +b = ¢; > 3, we
conclude (a,b,c) = (¢1,0,—¢1). Since U(3) - ¢ is generated by a single vector which has pure weight, it

is also multiplicity-free as a representation of U(3), so it is irreducible with highest weight (¢1,0,—¢1), as
desired. ]

9.2.3. We now return to the global situation. Choose an isomorphism Vg ® r R ~ V ® r R, which induces an
isomorphism GSO(Vp)(F @ R) >~ GSO(V)(F ®R). Then let L =[], L C GSO(Vp)(F' ®R), and similarly
for (K, x L)o, etc. We fix vector-valued Schwartz functions as follows:

(K2xL)o
(Pml mo ®v\oo§0m1 vyM2 1y € (SF®R €2, €4> & V) & Tel V2 2 Xm1 Emg)

(7.1.6)

KoxL
~ (SF® 62,64> X VB) (39 (7';1 eQ)V ® X—ml,—emg)( 2o

m KixL

¢m2 = Gujoo m2 . € (SF 66 ® V) D X—ems ®Xm2,fem2)( ko
(104) (Proposition 7.1.4)
K1 xL
~ ($F®]R(<66> QR VB) @ X—em, @ X1\'/n2,—em2)( 1xL)o
e, = ®U|OO<TOJ£L,U S (S]R(<€2, 64,€6> ® V) R op, @ X—2£1,0)(K2XL)O
(9.2.1)
(K2xL)o

~ (Sr((e2, €1, €6) ® VB) ® 0g, @ X—2¢,,0)

Proposition 9.2.4. Let s be as above. For all
e \K
€ (AQ(PGSO(VB)(AF)) ® Xzel,o)L , BE (Hs(Trl,Trz) ® Tll,lz) 2 ,

K
YE (M X em,) + D1 € Sap,((e2,e4) @ VB), ¢25 € Sap,((es) @ Vp),

and up to a nonzero scalar depending on the normalizations, we have the identity:

[ e (onsoinssen @002 B0y 02(6) o) =
(105) "

a(g)d —c 8)(g)0 -« (7)(g)dg.
Lo, 2@ s s D00, ()10

Proof. This is formal from Proposition 9.2.2 and the usual seesaw identity, i.e. exchanging the order of
integration. O

9.3. Proof of the non-vanishing result.

Proposition 9.3.1. Let 72 be the Jacquet-Langlands transfers of m; to B(Ap)*
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(1) The map
Oprs .+ Sup;((e2,04) @ V) @ (Hs(m1,m2) @ 7§, 4,)%* — (A(GSO(Vi))(AF) @ X—my,—ems)
defined by
(6.0) 7 Dy . (),

has image containing ((7713 X785 ® x_ml,_emz)L .

(2) The map

O+ Sty ((66) © Vi) (9 X )~ (AGSO(Vi) (A1) & Xy )

defined by

(d), a) — 0¢®¢’;152 (Oé),
has image containing (((7%)¥ ® (7£)V) ® X,vnz’,emz)L

Proof. In the general setup of §4, suppose Oy (w) = II for cuspidal automorphic representations 7 of
G(V)(Afr) and II of H(W)(AF). Then by definition we have a surjective composite

(106) Sup(Wo @ V) L A(Ry(Ap)) » TR 7.
Now, the theta kernel satisfies

st =0 (o %)y 5)n)

(cf. [30]), so we deduce that I ® 7V = IIY ® 7 also appears in the spectrum of the theta kernel. (Recall that
the central characters of IT and 7 must agree since the central character of the Weil representation is trivial.)
In particular O,y (II) contains the nonzero irreducible constituent 7. For (1), take W = W,, V = Vg, and
IT = g (71, m2). As in the proof of Proposition 4.2.3, the global theta lift gives rise to a nontrivial map:

(107) Sur((e2,e4) @ V) = Is(m1,m2)" @ Ow, v (s (1, 2)) — Mg (1, m2)Y @ (1 K o).
(Since GSO(Vp) is anisotropic, all theta lifts are square-integrable.) The map (107) is a restricted tensor

€y

product of local maps. To prove (1), it suffices to show that, for all v|co and for some vector 0 # s € 7;

1,0,82,0°
the contraction s(¢,,}", m, ) has nontrivial image under the local component
(108) Sk, ((e2,€4) @ Vp) = IIF (w1 4, m20)Y @ (], K75,)
of (107). This follows from Remark 7.1.10. The proof of (2) is analogous, invoking instead Proposition
7.1.4(2). O

Finally we come to the main result of this section:
Lemma 9.3.2. There exists an automorphic representation m of PB(Ar)* of weight 2£1, along with vectors
a€(OrRL)®oe)%, Bels(m @m) @75 4,)% 7€ (M XY em,) ",
such that:
Pl 87) = [ sela(9,.9) 0 8(6) (6 o) #0.

Proof. First, fix newforms
fren?, fseny, fi e @)Y, (f5) e(ny)”
of weights mq, emsy, mo, and —emso, respectively. Then Proposition 9.3.1 implies that we may choose
vectors
e K> v v K

Be (Us(m,m) @75 0,) 5 7E (M DX emy)
and Schwartz functions

b1.5 € Sap,({e2,e4) ®VB), d2.5 € Sap,({e6) ® Vp)
such that:

(109) Op, opne my, = J1OS5 Oy, gpme (V) = F5 ® (f5)".
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Now, the automorphic function g — f1(g) - fo (9) corresponds to a Hilbert modular form on B* of weight

2£; and trivial central character. We may therefore choose some automorphic representation 7 of PB(Ap)*
of weight 2¢;, with a vector o of weight —2¢;, such that

/ a0(9)F1(9) £ (g) dg # 0.
[PBX]

Now, we turn ag into an automorphic form o on PGSO(Vg)(AFr) by setting a(pz(g1,92)) = ao(g1). It is
clear that « is a vector in (7 X 1) ® xggho)l'. Then Proposition 9.2.4 allows us to compute:

ao(9)f1(9) 15 (9) dg) : (/[PBX] f5(9)(f5)" (9) dg) #0.

O

ﬁs’ﬂ—l’ﬂ—z’ﬂ-(9¢1’f®¢21f®¢m11m2 (O[)’ IB? ’Y) - </[P

BX]

10. PROOF OF MAIN RESULT: HODGE CLASSES IN THE NON-GENERIC CASE

10.1. Construction.

10.1.1. Consider the inclusions of Shimura varieties:
(110) S(GSpg) ¢& S(H) 2 S(GSp,) x S(GLsy),
where

H = GSp, x¢,, GLy C GSpg .

Note that t7Ve, —3.¢, —3,0) contains t5Wm, m, as a direct factor with multiplicity one by [17, Theorem 2.5].
Since to is an open and closed embedding at sufficiently small level, one obtains from (110) a map

(111) H'(S(GSPg), Vie,~3,6,-3,0) = H'(S(GSpy) x S(GLz2), Win, m.)-

It follows from Saito’s theory of mixed Hodge modules [32] that this is a map of mixed Hodge strucutres.
The Hodge classes we construct will be the images of classes on S(GSpg) under the map (111).

10.1.2. Let m, 72, and IIs, be as in (5.3.1), where [S¢| > 2 is even. We let B be the unique quaternion
algebra over F' which is ramified at Sy and split at all archimedean places. For any finite set ¥ D Sy of
places of F', including all infinite ones, we consider the unramified Hecke algebra with Q-coefficients:

(112) T* = QuesH(GSpg(F,), GSpg(O.)).

For an auxiliary automorphic representation 7 of PB* which is tempered, unramified outside of ¥, and of
weight 2¢;, the Hecke action on ©(7 X 1) defines a maximal ideal I* C T*.

Definition 10.1.3. Fix 7 and ¥ as above and a sufficiently small compact open subgroup K = [[ K, C
GSpg(AF,) such that K, = GSpg(O,) for v ¢ ¥. Then we define

Hdg(r, K, %) € H*(S(GSp,) x S(GL3), Win, m2)o

to be the image of the composite map

111
H' (S (GSPg), Vit —3.8s—5.0)) 2)[IZ] TS HA(S(GSpy) % S(GLa), Win, ms)

— H*(S(GSp,) x S(GL2), Win, m»)o-
Here the final map is the projection from Lemma 3.2.3(2).

Lemma 10.1.4. Any ¢ € Hdg(w, K, X)) is a Hodge class of weight (2d,2d). Moreover, for any finite prime
A of Q(my, my) lying above £, Gal(Q/F€) acts by x> on

Hdg(m, K, %) @g(m, m,) Q(m1, ma)x C HE(S(GSpy) x S(GLa2)g, Win, ms 2

where x is the (-adic cyclotomic character.
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Proof. We first compute the Galois action, for which we may extend scalars to Q. Let S be the set of
automorphic representations of GSpg(Ap) such that Hff # 0 is annihilated by I, and fix an isomorphism
t: Q, = C which induces the prime X\ of Q(m,m5). Then it suffices to show that, for all Il € S and all
automorphic representations II X 7 of GSp,(Ar) x GLa(Ap) with II; X 74 non-Eisenstein, Gal(Q/F¢) acts
by x~2¢ on the image of

Hétd(SK(GSp6)@7 V(elf?),er:s,o),@,z)[ﬁf} - Hétd(S(GSPD@ X S(GL2)@,W 1,m2,@()[nf X 7).

m
Since the calculation in Lemma 8.2.3 is based only on local Langlands parameters at cofinitely many primes,
and is insensitive to replacing the local Langlands parameters with Aut(C/Q)-conjugates, it also applies to
all IT € S, and the claim follows since Lemma 3.2.3(1) implies that

H(S(GSPa)g % S(GLa2)g Win, 1, g, (1L B 7]

m

is pure of weight 4d.
Now, H*(S(GSp,) x S(GLa), Wi, .m»)o is a pure Hodge structure of weight 4d by Lemma 3.2.3, and
by construction

Hdg(m, K, ¥) C H*(S(GSp,) x S(GL2), Wi, .m.)o

is a sub-Hodge structure. By Theorem 3.1.3, we have a canonical isomorphism

Hdg(m, K, 2) @g(my,m,) Q(m1, M2)x Qgmy,ma), Qe = @&; g’ Hdg(m, K, 2) @g(my,ms) C Oc,i-1 Qo(—4)
compatible with the actions of Gal(Q,/Q(m1,m3)x) on both sides. In particular,

Hdg(ﬂ',K, Z) ®Q(m1,m2) (C, j = Qd,

J(Hdg(m, K, % my,mo) C) =
gr’( 8(77 )®Q( 1,M2) ) {07 else.

Hence the Hodge structure on Hdg(w, K,Y) is trivial and in particular each £ € Hdg(w, K, ) is a Hodge
class, as desired. O

10.2. Nonvanishing.

10.2.1. To test the non-degeneracy of the subspace Hdg(w, K,Y), we will use the following proposition.

Proposition 10.2.2. Let II =IlIg, where S = Sy U S, and choose an auziliary m as above. Suppose given

K K
ac(OrR1)®a,)*, Be (Ms(m @ m2) @ 76, y.6..) s VE (T X emy)

(1) Fiz choices of signs € = {€,} and € = {ev}, |- Then:

v|oo S

ﬁs,m,wg,w(%@ﬂ’ Zf Soo = (Z) and € = 6/;
0, otherwise.

(t2,0 0 1] (cl(a)), cl§(B) Mele/ (7)) = {

(2) After choosing isomorphisms

K.
1_[Sf = (H®T£€1742) 3’ ﬂ%/,f = (ﬂg/ ®X—Em2)K15

the composite maps

cl§ @cl.
——= H{$}(S(GSp,) x S(GL2), Wi, m, )

<L2,*LIO‘">

]._.[Sf®7rg/7f C

are independent of € up to a scalar.

Proof. The proof is essentially identical to Proposition 7.2.4. The only new ingredient is the calculation of
the (Ko x Kj)g-equivariant composite:

(evsoo):Q(eaSoo)p*GSp
4

(113) QVie,—3,6,—3),c @ Al=P(e),1—q(e )pEL2 ® anszz,(C

Vv 2,2, %
00, DTE 4,50 O X ermy = N PGsp, @ Viey—3.6,-3,0).c @ AP

—y ABHP(6.5)—p(e) Bta(eS)—a(<)px 1, o
H )

which is automatically trivial unless So, = () and € = €', in which case one can check that it is not trivial. [
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Corollary 10.2.3. There exists a triple (7, K, %) as in Definition 10.1.8 and an element
{c € Hdg(m, K, %) ® C C H*(5(GSp,) x S(GL2), Wi, m..C)
such that the induced map
(éc)w - HI'(S(GSP), Ve, -3.8,-3),c) () [Is;] = HY(S(GLz2), Vi, -2.¢) — H{'(S(GL2), Vi, —2.,0)[72,]
is of the form
Ils, ® HP(S(GSpy), V(el—s,z2—3),<c)nsf (d) LLLN 7,5 @ H(S(GL2), Viny—2.0)ms s »
where s is a surjection and £ is a nontrivial C-linear map.

Proof. By Proposition 10.2.2 and Lemma 9.3.2, there exists an automorphic representation 7 as in Definition
10.1.3 and a vector

ac (ORI ® a, )k
such that
Lo 0 tj(cl(a)) € H*(S(GSpy) x S(GL2), Win, ms.c)
induces, by Poincaré duality, a nontrivial map

H{U(S(GSP), Vie, -3,,-3),c)(d)[Is,] = HY(S(GLz2), Vin,—2,c) = H(S(GLz), Vin,—2.0)[m2,).

Moreover, this map is of the form claimed in the corollary by Proposition 10.2.2(2) and the same argument
as in Theorem 7.2.5. For K sufficiently small and ¥ sufficiently large,

Hdg(m, K,%) ® C ¢ H*(S(GSpy) x S(GL2), Wi, ms.c)o
contains the image of 5 . 0 t3(cl(r)) under the projection
H4d(S(GSp4) X S(GL2)7 Wm17m2yc) — H4d(S(GSp4) X S(GL2)7 Wm17m2a(c)07

and this implies the corollary. O
Theorem 10.2.4. Let w1 and o be cuspidal automorphic representations of GLa(A) of weights my and ma,
respectively, where m; = (miﬂ,)woo for integers m; ., all of the same parity, such that my, > ma, +2 > 4.
Assume that the central characters of w1 and T2 agree and have infinity type wyn,. Let I, be as in (5.3.1)
for a set Sy of finite places of F' such that |Sy| > 2 is even, and choose a coefficient field E D Q(mq, m3)

over which m; and Ils, are defined. Then there exists a triple (7, K, %) as in Definition 10.1.3 and a Hodge
class

¢ € Hdg(m, K, ¥)(2d) C H**(S(GSp,) x S(GL2), Wi, .m,)(2d)
such that the induced map
&t HY(S(GSpy), Ve, —3.6,-3),8)(d)[s,] = H(S(GL2), Vi, —2,1) = H{(S(GLz2), Vim,—2,5)[m2,f]
is nontrivial, and moreover the image of & spans the E[GLa(Ar, ¢)]-module H(S(GL2), Vin,—2,5)[m2, ).
Proof. Let (w, K,X) be as in Corollary 10.2.3, and let &,...,&, € Hdg(m, K,X) be a basis for this finite-
dimensional vector space over Q(my, ms). Also, let
fe=)Y ik, a; €C

be a vector satisfying the conclusion of Corollary 10.2.3. We may choose a functional A € Hom(wf Iz E) so
that the composite

Ac o (&c)s : H3(S(GSPy), Vie,—3,0,-3),c)Ils,] ® C = H(S(GL2), Viny—2.0) s

is surjective. We claim that there exist scalars 51, , 8, € Q(mq,ms2) such that

Xo (Bi&G + -+ Buy) t HX(S(GSPy), Vie,—3.0,—3),8) [[s,] = H(S(GL2), Vimy—2.5)rs

is surjective; indeed, this condition corresponds to a Zariski-open subset U C A&( because

mi,mz2)

H'd(S(GLQ)’ Vm2—2,E)7\'2,f
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is finite-dimensional, and it is satisfied by (a1, ..., a,) € C", so it is also satisfied by infinitely many tuples

(B, .-

,Br) € Q(mq, my)™. For such a tuple, the Hodge class
¢=Y_ Bi& € Hdg(m K, )

satisfies the conclusion of the theorem.
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