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Abstract. The theory of endoscopy predicts the existence of large families of Tate classes on certain
products of Shimura varieties, and it is natural to ask in what cases one can construct algebraic cycles

giving rise to these Tate classes. This paper takes up the case of Tate classes arising from the Yoshida lift:
these are Tate cycles in middle degree on the Shimura variety for the group ResF/Q(GL2 ×GSp4), where

F is a totally real field. A special case is the family of Tate classes which reflect the appearance of two-

dimensional Galois representations in the middle cohomology of both a modular curve and a Siegel modular
threefold. We show that a natural algebraic cycle generates exactly the Tate classes which are associated

to generic members of the endoscopic L-packets on GSp4,F . In the non-generic case, we give an alternate

construction, which shows that the predicted Tate classes arise from Hodge cycles.
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1. Introduction

Let F be a totally real number field of degree d, and let G = GSp4,F . The unique elliptic endoscopic
group for G is M = (GL2×GL2 /Gm)F , where Gm is embedded anti-diagonally and the L-embedding is
induced by

(1) M̂ = GL2(C)×C× GL2(C) ↪→ GSp4(C) = Ĝ.

The functorial transfer of cuspidal automorphic forms from M to G has been studied by Roberts [31] and
Weissauer [38]. For any (unordered) pair of distinct cuspidal automorphic representations π1, π2 of GL2(AF )
with the same central character, one obtains an L-packet Π(π1, π2) of cuspidal automorphic representations
of GSp4(AF ). The members ΠS(π1, π2) of this L-packet are indexed by finite sets S of places of F at which
both πi are discrete series, such that |S| is even. The unique generic member of the L-packet Π(π1, π2) is
Π∅(π1, π2).

Let GSp4 = ResF/QG be the restriction of scalars, with the natural Shimura datum, and let

S(GSp4) := lim←−
K

SK(GSp4)

be the resulting pro-algebraic Shimura variety over Q, where K ranges over compact open subgroups of
GSp4(Af ). (For the rest of the introduction, the same notation will apply when GSp4 is replaced by any
Q-group H with a Shimura datum.) If π1 and π2 correspond to Hilbert modular forms of sufficiently regular
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weights, then the representations ΠS(π1, π2) contribute to the interior cohomology of S(GSp4) in middle
degree 3d.

As we will recall later in the introduction, the ΠS(π1, π2)
∨
f ⊠ πi,f -isotypic part of the étale cohomology

of S(GSp4)× S(GL2) contains Galois-invariant classes, where i = 1 or 2 depending on Sf , the set of finite
places in S. The goal of this paper is to investigate whether these classes have a geometric origin, as suggested
by the Tate conjecture in the case of trivial coefficients.

The natural candidate is the sub-Shimura variety S(H) ⊂ S(GSp4)× S(GL2), where:

(2) H := GL2×Gm GL2
ι,p
↪−→ GSp4×GL2 .

Here ι : H ↪→ GSp4 is the standard inclusion and p : H → GL2 is the first projection.

Theorem A (Theorem 7.2.5). Let π1 and π2 be cuspidal automorphic representations of GL2(AF ) corre-
sponding to Hilbert modular forms of weights m1 = (m1,v)v|∞ and m2 = (m2,v)v|∞ with m1,v ≥ m2,v+2 ≥ 4
for all v and all mi,v of the same parity, and suppose π1 and π2 have equal central character. Then the
ΠS(π1, π2)

∨
f ⊠ π2,f -isotypic component of

[S(H)] ∈ H4d(S(GSp4)× S(GL2),V∨
(ℓ1−3,ℓ2−3),E ⊠ Vm2−2,E) (see below)

is nontrivial if and only if Sf = ∅.

We now explain the conditions on the weights in Theorem A and the meaning of the class [S(H)]. The
condition for ΠS(π1, π2) to appear cohomology is that m1,v, m2,v, and |m1,v −m2,v| are all at least 2 for
each v|∞, and all mi,v have the same parity; in this case the local component at v of ΠS(π1, π2) belongs to
a discrete series L-packet of weight (ℓ1,v, ℓ2,v) for GSp4(Fv), where

ℓ1,v =
m1,v +m2,v

2
, ℓ2,v =

|m1,v −m2,v|+ 4

2
.

If E is a coefficient field for π1, π2, and ΠS(π1, π2) containing the field Q(m1,m2) of (5.3.1), then the weights
(ℓ1, ℓ2) = (ℓ1,v, ℓ2,v)v|∞ and mi determine local systems of E-vector spaces V(ℓ1−3,ℓ2−3),E and Vmi−2,E on
S(GSp4) and S(GL2), respectively; the notation is explained in (3.6.3). Note that V∨

(ℓ1−3,ℓ2−3),E⊠Vm2−2,E

is trivial if and only if π1 and π2 have parallel weights 4 and 2, respectively, in which case [S(H)] is just the
algebraic cycle class.

More generally, the pullback (ι, p)∗V∨
(ℓ1−3,ℓ2−3),E ⊠ Vm2−2,E contains the constant local system on S(H)

(with multiplicity one) if and only if m1,v > m2,v for all v, in which case the cycle class [S(H)] appearing in
Theorem A is defined using the adjunction map (ι, p)∗ES(H) → V∨

(ℓ1−3,ℓ2−3),E ⊠Vm2−2,E . So the conditions

on m1 and m2 in Theorem A are the minimum required to formulate the statement.
Under these conditions, Galois-invariant classes appear in the ΠS(π1, π2)

∨
f ⊠ π2,f -isotypic part of étale

cohomology if and only if |Sf | is even. However, Theorem A asserts that only in the case Sf = ∅ (corre-
sponding to the unique generic member of the L-packet Π(π1, π2)) do these classes arise from the special
cycle S(H). For the case Sf ̸= ∅, we are not able to produce any nontrivial algebraic cycle classes. However,
we give an alternative construction that shows the Galois-invariant classes arise from Hodge cycles.

Theorem B (Theorem 10.2.4). Let π1 and π2 be as in Theorem A, and let S be a set of places of F at
which both πi are discrete series, such that |Sf | ≥ 2 is even. Then there exists a Hodge class

0 ̸= ξ ∈ H4d(S(GSp4)× S(GL2),V∨
ℓ1−3,ℓ2−3),E ⊠ Vm2−2,E(2d))[ΠS(π1, π2)

∨
f ⊠ π2,f ]

such that, for all finite places λ of E, the image of ξ in λ-adic étale cohomology is Gal(Q/F c)-invariant.

In fact, Theorem 10.2.4 in the text produces a cohomology class defined over the subfield Q(m1,m2) ⊂ E;
for instance, in the case of trivial coefficients, the ξ in Theorem B is the ΠS(π1, π2)

∨
f ⊠π2,f -isotypic component

of a Hodge-Tate class defined over Q.

Expected Galois representations. For the reader’s convenience, we recall the expectations of Kottwitz’s
conjectures [19] for the Galois representations in étale cohomology associated to π1, π2, and ΠS(π1, π2).
Suppose the weights of π1 and π2 are m1 and m2, where m1,v, m2,v, and |m1,v −m2,v| are all at least 2 for
all v|∞ and all mi,v have the same parity. We normalize the πi so that their common central character ω
has the infinity type ωmi in the notation of (2.1.4). Let λ be a finite places of the coefficient field E, and set
ρΠ = ρπ1

⊕ ρπ2
, where ρπi

are the usual λ-adic Galois representations associated to Hilbert modular forms,
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normalized to have determinant χ−1ω with χ the cyclotomic character. Then let (ρ̃Π, V ) and (ρ̃i, Vi) be
the tensor induction of ρΠ and ρπi

, respectively, from Gal(Q/F ) to Gal(Q/Q). We have natural inclusions
Vi ↪→ V .

Consider the involution s ∈ End(ρ̃Π, V ) such that, in the vth factor of the decomposition

(3) V = ⊗v|∞ρΠ,

s acts as −1 on ρπ1
and 1 on ρπ2

if m1,v > m2,v, and vice versa if m1,v < m2,v. Taking s-eigenspaces induces
a decomposition V = V + ⊕ V −. The predicted contributions to étale cohomology are:

Hom
(
ΠS(π1, π2)f , H

3d
ét,!(S(GSp4)Q,V(ℓ1−3,ℓ2−3),Eλ

)
)
=

{
V +(−d), |Sf | even,
V −(−d), |Sf | odd.

Hom
(
πi,f , H

d
ét,!(S(GL2)Q,Vmi−2,Eλ

)
)
= Vi.

(4)

If m1,v > m2,v for all v, then we have V2 ⊂ V +, hence there should exist nontrivial maps of Galois
representations

(5) H3d
ét,!(S(GSp4)Q,V(ℓ1−3,ℓ2−3),Eλ

(d))[ΠS(π1, π2)f ]→ Hd
ét,!(S(GL2)Q,Vm2−2,Eλ

)[π2,f ]

whenever |Sf | is even. Theorems A and B yield, by Poincaré duality, a geometric construction of nontrivial
maps (5). In the text (Theorems 7.2.5 and 10.2.4), we actually show that the maps we construct are non-
degenerate in the sense that their images generate the GL2(AF,f )-module Hd

ét,!(S(GL2)Q,Vm2−2,Eλ
)[π2,f ];

this is equivalent to nontriviality only if V2 is irreducible.
One could also ask for an analogue of Theorem B that uses π1, the higher-weight representation, in the

place of π2, or relaxes the condition that m1,v > m2,v for all places v. Our construction does not appear to
yield any results in this direction.

Comparison with previous work. In the case when F = Q, S = ∅, and π1 and π2 correspond to classical
modular forms of weights 4 and 2, Theorem A was proven by Lemma [23], using a different method.

In the setting of Jacquet-Langlands transfers for cohomological representations of inner forms of GL2,F ,
an analogue of Theorem B was proven by Ichino and Prasanna [14]. For the transfer between quaternion
algebras B1 and B2 which are split at exactly one archimedean place, the Shimura varieties associated
to B×

1 and B×
2 are curves. The resulting Tate classes are known to arise from cycles by Faltings’s isogeny

theorem [3], but no more explicit construction of these algebraic cycles is known. When the relevant Shimura
varieties have higher dimension, Ichino and Prasanna showed that the Jacquet-Langlands transfers (for
general cohomological weights) are induced by Hodge cycles. Their construction is similar to the one used
to prove Theorem B. However, in the Jacquet-Langlands setting there is no natural algebraic cycle such as
S(H), so there is no analogue of Theorem A.

In an earlier version of this paper, Theorem B was stated conditionally on Arthur’s conjectures; the result
is now unconditional.

Overview of the proofs. Both Theorem A and Theorem B rely on the explicit realization of ΠS(π1, π2)
as a theta lift from a four-dimensional orthogonal group, cf. [31, 38]. Indeed, if |S| is even, then there is
a quaternion algebra B over F ramified exactly at the places in S, and the orthogonal group GSO(B) ≃
B××B×/Gm is an inner form of M . The automorphic representation ΠS(π1, π2) is the theta lift of πB1 ⊠πB2
from GSO(B) to GSp4,F , where π

B
i is the Jacquet-Langlands transfer of πi to B

×. This is crucial because
it allows for the calculation of period integrals involving ΠS(π1, π2).

Proof of Theorem A. Since the non-vanishing of [S(H)] may be detected in de Rham cohomology, the
theorem is essentially a statement about periods of ΠS(π1, π2)⊠ π∨

2 along the subgroup H ⊂ GSp4×GL2 .
That is, we must compute integrals of the form

(6) PS(γ, β) :=
∫
ZH(AF )H(F )\H(AF )

γ(ι(h))β(p(h)) dh, γ ∈ ΠS(π1, π2), β ∈ π.

Because ΠS(π1, π2) is a theta lift from GSO(B), we can compute (6) using the seesaw diagram:
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GSp4 GSO(B)×Gm
GSO(B)

GL2×Gm GL2 GSO(B)

Here the vertical lines are inclusions and the diagonals are dual reductive pairs inside GSp16. Formally, the
seesaw identity would read:

(7) PS(θ(α), β) =
∫
[PGSO(B)]

θ(β)(g)θ(1)(g)α(g) dg, α ∈ π1 ⊗ π2, β ∈ π∨
2 ,

where the theta lifts on the right are from GL2 to GSO(B), and the theta lifts on both sides depend on
choices of Schwartz functions which must be made compatibly. The integral defining θ(1) is divergent, so a
regularization step is necessary to interpret (7). However, after regularization, θ(1) can be recognized as 0
if B is not split (i.e. if S ̸= ∅), and as a certain Eisenstein series on GSO(B) if B is split. The integral (7)
then unfolds to an Euler product which allows us to evaluate it explicitly. The result of the calculation is:

Theorem C (Theorems 6.2.2, 6.5.2). Let π1, π2, and π be cuspidal automorphic representations of GL2(AF )
such that πi and π

∨ have the same central character, and let S be a finite set of (possibly archimedean) places
of F at which both πi are discrete series, such that |S| is even. Consider the period pairing

(8) PS(γ, β) :=
∫
ZH(AF )H(F )\H(AF )

γ(ι(h))β(p(h)) dh, γ ∈ ΠS(π1, π2), β ∈ π,

where dh is normalized as in (6.1.1).

(1) If PS(γ, β) ̸= 0, then S = ∅, i.e. ΠS(π1, π2) is generic, and π is isomorphic to either π∨
1 or π∨

2 .
(2) Suppose given factorizable Schwartz functions

ϕi = ⊗vϕi,v ∈ S(M2(AF )), i = 1, 2

and factorizable vectors

α = ⊗vαv ∈ π1 ⊗ π2, β = ⊗vβv ∈ π∨
2 .

Then the theta lift θϕ1⊗ϕ2
(α) lies in Π∅(π1, π2) and, for a sufficiently large finite set S of places of

F ,

P∅(θϕ1⊗ϕ2
(α), β) = 2|DF |1/2 · π−dL

S(1, π1 × π∨
2 )L

S(1,Adπ2)

ζSF (2)

∏
v∈S

Zv(ϕ1,v, ϕ2,v, αv, βv)
1− q−1

v

.

Here Zv(ϕ1,v, ϕ2,v, αv, βv) is an explicit local zeta integral which is nonzero for appropriate choices
of test data; ϕ1⊗ϕ2 is the tensor product Schwartz function in S(M2(AF )2); the theta lift θϕ1⊗ϕ2

(α)
is defined in §4; and the other notations are introduced in (2.1.1).

Remark. The L-values appearing in Theorem C are nonzero by the classical result of Shahidi [33].

In fact, Theorem C amounts to a special case of the nontempered Gan-Gross-Prasad conjectures in [6]:
if π1 and π2 have trivial central character, then ΠS(π1, π2) descends to PGSp4 = SO5, and the period (6)
reduces to a period for the split GGP pair SO4 ⊂ SO5 . Although ΠS(π1, π2) is tempered, the automorphic
representation of SO4 corresponding to the forms β(p(h)) on H is not, and so this period falls outside the
scope of the usual GGP conjecture.

To deduce Theorem A from Theorem C, one additional ingredient is needed. In the period integrals
(6), one really wants to consider only vectors γ and β that contribute to cohomology, which in our case is
equivalent to generating a certain K-type at archimedean places. The most delicate part is to write such a
vector γ as a theta lift θϕ(α), which requires a careful choice of archimedean component for the Schwartz
function ϕ (determined using local Howe duality). Once we know which ϕ to consider, we can evaluate the
relevant archimedean zeta integrals to show that the periods (6) are nontrivial.
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Proof of Theorem B. For simplicity, assume π1 and π2 have parallel weights 4 and 2, respectively, so all
coefficients are trivial. The main difficulty in the proof of Theorem B is to find a nontrivial family of Hodge
classes on S(GSp4)×S(GL2) (besides the ones coming from the algebraic cycle S(H)). Once we have a good
supply of Hodge classes, the proof that they are nontrivial uses similar methods to the proof of Theorem
A. To construct this family of Hodge classes, we use certain nontempered, cohomological automorphic
representations of GSp6(AF ) which contribute to cohomology of S(GSp6) in degree 4d.

More precisely, let S = Sf⊔S∞ with |Sf | even, and let B be the quaternion algebra over F which is ramified
exactly at Sf . Assume Sf ̸= ∅, i.e. B is nonsplit. Then for any auxiliary automorphic representation π of
PB(AF )× of parallel weight 6, we consider Θ(π⊠1), the theta lift from GSO(B) to GSp6 of the automorphic
representation π ⊠ 1 of GSO(B) ≃ B× × B×/Gm. Let S(π) be the set of automorphic representations
of GSp6(AF ) which are nearly equivalent to a constituent of Θ(π ⊠ 1). To connect these automorphic
representations to the cohomology of S(GSp4)× S(GL2), we use the correspondence of Shimura varieties

S(GSp6)
ι1←− S(H̃)

ι2−→ S(GSp4)× S(GL2),

where H̃ := GSp4×Gm GL2 ⊂ GSp6, and ι2 is open and closed. Thus we obtain a well-defined map

H∗(S(GSp6), E)
ι2,∗◦ι∗1−−−−→ H∗(S(GSp4)× S(GL2), E)

↠ H∗(S(GSp4)× S(GL2), E)[ΠS(π1, π2)
∨
f ⊠ π2,f ].

(9)

For any Π̃ ∈ S(π), let

Hdg(Π̃) = im

(
H4d(S(GSp6),Q)[Π̃f ]

(9)−−→ H4d(S(GSp4)× S(GSp2),Q)[ΠS(π1, π2)
∨
f ⊠ π2,f ]

)
,

Hdg(π)Q =
∑

σ∈Aut(C/Q)

∑
Π̃∈S(πσ)

Hdg(Π̃).

Since Hdg(π)Q is stable under the action of Aut(Q/E) on the coefficients, we can descend to a subspace

Hdg(π) ⊂ H4d(S(GSp4)× S(GSp2), E)[ΠS(π1, π2)
∨
f ⊠ π2,f ].

We prove that:

(10) Gal(Q/F c) acts trivially on Hdg(π)(2d)⊗E Qℓ ⊂ H4d
ét (S(GSp4)Q × S(GSp2)Q,Qℓ(2d))

(where the inclusion comes from the Betti-étale comparison theorem) and

(11) Hdg(π) is a trivial sub-Hodge-structure of H4d(S(GSp4)× S(GSp2), E).

In fact, (11) follows from (10) by the étale-de Rham comparison – proved for automorphic local systems
on general Shimura varieties in [2] – and its compatibility with the map (9). To prove (10), it suffices to
consider

Hdg(Π̃)⊗Q Qℓ ⊂ H4d
ét (S(GSp4)Q × S(GL2)Q,Qℓ)[ΠS(π1, π2)

∨
f ⊠ π2,f ],

for any π as above, any Π̃ ∈ S(π), and any embedding Q ↪→ Qℓ. Suppose that p ̸= ℓ splits completely in F and

that Π̃v is spherical for all v|p. Then the generalized Eichler-Shimura relation proven by Lee [21, 22] provides

a polynomial P (X) such that P (Frobp) = 0 on H∗(S(GSp6),Qℓ)[Π̃f ]. The coefficients of P (X) depend on

the Satake parameters of Π̃v for v|p, which in turn are determined by those of πv via the spherical theta
correspondence for orthogonal-symplectic similitude pairs (Proposition 4.3.3). It turns out that P (X) has a
unique root of weight 4d, which is p−2d. On the other hand, H4d

ét (S(GSp4)Q×S(GSp2)Q,Qℓ)[ΠS(π1, π2)
∨
f ⊠

π2,f ] is pure of weight 4d, because ΠS(π1, π2) and π2 are both tempered. (By contrast, the cohomology

H4d
ét (S(GSp6)Q,Qℓ)[Π̃f ] need not be pure, because Π̃f can be non-tempered and even non-cuspidal.) In

particular, the purity of H4d
ét (S(GSp4)Q × S(GSp2)Q,Qℓ)[ΠS(π1, π2)

∨
f ⊠ π2,f ] implies that Frobp = p−2d on

Hdg(Π̃)⊗Q Qℓ for all p as above, which shows (10) by the Chebotarev density theorem.

It remains to show that some element ξ ∈ Hdg(π) induces a nonzero map as claimed in Theorem B.
Similarly to the proof of Theorem A, we reduce this question to showing that the triple product period
integral

(12)

∫
[Z

H̃
\H̃]

θ(α)(h, h′)β(h)γ(h′) d(h, h′), α ∈ π ⊠ 1, β ∈ ΠS(π1, π2), γ ∈ π∨
2
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is nonzero for some choice of π and some choice of test vectors α, β, and γ. Here H̃ is parametrized by
pairs (h, h′) ∈ GSp4×GL2, and the theta lift, which again depends on a choice of Schwartz function, is from
GSO(B) to GSp6. The relevant seesaw diagram for this period is:

GSp6 GSO(B)×Gm
GSO(B)

GSp4×Gm GL2 GSO(B)

The seesaw identity reduces (12) to

(13)

∫
[PGSO(B)]

α(g)θ(β)(g)θ(γ)(g) dg,

where the theta lifts are now from GSp4 and GL2 to GSO(B). (Under the assumption that B is nonsplit, all
the integrals involved in the seesaw identity converge absolutely.) The theta lift θ(γ) runs over (πB2 )∨⊠(πB2 )∨

as γ varies, and the image of the theta lift θ(β) includes πB1 ⊠ πB2 as β varies. We choose α to be a Hilbert
modular eigenform on PB×(AF ) such that ⟨fB1 · fB2 , α⟩Pet ̸= 0, where fB1 ∈ πB1 and fB2 ∈ (πB2 )∨ are
holomorphic newforms, and let π be the automorphic representation generated by α. Having made this
choice of π and α, it follows that (13) is nonzero for appropriate choices of β and γ.

Arithmetic implications. This work was originally motivated by a question of Weissauer in [37], which
can be paraphrased as follows: if F = Q and π2 is the automorphic representation associated to an elliptic
curve E/Q, then the motive associated to E appears attached to members of the L-packet Π(π1, π2) in
the cohomology of S(GSp4). Can we then use Shimura curves on S(GSp4) to construct interesting Selmer
classes for E in the spirit of Heegner points? Theorem A implies that, when applied to quaternionic Shimura
curves and a generic representation Π∅(π1, π2), this construction would recover the Heegner points on E.
Indeed, all appearances of the motive of E attached to generic representations Π∅(π1, π2) are fully accounted
for by Hecke translates of the correspondence from S(GSp4) to the modular curve S(GL2) induced by (2),
and nonsplit quaternionic Shimura curves on S(GSp4) are necessarily sent to CM divisors on S(GL2) under
this correspondence. It is an intriguing question whether Weissauer’s construction yields interesting Selmer
classes when applied to quaternionic Shimura curves and the non-generic members of the L-packets Π(π1, π2).

Organization of the paper. In §2, we give some basic notations and conventions. In §3, we recall the
plectic version of Matsushima’s formula and its relation to vector-valued automorphic forms. In §4, we give
notations and conventions for similitude theta lifts. This section also contains a proof of the L-functoriality for
similitude theta lifts of certain spherical representations from orthogonal to symplectic groups (Proposition
4.3.3); this is well-known to experts but we were not able to find a suitable reference. In §5, we recall the
construction of the Yoshida lift L-packets via theta lifts, and compute the plectic Hodge structures associated
to ΠS(π1, π2)f . The material up to this point is necessary for all the main results. However, the proofs of
Theorems C and A, which are given in §6 and §7, respectively, are logically independent of the proof of
Theorem B. The only exceptions are some results on the archimedean theta correspondence in §7.1. In §8,
we study the nontempered representations used for the construction of Hodge classes. In §9, we compute
the vector-valued triple product periods that are necessary for the nonvanishing of the Hodge classes. The
proof of Theorem B is completed in §10.
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couragement; Wei Zhang, for pointing out the relation of Theorem C to the nontempered GGP conjecture;
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correspondence. This work was supported by NSF Grants #DGE1745303 and #DMS2401823.

2. Preliminaries

2.1. Basic notations.
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2.1.1. Throughout this article, F is a fixed totally real number field of degree d and discriminant DF , OF
is its ring of integers, and AF is its ring of adèles. For each place v of F , denote by Fv the completion; if
v is non-archimedean, Ov is the valuation ring of Fv, ϖv ∈ Ov is the uniformizer, and qv = #Ov/ϖv. For
archimedean v, qv = 1. The Haar measure on the additive group AF is the product measure da =

∏
v dav,

where dav is the Haar measure on Fv such that Ov has volume 1 if v is nonarchimedean, and dav is the
standard measure on Fv ∼= R if v is archimedean.

2.1.2. If G is an algebraic group over F , [G] denotes the adelic quotient G(F )\G(AF ). If dg denotes a Haar
measure on G(AF ), then we write dg as well for the quotient Haar measure on [G] (where G(F ) is given the
counting measure).

2.1.3. We fix the additive character ψ = ψ0 ◦ tr of F\AF , where ψ0 : Q\A → C is the unique unramified
character such that ψ0(x) = e2πix for x ∈ R.

2.1.4. For any m, let ωm : R× → R× be the character

t 7→ tm−2·⌊m
2 ⌋.

If m = (mv)v|∞, let ωm : (F ⊗ R)× → R× be the character ⊗v|∞ωmv
. These characters will be used as the

central characters for “nearly unitary” normalizations of automorphic forms appearing in cohomology.

2.1.5. If V is a vector space over a local field k (either Archimedean or non-Archimedean), then Sk(V ) is
the Schwartz space of functions on V . If V is a vector space over F and v is a place of F , then SFv

(V )
denotes the space of Schwartz functions on V ⊗F Fv. Likewise, we write SF⊗R(V ) for the tensor product of
the Schwartz spaces SFv (V ) as v ranges over archimedean places of F .

2.2. Conventions for GL2 and SL2.

2.2.1. The standard Borel and unipotent subgroups of GL2 are denoted B and N , respectively; B denotes the

image of B in PGL2 . We shall abbreviate by c 7→ hc the section of det : GL2 → Gm given by hc =

(
1 0
0 c

)
.

2.2.2. For each non-archimedean place v of F , we normalize the Haar measure dgv on PGL2(Fv) to assign
volume 1 to PGL2(Ov), and likewise for SL2(Fv). For non-archimedean v, we choose the Haar measure dgv
on PGL2(Fv) ∼= PGL2(R) given by:

dgv =
da dtdθ

πt2
, gv =

(
1 a
0 1

)(
t 0
0 1

)(
cos θ sin θ
− sin θ cos θ

)
,

a ∈ R, t ∈ R×, θ ∈ [0, π).

(14)

On SL2(Fv) ∼= SL2(R), we choose the Haar measure dgv given by:

dgv =
da dtdθ

2πt2
, gv =

(
1 a
0 1

)(
t1/2 0
0 t−1/2

)(
cos θ sin θ
− sin θ cos θ

)
,

a ∈ R, t ∈ R>0, θ ∈ [0, 2π).

(15)

2.2.3. For the standard compact subgroup SO(2) of SL2(R), we denote by χm : SO(2) 7→ C× the character(
cos θ sin θ
− sin θ cos θ

)
7→ (cos θ + i sin θ)m.

2.3. Conventions for symplectic groups.

2.3.1. Let J be the matrix

(
0 1
−1 0

)
. Then, for any field k, the block-diagonal matrix

J . . .

J

 defines

a symplectic pairing on the k-space W2n,k = ⟨e1, · · · , e2n⟩ such that

W2n,k = ⟨e1, e3, · · · , e2n−1⟩ ⊕ ⟨e2, e4, · · · , e2n⟩
is a decomposition into maximal isotropic subspaces; we refer to W2n,k as the standard symplectic space of
dimension 2n. The symplectic group Sp2n,k and the general symplectic group GSp2n,k are the isometry and
similitude groups, respectively, of W2n,k. When not otherwise specified, k = F .
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2.3.2. The maximal compact-modulo-center subgroup of the symplectic group GSp2n,R is Kn ≃ (U(n) ×
R×)/ {±1}, consisting of the matrices whose 2 × 2 blocks commute with J . When Kn is viewed as a
subgroup of GSp2n(Fv) we write it Kn,v. There is a maximal compact torus T ⊂ U(n) such that

t =

α1J
. . .

αnJ

 , αi ∈ R.

We parameterize the weights of U(n) by tuples of integers (m1, · · · ,mn), corresponding to the characterα1J
. . .

αnJ

 7→ m1α1 + · · ·+mnαn.

When n = 1, the character χm ⊠ ω−1
m on U(1) × ZGL2 descends to a character of K1, which we will also

denote by χm; we hope that this will cause no confusion.

3. Cohomology of Shimura varieties

3.1. Shimura varieties and local systems.

3.1.1. Let (G,X) be a Shimura datum with reflex field E0, and let µ : ResC/R Gm,C → GR be the corre-
sponding cocharacter. Given a neat compact open subgroup K ⊂ G(AQ,f ), we have a smooth algebraic
Shimura variety SK(G,X) defined over E0, such that

SK(G,X)(C) = G(Q)\G(AQ,f )×X/K.
We will usually drop X from the notation for SK(G,X), and write

(16) S(G) := lim←−
K

SK(G)

for the pro-algebraic Shimura variety.

3.1.2. Following the convention of [2, §5.1], let Z(G) ⊂ G be the center, with neutral connected component
Z(G)◦ ⊂ Z(G). Define Zs(G) ⊂ Z(G)◦ to be the smallest subtorus such that Z(G)◦/Zs(G) has the same
Q-split and R-split ranks, and let Gc = G/Zs(G).

Let E ⊂ C be any subfield, and let ρ be an algebraic representation of Gc on an E-vector space V ; then
for each level subgroup K as above we have the Betti local system VK on SK(G)C whose total space over C
is

(17) G(Q)\G(AQ,f )×X × V/K.
By the discussion in [2, p. 535], to V is also associated an algebraic vector bundle VC,dR,K over SK(G)C
equipped with a connection and a canonical filtration, whose complex analytification is associated under the
Riemann-Hilbert correspondence to the complex local system VK,C := VK ⊗E C.

Finally, if E is a number field and λ is a finite prime of E, write Vλ,K for the étale local system on SK(G)

whose base change to SK(G)C coincides with VK ⊗E Eλ, and Vλ,K,Qℓ
for Vλ,K ⊗Eλ

Qℓ. A choice of prime ℓ

and isomorphism ι : Qℓ
∼−→ C determines a prime λ of E, and in this context we omit λ from the notation

and write simply VK,Qℓ
.

Each of the constructions described above is compatible with the maps SK(G)→ SK′(G) for neat compact
open subgroups K ⊂ K ′ ⊂ G(AQ,f ), and we drop the subscript K to denote the corresponding objects for
the pro-algebraic variety S(G). We abbreviate the Betti cohomology of V by

Hi(S(G),V) := Hi(S(G)(C),V).

Theorem 3.1.3. Fix a prime ℓ, an isomorphism ιℓ : Qℓ
∼−→ C, and an algebraic representation ρ of Gc on

an E-vector space V , for a number field E ⊂ C containing E0. Let λ be the prime of E induced by ι. Then
for each i, there is a canonical isomorphism of G(AQ,f )-modules, compatible with the canonical filtrations

and Gal(Qℓ/Eλ)-actions on both sides:

Hi
ét(S(G)Qℓ

,Vλ)⊗Eλ
BdR

∼= Hi
dR(S(G)C,VC,dR)⊗C,ι−1

ℓ
BdR.
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In particular, the 0th graded piece is an isomorphism

Hi
ét(S(G)Qℓ

,Vλ)⊗Eλ
Q̂ℓ ∼= ⊕j grj Hi

dR(S(G)C,VC,dR)⊗C,ι−1
ℓ

Q̂ℓ(−j).

Moreover, these isomorphisms are functorial in V and compatible with pullbacks induced by maps of Shimura
data.

Proof. The stated isomorphism and the functoriality in V are immediate from [2, Theorem 1.1, Theorem
5.3.1]. It remains to check that Theorem 1.1 of op. cit. is compatible with pullback.1 For this, let X be a
smooth algebraic variety over an ℓ-adic field k, with a compactification X such that the complement of X

is a normal crossing divisor, and let Dalg
dR,X be the functor of loc. cit.. Then for any Qℓ-étale local system L

on X, the rigid analytification of Dalg
dR,X(L) is the restriction of a filtered vector bundle with log connection

DdR,log,X(L) on the rigid analytification of X, where L is as in [2, Corollary 3.2.10], cf. [2, §4.1]. Now
suppose Y is another smooth algebraic variety over k with a map f : Y → X, and choose a compactification
Y of Y as above so that f extends to f : Y → X. We claim that there is a canonical isomorphism

(18) f∗Dalg
dR,X(L) ∼−→ Dalg

dR,Y (f
−1L).

Indeed, by the canonical adjunction morphism in [2, Lemma 3.5.3], we have a morphism of filtered vector

bundles with log connection f
∗
DdR,log,X(L)→ DdR,log,Y (f

−1L), which is algebraizable by the rigid analytic

GAGA theorem of [18]. The restriction of the resulting morphism gives the desired map (18), which is an
isomorphism because its analytification is so, cf. [24, Theorem 3.8].

Once we have (18), it suffices to show that the following diagram commutes, where the horizontal arrows
are provided by [2, Theorem 1.1]:

Hi
ét(XQℓ

,L)⊗Qℓ
BdR Hi

dR(X,D
alg
dR,X(L))⊗Qℓ

BdR

Hi
dR(Y, f

∗Dalg
dR,X(L))⊗Qℓ

BdR

Hi
ét(YQℓ

, f−1L)⊗Qℓ
BdR Hi

dR(Y,D
alg
dR,Y (f

−1L))⊗Qℓ
BdR

∼

(18)

∼

This commutativity can be checked by hand by tracing through the construction of the horizontal arrows
in [2, §3]. □

3.2. The structure of cohomology as a G(AQ,f )-module. We continue to fix an E-linear algebraic
representation (ρ, V ) of Gc as in (3.1.2).

3.2.1. If Πf is a C[G(AF,f )]-module, Πf is defined over E ⊂ C if there exists a E[G(AF,f )]-module ΠEf such

that ΠEf ⊗E C ≃ Πf . In this case, we write:

H∗
? (S(G),V)Πf

:= HomE[G(AF,f )](Π
E
f , H

∗
? (S(G),V),(19)

where H∗
? denotes compactly supported, inner, or singular cohomology as ? = c, !, or ∅. The maximal

ΠEf -isotypic component, which we write as

H∗
? (S(G),V)[Πf ],

is then isomorphic to

H∗
? (S(G),V)ΠSf

⊗E ΠESf
.

1We thank Kai-Wen Lan for explaining the following argument.
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3.2.2. An irreducible admissible complex G(AQ,f )-representation Πf is said to be Eisenstein if Πf is a

subquotient of a parabolic induction Ind
G(AQ,f )

P (AQ,f )
πf , for a parabolic subgroup P = MN of G and a cuspidal

automorphic representation π of M(AQ). For any admissible E[G(AQ,f )]-module H, we say H is Eisenstein
if all irreducible constituents of H ⊗E C are.

If Π is an automorphic representation of G(AQ,f ) with Πf non-Eisenstein and defined over E, then for all
i ≥ 0, it follows from Franke’s proof of the Borel conjecture [5, Theorem 18] that the maximal Πf -isotypic
submodule

(20) Hi(S(G),V)[Πf ] ⊂ Hi(S(G),V)

is a direct summand.

Lemma 3.2.3. Let V be the automorphic local system on S(G) associated to an E-linear Gc-representation
(V, ρ). Then:

(1) The E[G(AQ,f )]-module

Hi(S(G),V)/Hi
! (S(G),V)

is Eisenstein.
(2) There exists an E[G(AQ,f )]-stable direct summand Hi(S(G),V)0 ⊂ Hi(S(G),V) such that

Hi(S(G),V)0 ⊂ Hi
! (S(G),V)

and

Hi(S(G),V)0 ⊗E C =
⊕

Πfnon-
Eisenstein

Hi(S(G),VC)[Πf ],

where Πf runs over the finite parts of automorphic representations of G(AQ,f ).

Proof. Part (1) is well-known; a lucid exposition may be found in the preprint [9, Chapter 9]. For (2), by
(1) it suffices to note that the property of being non-Eisenstein is stable under Aut(C/Q). □

3.3. Mixed Hodge structures.

3.3.1. With notation as in (3.1.2), consider the following conditions on the representation (ρ, V ):

(1) E is a number field contained in R.
(2) The composite map

Gm,R → ResC/R Gm,C
µ−→ GR → GL(V ⊗Q R)→ GL(V ⊗E R)

is given by z 7→ zm for some integer m.

Under these conditions, the canonical filtration on VC,dR,K makes VK into a polarizable variation of Hodge
structures of weightm with coefficients in E. Both conditions are satisfied for the local systems on symplectic
Shimura varieties defined in §3.6 below.

3.3.2. By Saito’s theory of mixed Hodge modules [32], under conditions (1) and (2) above, the Betti coho-
mology Hi(S(G),V) is a mixed Hodge structure with coefficients in E. We write W•H

i(S(G),V) for the
weight filtration and F•Hi(S(G),VC) for the Hodge filtration. By definition, a Hodge class in Hi(S(G),V)
is a Hodge class for the pure Hodge structure Wi+mH

i(S(G),V).

3.4. Plectic Hodge structures.

3.4.1. We now let G be a reductive group over F , and set G = ResF/QGF . Since

(21) G(R) =
∏
v|∞

G(Fv) =
∏
v|∞

Gv(R),

a Shimura datum (G,X) is necessarily a product X ≃
∏
v|∞Xv. If Kv ⊂ Gv(R) denotes the stabilizer of a

distinguished point hv ∈ Xv, then the stabilizer of the corresponding point h ∈X is

K∞ =
∏
v|∞

Kv.
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3.4.2. Let (ρ, V ) be an algebraic representation of Gc as in (3.1.2). Matsushima’s formula for the L2 coho-
mology of S(G) is:

(22) H∗
(2)(S(G),VC) ∼=

⊕
π=πf⊗π∞

mdisc(π) · πf ⊗H∗(Lie G;K∞, π
sm
∞ ⊗ VC)).

Here π runs over cuspidal automorphic representations of G(A), mdisc(π) refers to the multiplicity in the
discrete spectrum, and πsm

∞ is the dense subspace of smooth vectors. Moreover (22) is equivariant for the
natural actions of G(AF,f ) on both sides. Suppose VC = ⊗vVv, where Vv are C-vector spaces equipped with
algebraic representations ρv of Gv(R), such that ρ factors as

(23) ρ : G(F ) ↪→ G(F ⊗ R) ≃
∏
v

Gv(R)
⊗ρv−−→

∏
v

Aut(Vv).

Since the Lie algebra of G is
∏
v|∞ gv, the right hand side of (22) has a decomposition (cf. [26, §16]):

(24)
⊕
p,q

 ⊕
πf⊗π∞

mdisc(π) · πf ⊗
⊗
v|∞

Hpv,qv (gv,Kv, π
sm
v ⊗ Vv)

 .

Here p and q are plectic Hodge types, i.e. tuples of positive integers (pv)v|∞ and (qv)v|∞. Then (22) induces
a plectic Hodge decomposition on H∗

(2)(S(G),VC), written:

(25) H∗
(2)(S(G),VC) =

⊕
p,q

Hp,q
(2) (S(G),VC).

Remark 3.4.3. Because this decomposition does not take into account any variation of Hodge structures
on VC, it does not compare with the canonical mixed Hodge structure on H∗(S(G),V) recalled in §3.3 above.
For this reason, (25) should be viewed more as a computational tool then as a suitable definition of “the”
plectic Hodge structure on H∗

(2)(S(G),VC).

3.5. Realizing automorphic forms in cohomology.

3.5.1. The complex structure on Xv induces a decomposition

gv,C = k∞ ⊕ pv,+ ⊕ pv,−.

We define

(26) ∧p,qp∗G := ⊗v|∞(∧pvp∗v,+ ⊗ ∧qvp∗v,−),
and let (σp,q,∧p,q) be the corresponding natural representation of K∞. The smooth vector bundle Ω∗ of
differential forms on S(G) has a decomposition

Ω∗ = ⊕p,qΩ
p,q,

where the vector bundle Ωp,q of (p, q)-forms on S(G) corresponds to the local system whose complex points
are:

G(F )\G(AF,f )×G(R)× ∧p,qp∗G/K∞.

In particular, the space Γ(2)(Ω
p,q ⊗ VC) of L2 global (p, q)-forms with coefficients in VC is identified with:

(27)
{
f ∈ C∞

(2)(G(AF ))⊗ VC ⊗ ∧
p,qp∗G : f(γgk) = ρ(γ)σp,q(k−1)f(g), ∀γ ∈ G(F ), k ∈K∞

}
.

Here C∞
(2)(G(AF )) is the space of smooth L2 functions on G(AF ); by definition, we have:

(28) Γ(2)(Ω
p,q ⊗ VC) ↠ Hp,q

(2) (S(G),VC).

Finally, we remark that there is a canonical isomorphism:

(A(2)(G(AF ))⊗ VC|K∞ ⊗ ∧p,qp∗G)K∞ ∼−→ Γ(2)(Ω
p,q ⊗ VC)

ϕ 7→ fϕ, fϕ(g) = ρ(g∞)ϕ(g).
(29)

Here ρ(g∞) is defined via the decomposition (23). By composing with (28), we obtain a realization of
vector-valued automorphic forms in cohomology:

(30) (A(2)(G(AF ))⊗ VC|K∞ ⊗ ∧p,qp∗G)K∞ ↠ Hp,q
(2) (S(G),VC).
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3.6. Symplectic Shimura varieties.

3.6.1. When G = GSp2n, equipped with its usual Shimura datum, the subgroup K∞ is just

(31) Kn :=
∏
v

Kn,v ⊂ GSp2n(F ⊗ R).

We establish some notation for local systems on S(GSp2n). Suppose given a tuple λ = (λv)v|∞, where
λv = (m1,v, · · · ,mn,v) is a dominant weight of Sp2n,R. We define (ρλv , Vλv ) to be the unique irreducible C-
linear algebraic representation of GSp2n whose restriction to Sp2n has weight λv and whose central character
is ω−1

m1,v+···+mn,v
in the notation of (2.1.4). This defines a representation (ρλ, Vλ) of GSp2n according to

(23), which clearly descends to F c.

Proposition 3.6.2. The representation (ρλ, Vλ) descends to a Q(λ)-linear representation of GSp2n, where
Q(λ) is the fixed field of

{σ ∈ Aut(C/Q) : λσ·v = λv ∀v|∞} .

Proof. The proof of [36, Proposition I.3] applies unchanged. □

3.6.3. When the parity of
∑n
i=1mi,v is independent of v, then (ρλ, Vλ) descends to a Q(λ)-linear represen-

tation of the quotient GSpc2n of GSp2n, cf. (3.1.2). We then obtain a Q(λ)-local system Vλ on S(GSp2n)
such that Vλ,C arises from the tuple of representations (ρλv , Vλv ) of GSp2n(Fv) according to (23).

3.7. The case G = GL2.

3.7.1. We recall some basic results on the cohomology of S(G) in the simplest case, G = GL2 = GSp2 . For
a tuple of integers m = (mv)v|∞ with mv ≥ 2 and all mv of the same parity, define Q(m) to be the fixed
field of

(32) {σ ∈ Aut(C/Q) : mσ·v = mv ∀v|∞} .
We then obtain from §3.6 a Q(m)-local system Vm−2 on S(GL2), where m− 2 = (mv − 2)v|∞.

3.7.2. Let (p(+), q(+)) = (1, 0) and (p(−), q(−)) = (0, 1), and define (p(ϵ), q(ϵ)) to be the plectic Hodge
type (pv(ϵv), qv(ϵv))v|∞, for any choice of signs ϵ = (ϵv)v|∞. Let χϵm be the character of K1 from (2.3.2).
Then we have:

dimC HomK1

(
χ−ϵm,∧p(ϵ),q(ϵ)p∗GL2

⊗ Vm−2,C

)
= 1,

dimC HomK1

(
χ∨

−ϵm,∧1−p(ϵ),1−q(ϵ)p∗GL2
⊗ V ∨

m−2,C

)
= 1.

(33)

Let π be a cuspidal automorphic representation of GL2(AF ) of weight m, whose central character has infinity
type ωm. Then combining (30) with (33) yields maps, well-defined up to scalars:

clϵ : (π ⊗ χ−ϵm)K1 → H
p(ϵ),q(ϵ)
(2) (S(GL2),Vm−2,C)[πf ]

cl′ϵ : (π
∨ ⊗ χ∨

−ϵm)K1 → H
1−p(ϵ),1−q(ϵ)
(2) (S(GL2),V∨

m−2,C)[π
∨
f ]

(34)

Here (1− p(ϵ), 1− q(ϵ)) = (p(−ϵ), q(−ϵ)) is the plectic Hodge type (1− p(ϵv), 1− q(ϵv))v|∞. The following
is well-known:

Proposition 3.7.3. For each ϵ, the maps in (34) are isomorphisms, and

Hp,q
(2) (S(GL2),Vm−2,C)[πf ] = Hp,q

(2) (S(GL2),V∨
m−2,C)[π

∨
f ] = 0

if (p, q) is not of the form (p(ϵ), q(ϵ)) for some ϵ. Moreover, if πf is defined over E ⊃ Q(m), then there
are GL2(AF,f )-equivariant isomorphisms

H∗
! (S(GL2),Vm−2,E)[πf ]⊗E C ≃ H∗

(2)(S(GL2),Vm−2,C)[πf ]

and

H∗
c (S(GL2),Vm−2,E)[πf ] ≃ H∗(S(GL2),Vm−2,E)[πf ] ≃ H∗

! (S(G),Vm−2)[πf ],

and similarly for V∨
m−2,E and π∨

f .

□
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4. Similitude theta lifting

4.1. Local Weil representation and local theta lift.

4.1.1. Let ϵ = ±1, and let V , W be vector spaces over a field k equipped with nondegenerate ϵ-symmetric
and (−ϵ)-symmetric pairings, respectively. We assume dimW = 2n and dimV = 2m are even, and that W
is equipped with a complete polarization

(35) W =W1 ⊕W2, W2 =W ∗
1 .

For simplicity, assume as well that the discriminant character of V is trivial (as will be the case in our
applications). Let G1 = G1(V ), G = G(V ) be the connected isometry and similitude groups, respectively,
of V , and likewise H1 = H1(W ) and H = H(W ). Let P = P (W1) ⊂ H(W ) be the parabolic subgroup
stabilizing W1, P1 its intersection with H1, and N ⊂ P1 its unipotent radical. Also set

(36) R0 = {(h, g) ∈ H ×G : νH(h) = νG(g)} ,

where νG : G→ Gm and νH : H → Gm are the similitude characters.

4.1.2. Assume that k is a local field. Then, for any nontrivial additive character ψk of k, the Weil represen-
tation ω = ωW,V,ψk

of H1(k)×G1(k) is realized on the Schwartz space Sk(W2⊗V ); in this model, the action
of the parabolic P1 ×G1 ⊂ H1 ×G1 stabilizing W1 × V is described as follows.

(37)


ω(1, g)ϕ(x) = ϕ(g−1x), g ∈ G1(k),

ω(n, 1)ϕ(x) = ψ
(
1
2 ⟨n(x), x⟩

)
· ϕ(x), n ∈ N(k) ⊂ Hom(W2,W1),

ω(h(a), 1)ϕ(x) = |det(a)|mϕ(atx), a ∈ GL(W1)(k) ⊂ P1(k),

where GL(W1) is viewed as the Levi factor of P1 by the standard embedding

(38) a 7→ h(a) =

(
a 0
0 a−t

)
∈ P1.

The representation ω extends naturally to R0(k) by defining

(39) ω

((
1 0
0 νG(g)

)
, g

)
ϕ(x) = |νG(g)|−mn/2ϕ(g−1x)

for all g ∈ G(k), cf. [30, §3]. Note that ω is trivial on the center {(λ, λ)} ⊂ R0.

4.1.3. Suppose that V = V1⊕V2 is also split; then the preceding construction also defines an action of R0(k)
on Sk(W ⊗ V2) by interchanging the roles of V and W . These two representations are isomorphic via the
partial Fourier transform. More precisely, consider the map F : Sk(W2 ⊗ V )→ Sk(W ⊗ V2) defined by

(40) ϕ 7→ ϕ̂, ϕ̂(x1, x2) =

∫
W2⊗V1

ϕ(z, x2)ψ(⟨z, x1⟩) dz,

where x1 ∈ W1 ⊗ V2, x2 ∈ W2 ⊗ V2, and dz is the self-dual Haar measure with respect to ψk. Then it is
well-known that F intertwines the actions of H1(k)×G1(k) on both sides, and it is immediate to check that
it intertwines the actions of ((

1 0
0 λ

)
,

(
1 0
0 λ

))
∈ R0(k)

according to the definition (39); so F is equivariant for all of R0(k).

4.1.4. If π is an irreducible admissible representation of H(k), then the local theta lift Θ(π) = ΘW,V (π) is
the largest semisimple representation of G(k) such that there is a surjection

ωW,V,ψk
↠ π∨ ⊠Θ(π)

of admissible R0(k)-representations. Symmetrically, if σ is an irreducible admissible representation of G(k),
then the local theta lift Θ(σ) = ΘV,W (σ) is the largest semisimple representation of H(k) admitting a
surjection ωW,V,ψk

↠ Θ(σ)⊠ σ∨. The theta lift does not depend on ψk by [31, Proposition 1.9].
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4.1.5. We remark that the Weil representation extends naturally to the full isometry groups of V and W ,
not just the neutral connected components; we denote these by G′

1 = G′
1(V ) and H ′

1 = H ′
1(W ). Similarly, if

G′ and H ′ denote the full similitude groups, then the Weil representation extends to the subgroup

R′
0 := {(h, g) ∈ H ′ ×G′ : νH′(h) = νG′(g)} .

The theta lift is usually defined in the literature using G′, H ′, and R′
0. The drawback of working with

neutral connected components of similitude groups is that we no longer have Howe duality, and in particular
the local theta lift may be reducible. However, using connected similitude groups is more convenient for our
global calculations.

4.2. Global Weil representation and global theta lifts.

4.2.1. Now turning to the global situation, assume k = F in (4.1.1). Fix OF -lattices Wi ⊂ Wi, for i = 1,
2, and V ⊂ V . The adelic Schwartz space SAF

(W2 ⊗ V ) is the restricted tensor product of the local
Schwartz spaces SFv (W2 ⊗ V ) with respect to the indicator function of (W2 ⊗ V)⊗OF

Ov. The global Weil
representation of R0(AF ), realized on SAF

(W2 ⊗ V ), is defined as the restricted tensor product of the local
Weil representations (using the characters ψFv

determined by the fixed global character ψ). Recall the
automorphic realization of ω, given by the theta kernel:

(41) θ(h, g;ϕ) =
∑

x∈W2(F )⊗V (F )

ω(h, g)ϕ(x), (h, g) ∈ R0(AF ), ϕ ∈ SAF
(W2 ⊗ V ).

If V is also split, then we again have the alternate model SAF
(W ⊗V2), related to SAF

(W2⊗V ) by the adelic
partial Fourier transform. Note that

θ(h, g;ϕ) = θ(h, g; ϕ̂) =
∑

x∈W⊗V2

ω(h, g)ϕ̂(x)

by Poisson summation.

4.2.2. Let f ∈ A0(H(AF )) be an automorphic cusp form and choose any ϕ ∈ SAF
(W2 ⊗ V ). Then, fixing a

Haar measure dh1 on H1(AF ), the similitude theta lift θϕ(f) to G is the automorphic function

(42) g 7→
∫
[H1]

θ(h1h0, g;ϕ)f(h1h0) dh1, g ∈ G(AF ),

where h0 ∈ H(AF ) is any element such that νH(h0) = νG(g).
Likewise, if f ∈ A0(G(AF )) is an automorphic cusp form and dg1 is a Haar measure on G1(A), then the

similitude theta lift θϕ(f) to H is the automorphic function

h 7→
∫
[G1]

θ(h, g1g0;ϕ)f(g1g0) dg1, h ∈ H(AF ),

where g0 ∈ G(AF ) is any element such that νG(g0) = νH(h).
If π is a cuspidal automorphic representation of H(AF ), then the similitude theta lift Θ(π) = ΘW,V (π)

is the subspace of A(G(AF )) spanned by the theta lifts θϕ(f) for f ∈ π and ϕ ∈ SAF
(W2 ⊗ V ); if π is a

cuspidal automorphic representation of G(AF ), we similarly define Θ(π) = ΘV,W (π) to be the subspace of
A(H(AF )) spanned by the theta lifts θϕ(f) for f ∈ π and ϕ ∈ SAF

(W2 ⊗ V ). A key property of the global
theta lift is its compatibility with the local theta lift. Although this is well-known, we include a proof for
the reader’s convenience.

Proposition 4.2.3. Let π be a cuspidal automorphic representation of either G(AF ) or H(AF ), and suppose
that Θ(π) lies in the L2 subspace. Then for any automorphic representation σ = ⊗′

vσv ⊂ Θ(π), σv is a
constituent of Θ(πv) for all v.

Proof. Suppose π is a representation of G(AF ); the other case is the same. We consider the map of R0(AF )-
representations:

SAF
(W2 ⊗ V )⊗ π ⊗ σ∨ → C

ϕ⊗ f ⊗ f ′ 7→
∫
[ZH\H]

θϕ(f)(h)f
′(h) dh.



TATE CLASSES AND ENDOSCOPY FOR GSp4 OVER TOTALLY REAL FIELDS 15

This map is well-defined and nontrivial by assumption. By duality, it also gives a nontrivial map

SAF
(W2 ⊗ V ) ↠ π∨ ⊠ σ,

which is evidently a restricted tensor product. This implies the proposition. □

4.2.4. The theta lift defined in (4.2.2) generalizes readily to vector-valued automorphic forms. Suppose
K ⊂ G(F ⊗ R) and L ⊂ H(F ⊗ R) are subgroups which are compact modulo center, and let

(L×K)0 := (L×K) ∩R0(F ⊗ R).
Suppose given finite-dimensional representations σ and τ of L and K, and let f ∈ (A0(H(AF )) ⊗ σ)L be a
vector-valued automorphic form. Then for a vector-valued Schwartz function

φ ∈ (SF⊗R(W2 ⊗ V )⊗ σ∨ ⊗ τ)(L×K)0 ,

and a Schwartz function
ϕf ∈ SAF,f

(W2 ⊗ V ) := ⊗′
v∤∞SFv

(W2 ⊗ V ),

we may define
θϕf⊗φ(f) ∈ (A(G(AF ))⊗ τ)K

by the same formula (42) as for the scalar-valued theta lift. The vector-valued theta lift from G to H is
defined in the same way.

4.3. Spherical theta correspondence for similitudes.

4.3.1. We shall require an explicit description of the spherical similitude theta correspondence in certain
cases. Continuing the notation of (4.1.1), assume k is a nonarchimedean local field, that ψk is unramified,
and that V = V1 ⊕ V2 is a split orthogonal space (so that ϵ = +). For this subsection, we will need to work
with the disconnected isometry and similitude groups G′

1 = O(V ) and G′ = GO(V ).
Now choose bases {e1, · · · , em} and {f1, · · · , fn} of V1 and W1, respectively, and let {e∗1, · · · , e∗m} and

{f∗1 , · · · , f∗n} be the dual bases of V2 and W2. Let TG1
⊂ GL(V1) ⊂ G1 and TH1

⊂ GL(W1) ⊂ H1 be the
standard diagonal tori; then we choose the maximal tori for G, H, and R0 given (with respect to the bases
{e1, · · · , em, e∗1, · · · , e∗m} and {f1, · · · , fn, f∗1 , · · · , f∗n}) by:

TG = TG1
×Gm =

{
diag(x1, · · · , xm, λx−1

1 , · · · , λx−1
m )
}

TH = TH1
×Gm =

{
diag(y1, · · · , yn, κy−1

1 , · · · , κy−1
n )
}

TR0
= TH ×Gm

TG ≃ TG1
× TH1

×Gm

(43)

4.3.2. To fix notation, we recall the unramified principal series of G and H. The unramified characters of
TG1

(k) are parameterized by tuples χ1 = (α1, · · · , αm) ∈ (C×)m, where

χ1(diag(x1, · · · , xm, x−1
1 , · · · , x−1

n )) =

m∏
i=1

αord xi
i .

The unramified characters of TG(k) are parameterized by χ = (α1, · · · , αm, s) ∈ (C×)m+1, where

χ(diag(x1, · · · , xm, λx−1
1 , · · · , λx−1

m )) = sordλ
m∏
i=1

αord xi
i .

Similarly, the unramified characters of TH1(k) (resp. TH(k)) are parametrized by µ1 = (β1, · · · , βn) ∈ (C×)n

(resp. µ = (β1, · · · , βn, t) ∈ (C×)n+1), and the unramified characters of TR0
(k) are parameterized by

η = (β1, · · · , βn, α1, · · · , αm, u) ∈ (C×)n+m+1.

Note that the character µ⊠ χ of TH(k)× TG(k) pulls back to the character

µ · χ := (β1, · · · , βn, α1, · · · , αm, st)
of TR0

(k) under the inclusion TR0
⊂ TH × TG.

For Borel subgroups BG = TGNG ⊂ G and BH = THNH ⊂ H, the (normalized) principal series repre-

sentations Ind
G(k)
BG(k) χ and Ind

H(k)
BH(k) µ possess unique irreducible spherical subquotients denoted πχ and σµ,

respectively; note πχ and σµ depend only on the Weyl orbits of χ and µ.

Proposition 4.3.3. Suppose m ≤ n, ϵ = +, and that the residue field of k has odd cardinality q.



16 NAOMI SWEETING

(1) Let πχ be the spherical representation of G(k) associated to χ = (α1, · · · , αm, s), and suppose that

π′
χ := Ind

G′(k)
G(k) πχ is irreducible with multiplicity-free restriction to G′

1(k). Then if Θ(πχ) ̸= 0, Θ(πχ)

is the spherical representation σµ of H(k) for

µ = (α1, · · · , αm, q, q2, · · · , qn−m, sq−(m2−m)/4−(n2+n)/4+nm/2).

(2) If m ≤ 3 and π′
χ is irreducible, then π′

χ|G′
1(k)

is multiplicity-free.

Proof. We first show (1). By [30, Theorem 4.4] and [31, Proposition 1.11], our assumptions on πχ imply that
Θ(πχ) is irreducible and spherical if it is nonzero; then Θ(πχ) = σµ for some µ, and it remains to determine
µ.

As in [28, §4], let σ = (σ1, · · · , σm) ∈ Cm, and consider for all ℜ(σi)≫ 0 the family of integrals:

(44) I(σ, ϕ) =

∫
ϕ

 m∑
i=1

aiif
∗
i ⊗ ei +

∑
1≤i<j≤m

zijf
∗
i ⊗ ej

 m∏
i=1

|aii|σi+i−m d×aii
∏
i<j

dzij ,

where ϕ ∈ Sk(W2 ⊗ V ). Let BG be the unique Borel subgroup that stabilizes the complete isotropic flag
⟨em⟩ ⊂ ⟨em, em−1⟩ ⊂ · · · ⊂ V1; and similarly for BH . A direct calculation shows that, if ℜ(σi)≫ 0 for all i,

Zσ(ϕ)(h, g) := I(σ, ω(h, g)ϕ)

defines an R′
0(k)-intertwining map from ω to the induced representation

Iσ := Ind
R′

0(k)

TR0
(k)·(NH×NG)(k) η(σ),

η(σ) = (qσ1+1−m, · · · , qσi+i−m, · · · , qσm , q, q2, · · · , qn−m,

qm−σ1−1, · · · , qm−σi−i, · · · , q−σm , q−(m2−m)/4−(n2+n)/4+nm/2) ∈ (C×)n+m+1.

Now choose a hyperspecial subgroup KR′
0
of R′

0(k) (arising from choices of self-dual lattices in W and V ),
and let H be the Hecke algebra of C-valued, KR′

0
-biinvariant functions on R′

0. For all σ as in the claim, the
Hecke action on the unique spherical vector in Iσ defines an algebra morphism zσ : H → C. It follows from
the discussion in [28, p. 493] that the support of the H-module

Sk(W2 ⊗ V )
KR′

0

is contained in the Zariski closure of the points zσ of SpecH. On the other hand, the Satake isomorphism
identifies complex points of SpecH with R′

0-Weyl orbits of parameters η = (β1, · · · , βm, α1, · · · , αn, u) as
above. By assumption, there is a surjection

Sk(W2 ⊗ V ) ↠ π∨
χ ⊠ σµ,

and hence the character χ−1 · µ lies in the Zariski closure of the Weyl orbit of the parameters η(σ) in the
claim. However, the µ listed in the proposition is the only one (up to H-Weyl action) satisfying this property.
This proves (1).

For (2), by [8, Lemma 2.1] it suffices to show that

#
{
ρ : G′(k)→ C× : ρ|G′

1(k)
= 1, πχ ⊗ ρ ∼= πχ

}
< 4.

So suppose given such a ρ. Since π′
χ is the unique spherical constituent of Ind

G′(k)
BG(k) χ, π

′
χ⊗ρ is a constituent

of Ind
G′(k)
BG(k) χ ⊗ ρ. For this induced representation to contain a spherical vector, ρ must be unramified. In

particular it is of the form ρ0 ◦νG′ for an unramified character ρ0 of k×. By considering central characters of
πχ and πχ ⊗ ρ, we also have ρm0 = 1; hence there are at most m choices of ρ, and m < 4 by assumption. □

5. Yoshida lifts on GSp4

5.1. Some four-dimensional orthogonal spaces.
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5.1.1. Let B be a quaternion algebra, possibly split, over a field k. Then B comes equipped with a norm
N : B → k and an involution b 7→ b∗ such that bb∗ = N(b) for all b ∈ B. The k-orthogonal space VB
associated to B is isomorphic to B as a vector space, with the inner product defined by

(45) (b1, b2) := tr(b1b
∗
2) = b1b

∗
2 + b2b

∗
1.

When B is split, we often drop the subscript and abbreviate V = VM2
.

5.1.2. One has a map of algebraic groups over k:

(46) pZ : B× ×B× → GO(VB)

defined by

pZ(b1, b2) · x = b1xb
∗
2, x ∈ VB .

The kernel of pZ is the antidiagonally embedded Gm, and pZ is a surjection onto the connected similitude
group GSO(VB).

If k is a local field, then irreducible admissible representations of GSO(VB)(k) are all of the form π1 ⊠π2,
where πi are irreducible admissible representations of B× of the same central character; if k = F , the same
is true of automorphic representations of GSO(VB)(AF ).

5.2. Elliptic endoscopic L-parameters.

5.2.1. The unique elliptic endoscopic group of GSp4,F is GSO(V ), equipped with the L-embedding:

(47) LGSO(V ) = (GL2×Gm GL2)(C)×Gal(F/F ) ↪→ GSp4(C)×Gal(F/F ) = LGSp4.

The Langlands functoriality principle for the map (47) then suggests that, to an automorphic representation
π = π1 ⊠ π2 of GSO(V )(AF ), one can associate an L-packet of automorphic representations Π(π1, π2) of
GSp4(AF ). These L-packets and their local analogues are constructed via similitude theta lifting in [31, 38].
More precisely, for each place v of F and each irreducible admissible representation π1,v⊠π2,v of GSO(V )(Fv),
one associates a local L-packet

(48)
{
Π+(π1,v, π2,v),Π

−(π1,v, π2,v)
}
,

where by convention Π−(π1,v, π2,v) = 0 unless both πi,v are discrete series. For all v, Π+(π1,v, π2,v) is the
unique generic member of the L-packet, and is explicitly given by the (nonzero, irreducible) local similitude
theta lift:

(49) Π+(π1,v, π2,v) := ΘV,W4
(π1,v ⊠ π2,v).

If πi,v are both discrete series, then they admit Jacquet-Langlands transfers πBi,v to B×, where B is the
non-split quaternion algebra over Fv. In this case, we have

(50) Π−(π1,v, π2,v) := ΘVB ,W4(π
B
1,v, π

B
2,v),

a nonzero irreducible representation. We remark that the central character of Π±(π1,v, π2,v) is the common
central character of πi,v (since the central character of the Weil representation is trivial). The L-packets
associated to πv and π′

v = π2,v ⊠ π1,v coincide, but otherwise are all disjoint. Globally, given a cuspidal
automorphic representation π1 ⊠ π2 of GSO(V )(AF ) and a finite set S of places where πi are both discrete
series, we form the adelic representation

(51) ΠS(π1, π2) :=
⊗′

v ̸∈S

Π+(π1,v, π2,v)⊗
⊗
v∈S

Π−(π1,v, π2,v).

Theorem 5.2.2. Let π1 ⊠ π2 be a cuspidal automorphic representation of GSO(V )(AF ), where π1 ̸∼= π2.
Then the automorphic multiplicity of ΠS(π1, π2) is given by:

mdisc(ΠS(π1, π2)) = mcusp(ΠS(π1, π2)) =

{
1, if |S| is even,

0, if |S| is odd.

The representations ΠS(π1, π2) constitute a full near equivalence class in the discrete spectrum of A(2)(GSp4(AF )).
They are not CAP, and are generic if and only if S = ∅. Moreoever, if |S| is even,

ΠS(π1, π2) = ΘVB ,W4
(πB1 ⊠ πB2 ),
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where B is the unique F -quaternion algebra ramified at the set of primes S and πBi are the Jacquet-Langlands
transfers of πi to B

×(AF ).

Proof. That ΠS(π1, π2) is not CAP is [38, Lemma 5.2]. The multiplicity formula, and the fact that ΠS(π1, π2)
is a full near equivalence class, is [38, Theorem 5.2]. The genericity assertion follows from [38, Theorems 4.1
and 4.5(c), Corollary 4.16]. The nonvanishing of the global theta lift is [38, Corollary 5.5]; note that, given
ΘVB ,W4(π

B
1 ⊠ πB2 ) ̸= 0, it is cuspidal if πB1 ̸= πB2 by [38, Theorem 4.3], and hence abstractly isomorphic to

ΠS(π1, π2) by Proposition 4.2.3. □

5.3. Yoshida lifts in cohomology.

5.3.1. Fix tuples m1 = (m1,v)v|∞ and m2 = (m2,v)v|∞ of integers such that m1,v ≥ m2,v + 2 ≥ 4 for all v
and all mi,v have the same parity. Let π1, π2 be cuspidal automorphic representations of GL2(AF ) of weights
m1 and m2, respectively, with equal central characters of infinity type ωmi

. For v|∞, the Yoshida lifts
Π±(π1,v, π2,v) of (5.2.1) form the discrete series L-packet of weight (ℓ1, ℓ2) on GSp4, where

ℓ1,v =
m1,v +m2,v

2
,

ℓ2,v =
m1,v −m2,v + 4

2
,

(52)

and ℓi = (ℓi,v)v|∞. More precisely, the restriction of Π−(π1,v, π2,v) to Sp4(Fv) is the direct sum of the
holomorphic and anti-holomorphic discrete series with Harish-Chandra parameters λ+ρ = (ℓ1,v−1, ℓ2,v−2)
and (2 − ℓ2,v, 1 − ℓ1,v). (Here, ρ = (2, 1) is the half-sum of the standard choice of positive roots for Sp4.)
The restriction of Π+(π1,v, π2,v) to Sp4(Fv) is the direct sum of two generic discrete series representations
with Harish-Chandra parameters λ+ ρ = (ℓ1,v − 1, 2− ℓ2,v) and (ℓ2,v − 2, 1− ℓ1,v).

For a set Sf of finite places of F at which πi are both discrete series, set

ΠSf
=

′⊗
v ̸∈Sf

v∤∞

Π+(π1,v, π2,v)⊗
⊗
v∈Sf

Π−(π1,v, π2,v).

We consider the local system V(ℓ1−3,ℓ2−3) of Q(m1,m2)-vector spaces on S(GSp4) according to the conven-
tions of §3.6 (the fields Q(mi) are defined in (3.7.1), and Q(m1,m2) is the compositum).

For each v|∞, let τ+ℓ1,v,ℓ2,v , resp. τ−ℓ1,v,ℓ2,v , be the unique irreducible representation of K2,v of central

character ω−1
mi,v

= ω−1
ℓi,v

whose restriction to U(2) has highest weight (ℓ2,v − 2,−ℓ1,v), resp. (ℓ1,v, 2 − ℓ2,v).
Similarly, let σ+

ℓ1,v,ℓ2,v
, resp. σ−

ℓ1,v,ℓ2,v
, be the unique irreducible representation of K2,v of central character

ω−1
mi,v

whose restriction to U(2) has highest weight (−ℓ2,v,−ℓ1,v), resp. (ℓ1,v, ℓ2,v). Note that the duals of the

K2,v-types τ
±
ℓ1,v,ℓ2,v

appear with multiplicity one in Π+(π1,v, π2,v), and the duals of the K2,v-types σ
±
ℓ1,v,ℓ2,v

appear with multiplicity one in Π−(π1,v, π2,v), cf. [10, Table 2.2.1].
For a subset S∞ ⊂ {v|∞} and a collection of signs ϵ = {ϵv}v|∞ , define the K2-representation

(53) τ ϵ
ℓ1,ℓ2,S∞

:=
⊗
v∈S∞

σϵvℓ1,v,ℓ2,v ⊗
⊗
v ̸∈S∞
v|∞

τ ϵvℓ1,v,ℓ2,v .

Thus τ ϵ
ℓ1,ℓ2,S∞

is dual to a K2-type of ΠS(π1, π2) with multiplicity one, if S∞ is the set of archimedean
places in S.

5.3.2. Now let (p(ϵ, S∞), q(ϵ, S∞)) be the plectic Hodge type determined by:

(54) (pv(ϵ, S∞), qv(ϵ, S∞)) =


(3, 0), ϵv = +, v ∈ S∞,

(2, 1), ϵv = +, v ̸∈ S∞,

(1, 2), ϵv = −, v ̸∈ S∞,

(0, 3), ϵv = −, v ∈ S∞.

Thus (p(ϵ, ∅), q(ϵ, ∅) = (p(ϵ) + 1, q(ϵ) + 1) in the notation of (3.7.1). An easy calculation shows that

(55) dimHomK2

(
τ ϵ
ℓ1,ℓ2,S∞

, V(ℓ1−3,ℓ2−3),C ⊗ ∧p(ϵ,S∞),q(ϵ,S∞)p∗GSp4

)
= 1.
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Hence, if S = Sf ⊔ S∞ is a finite set of places of F with |S| even, combining (30) and (55) yields a map
(well-defined up to a scalar):

(56) clϵS :
(
ΠS(π1, π2)⊗ τ ϵ

ℓ1,ℓ2,S∞

)K2 → H
p(ϵ,S∞),q(ϵ,S∞)
(2) (S(GSp4),V(ℓ1−3,ℓ2−3),C)[ΠSf

].

Proposition 5.3.3. The map clϵS is an isomorphism of G(AF,f )-representations, and moreover

Hp,q
(2) (S(GSp4),V(ℓ1−3,ℓ2−3),C)[ΠSf

] = 0

if (p, q) is not of the form (p(ϵ, S∞), q(ϵ, S∞)) for some S∞ such that |Sf ⊔ S∞| is even.

Proof. That clϵS is an injection follows from [35, Proposition 5.4] and the calculation of Casimir operators
for G, cf. [10, p. 67]. The surjectivity and the vanishing of other plectic Hodge types follows from (24),
Theorem 5.2.2, and the calculation of the nonvanishing (g,K2) cohomology groups:

dimH3,0(g,K2; Π
−
v (π1,v, π2,v)⊗ V(ℓ1,v−3,ℓ2,v−3),C) = dimH0,3(g,K2; Π

−
v (π1,v, π2,v)⊗ V(ℓ1,v−3,ℓ2,v−3),C) = 1,

dimH2,1(g,K2; Π
+
v (π1,v, π2,v)⊗ V(ℓ1,v−3,ℓ2,v−3),C) = dimH1,2(g,K2; Π

+
v (π1,v, π2,v)⊗ V(ℓ1,v−3,ℓ2,v−3),C) = 1.

The dimensions of these cohomology groups can be calculated from the main results of [35], and are also
recalled in [34, §1]. □

5.3.4. Finally, we relate the ΠSf
-isotypic parts of the L2 and singular cohomology.

Proposition 5.3.5. Assume Π is defined over E, where Q(m1,m2) ⊂ E ⊂ C. Then there exist GSp4(AF,f )-
equivariant isomorphisms

H∗
! (S(GSp4),V(ℓ1−3,ℓ2−3),E)[ΠSf

]⊗E C ≃ H∗
(2)(S(GSp4),V(ℓ1−3,ℓ2−3),C)[ΠSf

]

and

H∗
c (S(GSp4),V(ℓ1−3,ℓ2−3),E)[ΠSf

] ≃H∗(S(GSp4),V(ℓ1−3,ℓ2−3),E)[ΠSf
]

≃H∗
! (S(GSp4),V(ℓ1−3,ℓ2−3),E)[ΠSf

].

Proof. By Theorem 5.2.2,

H∗
cusp(S(GSp4),V(ℓ1−3,ℓ2−3),C)[ΠSf

] ≃ H∗
(2)(S(GSp4),V(ℓ1−3,ℓ2−3),C)[ΠSf

],

and the first statement follows by the discussion in [34, p. 293]. The second assertion is an immediate
consequence of Lemma 3.2.3 (and Poincaré duality), since ΠSf

is not Eisenstein. □

6. Periods of Yoshida lifts

6.1. The period problem.

6.1.1. Let π1 ⊠ π2 be a cuspidal automorphic representation of GSO(V )(AF ), and let π be an auxiliary
cuspidal automorphic representation of GL2(AF ) such that π∨ and πi have the same central character.
Consider the subgroup

H = GL2×Gm
GL2 ⊂ GSp4

and the period integral PS,π1,π2,π : ΠS(π1, π2)⊗ π → C defined by

(57) PS,π1,π2,π(α, β) =

∫
[ZH\H]

α(h, h′) · β(h) d(h, h′),

where H(AF ) ⊂ GSp4(AF ) is parameterized by pairs (h, h′) ∈ GL2(AF ) × GL2(AF ) such that det(h) =
det(h′). When π1, π2, and π are clear from context, we drop them from the notation PS,π1,π2,π. The goal
of this section is to calculate PS,π1,π2,π explicitly (Theorems 6.2.2 and 6.5.2). The result is applied to the
cohomology of Shimura varieties in the next section.

6.1.2. Of course, we must specify a Haar measure on [ZH\H] for (57) to be well-defined. Let C = A×,2
F F×\A×

F ,

and let dc be the Haar measure on C assigning volume 1 to the image of ÔF . As the measure on [ZH\H], we
take the measure induced by pullback from the surjection [SL2]× [SL2]× C ↠ [ZH\H]. The Haar measure
on SL2 is described in (2.2.2).
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6.1.3. Before we begin the calculation of (57), we explain the seesaw diagram that lies behind it:

GSp4 GSO(VB)×Gm
GSO(VB)

H GSO(VB)

Here B is the quaternion algebra ramified at S, the vertical lines are inclusions, and the diagonals are
similitude dual pairs inside GSp8; the diagram corresponds to the two decompositions

W4 ⊗ VB =W2 ⊗ VB ⊕W2 ⊗ VB
of W16. Since ΠS(π1, π2) is spanned by theta lifts θϕ(f1 ⊗ f2) for fi ∈ πBi , we wish to apply the formal
seesaw identity:

(58) ⟨θϕ(f1 ⊗ f2)|H , β ⊗ 1⟩H = ⟨f1 ⊗ f2, θϕ(β ⊗ 1)|GSO(VB)⟩GSO(VB),

Here β ⊗ 1 is the automorphic form (h, h′) 7→ β(h) on H. Now, the theta lift from H to GSO(VB) ×Gm

GSO(VB) is simply two copies of the theta lift from GL2 to GSO(VB); restriction to the diagonal amounts
to multiplying the theta lifts of β and 1 on GSO(VB). The theta lift of β to GSO(VB) will be a vector
in πB ⊠ πB , where πB is the Jacquet-Langlands transfer. However, the theta lift of the constant function
is formally divergent; to regularize it, we need a certain second-term Siegel-Weil formula. Ignoring this
technicality, the theta lift θϕ(β ⊗ 1) restricted to the diagonal GSO(VB) should be the product of a vector
in πB ⊠ πB and an Eisenstein series on GSO(VB). Of course, the Eisenstein series can only exist when B is
split, so (57) should vanish identically unless S = ∅. But when S = ∅, integrating θϕ(β⊗ 1) against the form
f1 ⊗ f2 gives a Rankin-Selberg integral that unfolds to an Euler product and ultimately an L-function.

Thus to compute PS,π1,π2,π, we first must dispatch the trivial case S ̸= ∅, and then study the theta lift
of both cusp forms and constant functions from GL2 to GSO(V ). This is the content of the next three
subsections.

6.2. Calculation of period integral: trivial case.

6.2.1. The trivial case S ̸= ∅ can be handled easily:

Theorem 6.2.2. If S ̸= ∅, then PS is identically zero.

Proof. Let B be the quaternion algebra over F ramified exactly at S (recall |S| is even). By Theorem 5.2.2,
it suffices to show the vanishing of all integrals of the form

I(ϕ, g, f) =

∫
[ZH\H]

θϕ(g)(h, h
′) · f(h) d(h, h′),

for ϕ ∈ SA(⟨e2, e4⟩ ⊗ B) and g ∈ πB1 ⊠ πB2 . Let us fix a place v at which B ramifies, and a Schwartz
function ϕv ∈ SAF

v (W2 ⊗ B). Then, holding the other data f, g fixed as well, consider the linear map
Iv : SFv

(W2 ⊗B)→ C defined by

(59) ϕv 7→ I(ϕv ⊗ ϕv, f, g).
Now Iv clearly factors through the maximal quotient Q of SFv (W2 ⊗ B) = SFv (B ⊕ B) on which {1} ×
SL2(Fv) ⊂ H(Fv) ⊂ GSp4(Fv) acts trivially. We claim this quotient is trivial. Indeed, the action of the
Borel subgroup of {1} × SL2(Fv) is explicitly described by:

ω

(
1×

(
1 n
0 1

)
, 1

)
ϕv(b1, b2) = ψ

(
1

2
nN(b2)

)
ϕv(b1, b2)

ω

(
1×

(
a 0
0 a−1

)
, 1

)
ϕv = |a|2ϕv(b1, ab2).

(60)

Since Bv is anisotropic, it follows from the first equation that SFv
(W2 ⊗ B) → Q factors through ϕv 7→

ϕv(b1, 0); then the second equation implies Q = 0. Therefore Iv is identically zero for all choices of (ϕv, f, g),
and in particular (since the adelic Schwartz space is generated by factorizable Schwartz functions) all the
period integrals I(ϕ, f, g) vanish as well. □

6.3. Lifts of cuspidal representations from GL2 to GSO(V ).
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6.3.1. Since V is split, the Weil representation for the pair (W2, V ) has the alternate model given by the
complete polarization V = V1 ⊕ V2, where

(61) V1 =

(
x y
0 0

)
, V2 =

(
0 0
z w

)
.

6.3.2. Let π be a cuspidal automorphic representation of GL2(AF ). It is well-known that the theta lift
Θ(π) ⊂ A0(GSO(V )(AF )) is isomorphic to the automorphic representation π ⊠ π of GSO(V )(AF ); for
instance, this follows from strong multiplicity one for GL2 and a calculation of local Langlands parameters
analogous to Proposition 4.3.3(1). To obtain our ultimate period formula, we will require the following
calculation:

Lemma 6.3.3. Let ϕ = ⊗vϕv ∈ SA(⟨e2⟩ ⊗W ) and f = ⊗vfv ∈ π be factorizable vectors, and choose a
factorization

Wψ,f (h) =
∏
v

Wf,v(hv), h = (hv) ∈ GL2(AF )

of the global Whittaker function of f (so that Wf (hv)(1) = 1 for almost all v). Then the Whittaker coefficient
of θϕ(f) along the standard unipotent subgroup N ×N ⊂ pZ(GL2×GL2) is given by:

θϕ(f)(g)N×N,ψ−1×ψ−1 =
∏
v

(∫
SL2(Fv)

Wf,v(hvhcv )ω(hvhcv , g)ϕ̂(1, 0, 0,−1) dhv

)
,

c = (cv) = det(g).

Proof. We compute in two steps. First, for (h, g) ∈ R0(AF ),

θ(h, g;ϕ)N×1,ψ−1×1 =

∫
[N ]

∑
x∈W⊗V2

ω(h, ng)ϕ̂(x)ψ(n) dn

=

∫
F\AF

∑
(z1,w1,z2,w2)

ψ(a(w2z1 − z2w1))ω(h, g)ϕ̂(z1, w1, z2, w2)ψ(a) da

=
∑

(z1,w1,z2,w2)
z1w2−w1z2=−1

ω(h, g)ϕ̂(x)

=
∑

γ∈SL2(F )

ω(γh, g)ϕ̂(1, 0, 0,−1).

Here dn is the Haar measure on N such that [N ] has volume 1. Now, using the identity

ω(nh, g)ϕ̂(1, 0, 0,−1) = ω(h,pZ(1, n)g)ϕ̂(1, 0, 0,−1), (g, h) ∈ R0, n ∈ N(A),

we obtain:

θϕ(f)(g)N×N,ψ−1×ψ−1 =

∫
[N ]

∫
[SL2]

θ(hhc,pZ(1, n)g;ϕ)N×1,ψ−1×1ψ(n)f(hhc) dhdn

=

∫
[N ]

∫
SL2(A)

ω(hhc,pZ(1, n)g)ϕ̂(1, 0, 0,−1)ψ(n)f(hhc) dhdn

=

∫
[N ]

∫
SL2(A)

ω(hhc, g)ϕ̂(1, 0, 0,−1)ψ(n)f(n−1hhc) dndh

=

∫
SL2(A)

ω(hhc, g)ϕ̂(1, 0, 0,−1)Wψ,f (hhc) dh,

which gives the lemma. □

6.4. A Siegel-Weil identity for GSO(V ).
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6.4.1. Degenerate principal series for GSO(V ). The maximal isotropic subspace V1 ⊂ V of (61) has stabilizer

(62) P = pZ(B ×GL2) ⊂ GSO(V ).

Let v be a place of F , and consider the (normalized) induced representation

Iv(s) = Ind
GO(V )(Fv)
P (Fv)

δsP1
.

We also consider the induced representations Iv(s) = Ind
GL2(Fv)
B(Fv)

δsB . Let τ ∈ GO(V )(Fv) be an element such

that:

(63) τ2 = 1 and τpZ(g1, g2)τ = pZ(g2, g1).

Then the representations Iv(s) and Iv(s) are related by the following observation.

Proposition 6.4.2. The map

Mv : Iv(s)→ Iv(s)⊕ Iv(s)

defined by

Mv(φ)(g) = (φ(pZ(g, 1)), φ(τpZ(1, g)))

is a linear isomorphism and an intertwining map of GL2(Fv)×GL2(Fv) representations, if GL2(Fv)×GL2(Fv)
acts on the left through the quotient GL2(Fv) × GL2(Fv) ↠ GSO(V )(Fv) and on the right through the first
(resp. second) projection on the first (resp. second) factor.

Then by the well-known theory of principal series for GL2, we deduce:

Corollary 6.4.3. For all places v, the representation Iv(1/2) has a unique irreducible subrepresentation,
and the corresponding quotient is the direct sum of the trivial character and the sign character of GO(V )(Fv).

6.4.4. Let I0
v (1/2) be the kernel of the projection from Iv(1/2) to the sign character.

Consider the map

[·] : SFv
(⟨e2⟩ ⊗ V )→ Iv(1/2)

defined by

[ϕ](g) = ω(hν(g), g)ϕ̂(0).

A standard calculation shows that [·] is equivariant for the action of R′
0(Fv) ⊂ GL2(Fv) × GO(V )(Fv) on

both sides, where R′
0(Fv) acts on Iv(1/2) through the projection R′

0 ↠ GO(V ). We may then extend [ϕ] to
a holomorphic section [ϕ](s) ∈ Iv(s) by requiring the restriction of [ϕ](s) to the maximal compact subgroup
K0 ⊂ GO(V )(Fv) to be independent of s.

Lemma 6.4.5. For any place v of F :

(1) The image of ϕ 7→ [ϕ] is I0
v (1/2).

(2) We have dimHomSL2(Fv)×SO(Fv)(SFv (⟨e2⟩ ⊗ V ),C) = dimHomR′
0(Fv)(SFv (⟨e2⟩ ⊗ V ),C) = 1.

Proof. Suppose first that v is nonarchimedean. Then (1) follows from comparing [7, Proposition 5.2(iii)]
with Corollary 6.4.3. By [29, Theorem II.1.1], [·] realizes its image as the maximal quotient of SFv

(⟨e2⟩⊗V )
on which SL2(Fv) acts trivially, so (2) follows from (1).

Now suppose v is archimedean, and let SFv (⟨e2⟩ ⊗ V )SL2(Fv) be the maximal quotient on which SL2(Fv)
acts trivially. By [13, Theorem 1A], SFv

(⟨e2⟩ ⊗ V )SL2(Fv) has a unique irreducible quotient ρ; moreover, the
proof of this theorem in §4 of op. cit. implies that ρ contains a spherical vector for the maximal compact
subgroup of O(V )(Fv). (For the latter claim, see also [13, §7(b)] and the explicit description of the K-
type correspondence in [10, Proposition 4.2.1].) Since SFv (⟨e2⟩ ⊗ V )SL2(Fv) surjects onto the image of [·] by
definition, we conclude that the image of [·] is contained in I0

v (1/2) and contains a spherical vector, hence
(1) holds. Finally, (2) is immediate from (1), Corollary 6.4.3, and the fact that SFv

(⟨e2⟩ ⊗ V )SL2(Fv) has a
unique irreducible quotient. □
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6.4.6. Eisenstein series on GSO(V ). Let I(s) = Ind
GO(V )(AF )
P (AF ) δsP be the global parabolic induction, and for

holomorphic sections φ(s) ∈ I(s) consider the Eisenstein series:

(64) E(g, s;φ) =
∑

γ∈P (F )\GO(V )(F )

φ(s)(γg), g ∈ GSO(V )(AF ),

which converges for ℜ(s)≫ 0. We also consider I(s) = Ind
GL2(AF )
B(AF ) δsB and, for holomorphic sections φ(s) ∈

I(s), the corresponding family of Eisenstein series:

(65) E(g, s;φ) =
∑

γ∈B(F )\GL2(F )

φ(s)(γg), g ∈ GL2(AF ).

Let

M = (M1,M2) : I(s)→ I(s)⊕ I(s)
be the intertwining map given by

M1(φ)(g) = φ(pZ(g, 1))

M2(φ)(g) = φ(τpZ(1, g)),
(66)

where τ ∈ O(V )(F ) satisfies (63). This is a restricted tensor product of local maps Mv = (M1,v,M2,v).

Proposition 6.4.7. We have

E(pZ(g1, g2); s, φ) = E(g1; s,M1(φ)) + E(g2; s,M2(φ))

as functions on C×GL2(AF )×GL2(AF ) for ℜ(s)≫ 0 and holomorphic sections φ ∈ I(s). □

By Proposition 6.4.7 and the well-known theory of Eisenstein series for GL2, E(g, s;φ) has a meromorphic
continuation to s ∈ C, with at most a simple pole at s = 1

2 . Let

(67) [·] : SAF
(⟨e2⟩ ⊗ V )→ I(1/2)

be the tensor product of the local maps, and similarly for [·](s). For each ϕ ∈ SAF
(⟨e2⟩ ⊗ V ), we consider

the Laurent series expansion:

(68) E(g, s; [ϕ]) =
A−1(g;ϕ)

s− 1
2

+A0(g;ϕ) + · · · , g ∈ GSO(V )(AF ).

Lemma 6.4.8. For each ϕ, A−1(g;ϕ) is a constant function of g. Moreover, the linear map

A0 : SAF
(⟨e2⟩ ⊗ V )→ A(GSO(V )(AF ))

is an R0(AF )-intertwining operator modulo constant functions.

Proof. The first claim is immediate from Proposition 6.4.7. For the second, the proof of [7, Proposition 6.4]
applies almost verbatim, taking into account Lemma 6.4.5(1). □

6.4.9. The spherical Eisenstein series. Let φ0(s) ∈ I(s) be the unique GL2(ÔF ) · SO(2)-spherical section
such that φ0(s)(1) = 1, and let

(69) E0(g, s) := E(g, s;φ0)

be the resulting Eisenstein series on GL2(AF ). We record the following:

Proposition 6.4.10. The residue of E0(h, s) at s =
1
2 is given by:

κ =
πdRess=1 ζF (s)

2|DF |
1
2 ζF (2)

.

Proof. Although this is standard, we give a sketch for the reader’s convenience. In the Fourier expansion of
E0(h, s), the non-constant Fourier coefficients are holomorphic. We therefore wish to calculate

Ress= 1
2

1

Vol([N ])

∫
[N ]

E0(n, s) dn,
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where dn is the Haar measure on N(AF ) induced by the identification N(AF ) ≃ AF and (2.1.1). Unfolding,
we obtain (using the Bruhat decomposition of GL2):

1

Vol([N ])

∫
[N ]

E0(n, s) dn =
1

Vol([N ])

∫
[N ]

∑
γ∈B(F )\GL2(F )

φ0(s)(γn) dn

=
1

Vol([N ])

∫
[N ]

φ0(s)(n) dn+
1

Vol([N ])

∫
[N ]

∑
a∈N(Q)

φ0(s)(w0an) dn

=
1

Vol([N ])

∫
[N ]

φ0(s)(n) dn+
1

Vol([N ])

∫
N(AF )

φ0(s)(w0n) dn,

where

w0 =

(
0 1
−1 0

)
is the Weyl element. The first term is holomorphic in s, so we may discard it and compute:

1

Vol([N ])

∏
v

∫
N(Fv)

φ0(s)(w0nv) dnv,

where dnv is the standard Haar measure assigning volume one to Ov. By the Gindikin-Karpelevich formula
(e.g. [4, Chapter 7]), this product is

1

Vol([N ])

(√
π
Γ(s− 1/2)

Γ(s)

)d∏
v∤∞

1− q−2s−1
v

1− q−2s
v

=
1

Vol([N ])

(√
π

Γ(s)

Γ(s+ 1/2)

)d
ζF (2s)

ζF (2s+ 1)
.

Taking residue at s = 1
2 , we obtain

κ =
πdRess=1 ζF (s)

2Vol([N ])ζF (2)
.

Finally, we may calculate

Vol([N ]) = Vol(F\AF /ÔF ) = Vol(Rd/OF ) = |DF |
1
2

by strong approximation. □

6.4.11. Regularized theta integrals. We now recall the regularization, due to Kudla and Rallis [20], of the
(non-convergent) theta integral

g 7→
∫
[SL2]

θ(h1hν(g), g;ϕ) dh1, g ∈ GSO(V )(AF ),

where ϕ ∈ SAF
(⟨e2⟩ ⊗ V ). The first step of the regularization is to define a certain central element z of the

universal enveloping algebra of sl2; for the precise definition, see [20, §5.1]. Kudla-Rallis’ regularized theta
integral (adapted to the similitude case) is then:

I(g, s;ϕ) :=
1

κ · (4s2 − 1)

∫
[SL2]

θ(g, h1hν(g);ω(z)ϕ)E0(h1, s) dh1,

g ∈ GSO(V )(AF ).
(70)

(The factor of 4s2 − 1 is designed to cancel the effect of ω(z), cf. [20, §5.5]. Our normalization of s differs
from loc. cit. by a factor of two.) The regularized integral I(g, s;ϕ) is a meromorphic function of s whose
poles coincide with the poles of E0(h1, s). The Laurent expansion about s = 1

2 has the form:

(71) I(g, s;ϕ) =
B−2(g, ϕ)(
s− 1

2

)2 +
B−1(g, ϕ)

s− 1
2

+B0(g, ϕ) + · · ·

By definition, the linear maps

(72) Bd : SAF
(⟨e2⟩ ⊗ V )→ A(GSO(V )(AF ))

are GSO(V )(AF )-equivariant, where g ∈ GSO(V )(AF ) acts on the left by ϕ 7→ ω(hν(g), g)ϕ.
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Theorem 6.4.12 (Gan-Qiu-Takeda). For all ϕ ∈ SAF
(⟨e2⟩ ⊗ V ) and all g ∈ GSO(V )(AF ), we have:

B−2(g, ϕ) = Vol([SL2])A−1(g, ϕ)

B−1(g, ϕ) = Vol([SL2])A0(g, ϕ) + C(ν(g), ϕ),

where the volume of [SL2] is taken with respect to dh1, and C(ν(g), ϕ) ∈ C is a constant.

Proof. Fix ϕ; it follows immediately from [7, Theorem 1.2] that the identities hold for all g ∈ SO(V )(AF ),
and for some constant C(1, ϕ). By Lemma 6.4.8, A−1(·, ϕ) is constant, so the map ϕ 7→ B−2(1, ϕ) defines
an SL2(AF ) × SO(V )(AF )-invariant linear functional on SAF

(⟨e2⟩ ⊗ V ). In particular, ϕ 7→ B−2(1, ϕ) is
invariant for R0(AF ) by Lemma 6.4.5(2), and we conclude that B−2(g, ϕ) is a constant function of g, so the
first identity holds.

For the second identity, for all a ∈ A×
F , fix ga ∈ GSO(V )(AF ) with ν(ga) = a. Then by Lemma 6.4.8, for

all g ∈ GSO(V )(AF ) with ν(g) = a we have

(73) A0(g, ϕ) = A0(gg
−1
a , ω(ha, ga)ϕ) + C1(a, ϕ)

for some constant C1(a, ϕ); similarly, because B−2 is constant, B−1 is an intertwining operator modulo
constants, and in particular we have

(74) B−1(g, ϕ) = B−1(gg
−1
a , ω(ha, ga)ϕ) + C2(a, ϕ)

for some constant C2(a, ϕ). Combining (73) and (74) with the identity for isometry groups gives

B−1(g, ϕ) = Vol([SL2]) (A0(g, ϕ)− C1(a, ϕ)) + C(1, ω(ha, ga)ϕ) + C2(a, ϕ)

for all g with ν(g) = a, which proves the theorem. □

6.5. Calculation of the period: nontrivial case.

6.5.1. We now assume that S = ∅, so that Π = Π∅(π1, π2) is generic, and compute P∅,π1,π2,π.

Theorem 6.5.2. (1) Choose vectors ϕ1 ∈ SAF
(⟨e2⟩ ⊗ V ), ϕ2 ∈ SAF

(⟨e4⟩ ⊗ V ), α ∈ π1 ⊠ π2, and β ∈ π.
Then:

P∅,π1,π2,π(θϕ1⊗ϕ2
(α), β) = Vals= 1

2

∫
[PGSO(V )]

E(g, s; [ϕ2])α(g)θϕ1
(β)(g) dg,

where PGSO(V )(AF ) = PGL2(AF )× PGL2(AF ) is given the product Haar measure.
(2) P∅,π1,π2,π is identically zero unless π is isomorphic to either π∨

1 or π∨
2 .

(3) Suppose we are given factorizations:

ϕ1 = ⊗vϕ1,v ∈ SAF
(V ), ϕ2 = ⊗vϕ2,v ∈ SAF

(V ),

α = ⊗vαv ∈ π1 ⊠ π2, β = ⊗vβv ∈ π∨
2 ,

along with decompositions of the global Whittaker functions:

αN×N,ψ×ψ(g) =
∏
v

Wα,v(gv), g = (gv) ∈ GSO(V )(AF ),

βN,ψ(h) =
∏
v

Wβ,v(hv), h = (hv) ∈ GL2(A).

Then for a sufficiently large finite set of primes S, we have:

P∅(θϕ1⊗ϕ2
(α), β) = 2|DF |

1
2 · π−dL

S(1, π1 × π∨
2 )L

S(1,Adπ2)

ζSF (2)

∏
v∈S

Zv(ϕ1,v, ϕ2,v, αv, βv)
1− q−1

v

where Zv(ϕ1,v, ϕ2,v, αv, βv) is the local zeta integral:∫
(N×N\PGSO(V ))(Fv)

∫
SL2(Fv)

Wα,v(g)Wβ,v(h1hc)ω(h1hc, g)ϕ̂1,v(1, 0, 0,−1)φ0(g2)M1,v[ϕ2,v](g1) dh1 dg

c = det(g1g2), g = pZ(g1, g2).

(75)

Here φ0(g2) is the standard spherical section of I(1/2).
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(4) The L-values LS(1, π1 × π∨
2 ) and LS(1,Adπ2) are nonzero. Moreover, for each place v, there exist

choices of ϕi,v, αv, and βv such that

Zv(ϕ1,v, ϕ2,v, αv, βv) ̸= 0.

Proof. First, fix the Haar measure dg on SO(V )(AF ) such that, under the surjective natural map [SO(V )]×
C → [PGSO(V )] = [PGL2]× [PGL2], the Haar measure on [PGL2]× [PGL2] induced from (2.2.2) pulls back
to dg dc. We expand:

(∗) P∅,π1,π2,π (θϕ1⊗ϕ2
(α), β) =

∫
[ZH\H]

θϕ1⊗ϕ2
(α)(h, h′)β(h) dh,

which by definition is:

(∗) =
∫
[ZH\H]

∫
[GSO(V )ν(h)]

θ(h, g;ϕ1)θ(h
′, g;ϕ2)α(g)β(h) dg d(h, h

′)

=

∫
C

∫
[SL2]

∫
[SO(V )]

∫
[SL2]

θ(hhc, ggc;ϕ1)θ(h
′hc, ggc;ϕ2)α(ggc)β(h) dhdg dh

′ dc

=

∫
C

∫
[SL2]

∫
[SO(V )]

θ(h′hc, ggc;ϕ2)θϕ1
(β)(ggc)α(ggc) dg dh

′ dc.

Now, by the reasoning of [20, §5.5], the latter integral is equal to the residue at s = 1
2 of:

1

κ · (4s2 − 1)

∫
C

∫
[SL2]

∫
[SO(V )]

θ(hhc, ggc;ω(z)ϕ2)E0(h, s)α(g)θϕ1
(β)(ggc) dg dhdc,

which is meromorphic for ℜ(s)≫ 0. Here κ is as in Proposition 6.4.10. Now, by the principle of meromorphic
continuation, we may interchange the integrals over SL2 and SO(V ), and obtain:

(∗) =
∫
[PGSO(V )]

B−1(g, ϕ2)α(g)θϕ1
(β)(g) dg

= Vals= 1
2

∫
[PGSO(V )]

E(g, s; [ϕ2])α(g)θϕ1
(β)(g) dg,

by Theorem 6.4.12 and the cuspidality of α. This is (1). For (2), since θϕ1
(β)(g) lies in the automorphic

representation π′ ⊠ π′ of GSO(V )(AF ), it is a linear combination of functions of the form

pZ(g1, g2) 7→ f1(g1)f2(g2), fi ∈ π′.

Combining this observation with Proposition 6.4.7, it follows that (∗) is a linear combination of integrals of
the form

Vals= 1
2

∫
[PGL2 ×PGL2]

E(g1, s;M1[ϕ2])α(pZ(g1, g2))f1(g1)f2(g2) dg1 dg2,

Vals= 1
2

∫
[PGL2 ×PGL2]

E(g2, s;M2[ϕ2])α(pZ(g1, g2))f1(g1)f2(g2) dg1 dg2.

(76)

These clearly both vanish unless f2 lies in either π∨
1 or π∨

2 , which proves (2). In order to prove (3), suppose
π = π∨

2 . We replace (∗) with an equivalent integral that can be unfolded:

(∗) = 1

κ
Ress= 1

2

∫
[PGSO(V )]

E(g1, s;M1[ϕ2])E0(g2, s)α(g)θφ1
(β)(g) dg, g = pZ(g1, g2)

=
1

κ
Ress= 1

2

∫
N(A)×N(A)\PGSO(V )(A)

M1[ϕ2](s)(g1)φ
0(s)(g2)αN×N,ψ×ψ(g)θφ1

(β)N×N,ψ−1×ψ−1(g) dg.

This factors into an Euler product

(∗) = 1

κ
Ress= 1

2

∏
v

Zv(s, ϕ1,v, ϕ2,v, αv, βv),
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where the local zeta integrals are (applying Lemma 6.3.3):∫
(N×N\PGSO(V ))(Fv)

∫
SL2(Fv)

Wα,v(g)Wβ,v(h1hc)ω(h1hc, g)ϕ̂1(1, 0, 0,−1)φ0(g2)M1[ϕ2](g1) dh1 dg

c = det(g1g2), g = pZ(g1, g2).

(77)

At an unramified place v such that Wα,v, Wβ,v, ϕi,v are all the standard spherical vectors, the inner integral∫
SL2(Fv)

Wβ,v(h1hc)ω(h1hc, g)ϕ̂1(1, 0, 0,−1) dh1

is exactly the standard spherical Whittaker function for π∨
2 ⊠ π∨

2 , by the unramified theta correspondence.
Then, the standard Rankin-Selberg calculations (see e.g. [15, Proposition 2.3]) show that we have the Euler
factor

Zv(s, ϕ1,v, ϕ2,v, αv, βv) =
Lv(s+

1
2 , π1 ⊠ π∨

2 )Lv(s+
1
2 , π2 ⊠ π∨

2 )

1− q−2
v

.

Now the formula (3) follows by comparing with Proposition 6.4.10. The non-vanishing of the L-values in (4)
is well-known; see for instance [33] and [12]. The non-vanishing of the local zeta integrals at ramified places
also follows from the non-vanishing for Rankin-Selberg local zeta integrals, cf. [16]. □

7. Proof of main result: special cycles in the generic case

In this section, we apply the results of §6 to the cohomology of Shimura varieties. Since the Schwartz
functions at the Archimedean places must be chosen rather carefully to obtain automorphic forms that
contribute to cohomology, we begin with several local calculations.

7.1. Archimedean calculations.

7.1.1. We first establish some general conventions for the local Weil representation for the pair (V,W2n) over
R, where V = VM2

. Fix coordinates on W2n ⊗ V by:

(x1, · · · , x2n)←→
∑

ei ⊗ xi,

xi = (xi, yi, zi, wi)←→
(
xi yi
zi wi

)
.

(78)

LetKn ⊂ G = GSp2n,R be as in (2.3.2), let H = GSO(V ), let R0 be as in (4.1.1), and let L = ZH ·pZ(SO(2)×
SO(2)) ⊂ H(R). Also let L1 ⊂ L be the kernel of νH restricted to L, so that L1 = pZ(SO(2)× SO(2)). For
any integers m1,m2 with m1 ≡ m2 (mod 2), let χm1,m2 be the character of L which is given by ω−1

m1
= ω−1

m2

on ZH and by χm1
⊠ χm2

on L1. Finally let (K × L)0 = (K × L) ∩R0.

7.1.2. Let S0(n) ⊂ SFv (⟨e2, · · · , e2n⟩ ⊗ V ) be the subspace of Schwartz functions of the form

ϕ(x2, · · · , x2n) = p(x2, · · · , x2n) exp(−π(|x2|2 + · · ·+ |x2n|2),

where p is a polynomial, and let S0
d(n) ⊂ S0(n) be the subset such that p is homogeneous of degree d. As a

(r0, (Kn×L)0)-module, S0(n) is isomorphic to the Fock space F(n) of complex polynomials in 4n variables,
see [13, §2]; the isomorphism does not preserve degrees, but it does carry S0

≤d(n) = ⊕i≤dS0
i (n) isomorphically

onto F≤d(n), the subspace of polynomials of degree less than or equal to d. The following proposition is the
key fact we will need about the structure of the (Kn × L)0-module S0

≤d(n).

Proposition 7.1.3. (1) Suppose the U(n)-representation of highest weight (a1, · · · , an) appears in S0
≤d(n).

Then |a1|+ · · ·+ |an| ≤ d.
(2) If m1 ≡ m2 (mod 2) are integers such that m1 = ±m2 if n = 1, define

a =
|m1 +m2|

2
, b =

|m1 −m2|
2

,

and let τ be the unique representation of Kn whose restriction to R× is ω−1
m and which has weight

(a, 0, · · · , 0,−b) when restricted to U(n). Then

dim
(
S0
≤a+b(n)⊗ τ ⊗ χ∨

m1,m2

)(Kn×L)0
= 1.
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Proof. This follows from [10, Proposition 4.2.1]; see Remark 3.2.2 of op. cit. to translate the O(2) × O(2)
parameters into pZ(SO(2)× SO(2))-parameters. □

In our calculations below, we will need two explicit Schwartz functions, described by the next two propo-
sitions.

Proposition 7.1.4. Suppose n = 1 and m ≥ 0, and choose ϵ ∈ {±1}. Then:

(1) A generator for the one-dimensional space

(S0
≤m(1)⊗ χϵm ⊗ χ∨

m,ϵm)(K1×L)0

is given by
ϕϵm(x, y, z, w) := (x+ ϵiy + iz − ϵw)m exp(−π|x|2).

(2) If m ≥ 2 and πm is the discrete series representation of GL2(R) of weight m ≥ 2, then the local theta
correspondence yields a map

S(⟨e2⟩ ⊗ V ) ↠ (πm ⊠ πm)∨ ⊠ πm

of R0(R)-representations, under which ϕϵm has nontrivial image.

Proof. For (1), it suffices to show that for all

(k,pZ(k1, k2)) ∈ U(1)× pZ(SO(2)× SO(2)) ⊂ SL2(Fv)× SO(V )(Fv),

we have:
ω(k,pZ(k1, k2))ϕ

ϵ
m = χ−ϵm(k)χm(k1)χϵm(k2)ϕ

ϵ
m.

The action of pZ(SO(2)× SO(2)) can be checked directly.
For the action of U(1) ⊂ SL2, we calculate on the Lie algebra level using the following formulas for

differential dω of the Weil representation:

dω

((
0 0
1 0

)
, 0

)
=

1

2πi

(
∂2

∂z∂y
− ∂2

∂w∂x

)
,

dω

((
0 1
0 0

)
, 0

)
= 2πi(xw − yz).

Since

dω

((
0 1
−1 0

)
, 0

)
ϕϵm = −imϵϕϵm,

(1) follows.
For (2), the local theta correspondence between GSp2(R) = GL2(R) and GSO(V ) is well-known, see

e.g. [10, Proposition 4.4.2], and the non-vanishing of the image of ϕϵm follows from the discussion in [13, p.
545]. □

Proposition 7.1.5. Let m ≥ 0 be an even integer. Then the Schwartz function

ϕ0m :=
(
(x+ iz)2 + (y + iw)2

)m
2 exp(−π|x|2) ∈ S0

m(1)

satisfies
ω(k,pZ(k1, k2))ϕ

0
m = χm(k1)ϕ

0
m.

Proof. This is a direct calculation, similar to Proposition 7.1.4. □

7.1.6. For the remainder of this subsection, fix n = 2. We now define the vector-valued Schwartz functions
adapted to constructing cohomology classes on Shimura varieties as in §3, and compute a related local zeta
integral. As in (5.3.1), let m1 ≥ m2 ≥ 2 be integers such that m1 ≡ m2 (mod 2), and let

ℓ1 =
m1 +m2

2
,

ℓ2 =
m1 −m2 + 4

2
.

Fix a choice of sign ϵ ∈ {±}, and let τ ϵℓ1,ℓ2 be the representation of K2 defined in (5.3.1). Let φϵm1,m2
be a

generator of the one-dimensional space(
S0
≤m1

(2)⊗ τ ϵℓ1,ℓ2 ⊗ χ
∨
m1,−ϵm2

)(K2×L)0
.
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We denote by φϵm1,m2
∈ S0

≤m1
(2) the projection to the component of τ ϵℓ1,ℓ2 of weight (−ϵm2, 0) for the

maximal torus of U(2). Both φϵm1,m2
and φϵm1,m2

are well-defined only up to scalar.

Remark 7.1.7. In practice, it would suffice to make a single choice of ϵ at this point; we have included
both for maximum clarity and for the convenience of the reader.

Calculating φϵm1,m2
explicitly would be highly tedious; a convenient shortcut is given by the following

proposition.

Proposition 7.1.8. Let πmi
denote the discrete series representation of GL2(R) of weight mi and central

character ωmi
. Then under the canonical projection

S0
≤m1

(2)→ (πm1 ⊠ πm2)
∨ ⊠Π+(πm1 , πm2)

arising from the archimedean local theta correspondence, the image of ϕ−ϵm2
⊗ ϕ0m1−m2

lies in the linear span
of the image of φϵm1,m2

.

In fact, both images are nontrivial; see Remark 7.1.10.

Proof. By Propositions 7.1.4 and 7.1.5, ϕ−ϵm2
⊗ϕ0m1−m2

is a vector of weight (m1,−ϵm2) for pZ(SO(2)×SO(2))
and of weight (ϵm2, 0) for the maximal torus of U(2). Since the pZ(SO(2)×SO(2))-type (m1,−ϵm2) appears
with multiplicity one in πm1

⊠πm2
, and since the dual of τ ϵℓ1,ℓ2 appears with multiplicity one in Π+(πm1

, πm2
),

it suffices to show that the only U(2)-type appearing in both

U(2) ·
(
ϕ−ϵm2
⊗ ϕ0m1−m2

)
⊂ S0

≤m1
(2)

and Π+(πm1 , πm2) is τ
ϵ
ℓ1,ℓ2
|U(2). Indeed, if a U(2)-type of highest weight (a, b) appears in U(2)·

(
ϕ−ϵm2
⊗ ϕ0m1−m2

)
,

then we have |a|+ |b| ≤ m1 (Proposition 7.1.3), a+ b = ϵm2, and a ≥ ϵm2 ≥ b. Hence the possible (a, b) are:

(79) (a, b) =

{
(m2, 0), (m2 + 1,−1), . . . , (ℓ1, 2− ℓ2), ϵ = +,

(0,−m2), (1,−m2 − 1), . . . , (ℓ2 − 2,−ℓ1), ϵ = −.

On the other hand, recall that Π+(πm1
, πm2

)|Sp4(R) is a direct sum of two discrete series representations, with
Harish-Chandra parameters λ+ ρ = (ℓ1,v − 1, 2− ℓ2,v) and (ℓ2,v − 2, 1− ℓ1,v). By the Blattner formula [11],
it follows that the only U(2)-types in (79) that can appear in Π+(πm1 , πm2) are (ℓ1, 2− ℓ2) and (ℓ2−2,−ℓ1),
precisely the duals of τ ϵℓ1,ℓ2 . □

Finally, for our later applications, we now calculate an archimedean local zeta integral related to ϕ−ϵm2
⊗

ϕ0m1−m2
. For each integer n ≥ 2 and pair of signs ϵ, δ ∈ {±}, let W ϵ

n,ψδ be the normalized weight ϵn vector

in the ψδ-Whitaker model of the discrete series representation of GL2(R) of weight n; thus

(80) W ϵ
n,ψδ

(
ϵδt1/2 0

0 t−1/2

)
= tn/2e−2πt, W ϵ

n,ψδ

(
−ϵδt1/2 0

0 t−1/2

)
= 0, ∀t > 0,

see [27, Proposition 3.2.1].

Proposition 7.1.9. With notation as above, let v|∞ be a place of F and identify Fv ≃ R. Then

Zv
(
ϕ−ϵm2

, ϕ0m1−m2
,W−

m1,ψ
⊗W ϵ

m2,ψ,W
−ϵ
m2,ψ

)
̸= 0.

Proof. First, we consider the inner integral for Zv
(
ϕ−ϵm2

, ϕ0m1−m2
,W−

m1,ψ
⊗W ϵ

m2,ψ
,W−ϵ

m2,ψ

)
:

I(g1, g2) =

∫
SL2(Fv)

ω(h1hc,pZ(g1, g2))ϕ̂
−ϵ
m2

(1, 0, 0,−1)W−ϵ
m2,ψ

(h1hc) dh1,

c = det(g1) det(g2).

(81)

Because the proof of Lemma 6.3.3 identifies I(g1, g2) with a local Whittaker function in the discrete series
representation πm2 ⊠ πm2 , by Proposition 7.1.4 we have

(82) I(g1, g2) = λW+
m2,ψ−1(g1)W

−ϵ
m2,ψ−1(g2)

for a scalar λ ̸= 0.
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By the equivariance properties of ϕ0m1−m2
,

M1,v[ϕ
0
m1−m2

] ∈ Ind
PGL2(R)
B(R) | · |1/2

is a section of weight m1 −m2 for SO(2). Thus it is determined by:

(83) µ :=M1,v[ϕ
0
m1−m2

](1) =

∫
ϕ0m1−m2

(x, y, 0, 0) dxdy =

(
m1−m2

2

)
!

π
m1−m2

2

̸= 0.

Now, our local zeta integral is given by

(84) λ

(∫
N\PGL2(Fv)

W−
m1,ψ

(g1)M1,v[ϕ
0
m1−m2

](g1)W
+
m2,ψ−1(g1) dg1

)

·

(∫
N\PGL2(Fv)

W ϵ
m2,ψ(g2)W

−ϵ
m2,ψ−1(g2)φ

0(g2) dg2

)
.

Since both integrands are right SO(2)-invariant, and since the Haar measure on PGL2(R) is given by

dg =
dadtdθ

πt2
, g =

(
1 a
0 1

)(
t 0
0 1

)(
cos θ sin θ
− sin θ cos θ

)
, t ∈ R×, θ ∈ [0, π),

we obtain

λµ

(∫ ∞

0

t
m1+m2

2 −1e−4πt dt

)
·
(∫ ∞

0

tm2−1e−4πt dt

)
=
λµ
(
m1+m2

2 − 1
)
!(m2 − 1)!

(4π)
m1+3m2

2

̸= 0,

(85)

as claimed.
□

Remark 7.1.10. Proposition 7.1.9 implies that ϕ−ϵm2
⊗ ϕ0m1−m2

has nonzero image under the local theta
correspondence map of Proposition 7.1.8; otherwise, the local zeta integral in Proposition 7.1.9 would have to
vanish by Theorem 6.5.2, the local-global compatibility of the theta correspondence, and an easy globalization
argument.

7.2. Cohomological span of special cycle.

7.2.1. Let H = GL2×Gm
GL2 ⊂ GSp4, viewed as an algebraic group over F . Then H possesses a Shimura

datum, and we have a natural embedding of pro-algebraic varieties

ι : S(H) ↪→ S(GSp4)× S(GL2),

induced from the map on the level of groups: (h1, h2) 7→ ((h1, h2), h1). For all weights m1,m2 as in (5.3.1)
above, abbreviate by Wm1,m2

the Betti local system V∨
(ℓ1−3,ℓ2−3) ⊠ Vm2−2 on S(GSp4)C × S(GL2)C. Note

that, by [17, Theorem 2.5], the constant local system Q(m1,m2) on S(H) is a direct factor with multiplicity

one of the pullback ι∗(Wm1,m2
), and in particular, we have a composite map (well-defined up to a scalar):

(86) H4d
c (S(GSp4)× S(GL2),W∨

m1,m2
)→ H4d

c (S(H), ι∗(W∨
m1,m2

))→ H4d
c (S(H),Q(m1,m2)).

Definition 7.2.2. The cycle class [Z] ∈ H4d(S(GSp4)× S(GL2),Wm1,m2
)(2d) is the image of the funda-

mental class of S(H) under the map

H0(S(H),Q(m1,m2))→ H2d(S(GSp4)× S(GL2),Wm1,m2
)(2d)

induced by the dual of (86). We write

[Z]∗ : H3d
c (S(GSp4),V(ℓ1−3,ℓ2−3))(d)→ Hd(S(GL2),Vm2−2)

for the induced map.
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7.2.3. Let π be an automorphic cuspidal representation of GL2(AF ) of weight m2 whose central character
agrees with that of π1 and π2. If π is defined over E, recall that the trace map induces a perfect pairing:

(87) ⟨·, ·⟩ : Hd
c (S(GL2),Vm2−2,E)[πf ] × Hd(S(GL2),V∨

m2−2,E)[π
∨
f ] → H2d

c (S(GL2), E) → E(d).

Proposition 7.2.4. Let π be as above, and let π1, π2 be as in (5.3.1), with Π = ΠS(π1, π2), for some
S = Sf ⊔ S∞ such that |S| is even.

(1) For choices of signs ϵ, ϵ′, let sϵ,ϵ′ : τ ϵ
ℓ1,ℓ2,S∞

→ C be the projection onto the weight (−ϵ′m2, 0)-

component (hence σ is trivial unless S∞ = ∅ and ϵ = ϵ′). Then the following diagram commutes up
to a nonzero scalar:

(
Π⊗ τ ϵ

ℓ1,ℓ2,S∞

)K2

⊗
(
π∨ ⊗ χ∨

−ϵ′m2

)K1
Π⊗ π∨

H3d
(2)(S(GSp4),V(ℓ1−3,ℓ2−3),C)[ΠSf

]⊗Hd
(2)(S(GL2),V∨

m2−2,C)[π
∨
f ]

H3d
c (S(GSp4),V(ℓ1−3,ℓ2−3),C)[ΠSf

]⊗Hd
c (S(GL2),V∨

m2−2,C)[π
∨
f ]

Hd(S(GL2),Vm2−2,C)⊗Hd
c (S(GL2),V∨

m2−2,C)

C C

sϵ,ϵ′⊗id

clϵS ⊗ cl′
ϵ′

PS

∼

[Z]∗⊗id

⟨·,·⟩

(2) Suppose S∞ = ∅ and ϵ = ϵ′. After fixing isomorphisms

Πf ≃
(
Π⊗ τ ϵ

ℓ1,ℓ2,∅
)K2

, π∨
f ≃

(
π∨ ⊗ χ∨

−ϵm2

)K1
,

the composites with the map from (1):

Πf ⊗ π∨
f

∼−−→
(
Π⊗ τ ϵ

ℓ1,ℓ2,∅
)K2 ⊗

(
π∨ ⊗ χ∨

−ϵm2

)K1 −→ C

are independent of ϵ up to a nonzero scalar.

Proof. Let ℓ : V(ℓ1−3,ℓ2−3) ⊗ V ∨
m2−2 → Q(m1,m2) be an H(F )-invariant projection.

The composite map:

τ ϵ
ℓ1,ℓ2,S∞

⊗ χ∨
−ϵ′m2

→ ∧p(ϵ,S∞),q(ϵ,S∞)p∗GSp4
⊗ ∧1−p(ϵ′),1−q(ϵ′)p∗GL2

⊗ V(ℓ1−3,ℓ2−3) ⊗ V ∨
m2−2

ι∗⊗ℓ−−−→ ∧p(ϵ,S∞)+1−p(ϵ′),q(ϵ,S∞)+1−q(ϵ′)pH
≃−→ C

(88)

is a map of U(1)d × U(1)d-modules, where the action on χ−ϵ′m2
, ∧p(ϵ′),q(ϵ′)pGL2

, and Vm2−2 is through
projection to the first factor. In particular, (88) is trivial unless S∞ = ∅ and ϵ = ϵ′, in which case
it is proportional to the projection onto the weight (−ϵm2, 0)-component of τ ϵ

ℓ1,ℓ2,∅; moreover, a direct

calculation shows it is nonzero. In particular, it follows formally that (up to a nonzero constant depending
on the normalizations):

⟨[Z]∗ clϵ(α), cl′ϵ′(β)⟩ =
∫
[H]

sϵ,ϵ′(α)(ι(h1, h2)) · β(h1) d(h1, h2)

for all

α ∈
(
Π⊗ τ ϵ

ℓ1,ℓ2,S∞

)K2
, β ∈

(
π∨ ⊗ χ∨

−ϵ′m2

)K1
,

which is (1).
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For (2), let

gϵ =


ϵv

ϵv
1

1


v|∞

∈ GSp4(F ⊗ R) ⊂ GSp4(AF ), g′ϵ =

(
ϵv

1

)
v|∞
∈ GL2(F ⊗ R) ⊂ GL2(AF ).

We have an obvious commutative diagram(
Π⊗ τ ϵ

ℓ1,ℓ2,∅

)K2

⊗
(
π∨ ⊗ χ∨

−ϵm2

)K1
Π⊗ π∨

(
Π⊗ τ+

ℓ1,ℓ2,∅

)K2

⊗
(
π∨ ⊗ χ∨

−m2

)K1
Π⊗ π∨

sϵ,−ϵ⊗id

s+,−⊗id

in which the vertical arrows are translation by (gϵ, g
′
ϵ) and ± stands for the constant sign (±)v|∞. However,

since (gϵ, g
′
ϵ) lies in H(AF ) ⊂ GSp4(AF ) × GL2(AF ), this translation has no effect on the period integral

PS , and (2) follows. □

Theorem 7.2.5. Let π1, π2, π be cuspidal automorphic representations of G′(A) of weights m1 = (m1,v)v|∞,
m2 = (m2,v)v|∞, and m2, respectively, where m1,v ≥ m2,v + 2 ≥ 4 for all v|∞ and all mi,v have the same
parity. Define ℓ1 and ℓ2 as in (52). Assume that the central characters of π1, π2, and π agree, and have
infinity type ωmi . Let ΠSf

be as in (5.3.1) for a set Sf of finite places of F . Then, for any coefficient field
E ⊃ Q(m1,m2) such that Π, πi, and π are defined over E, the induced map

[Z]∗ : H3d
! (S(GSp4),V(ℓ1−3,ℓ2−3))(d)[ΠSf

]→ Hd
! (S(GL2),Vm2−2)[πf ]

is trivial unless π = π2 and Sf = ∅. In the latter case, [Z]∗ takes the form:

Π∅ ⊗H3d
! (S(GSp4),V(ℓ1−3,ℓ2−3))Π∅(d)

ℓ⊗s−−→ π2,f ⊗Hd
! (S(GL2),Vm2−2)π2,f

,

where s is an surjection and ℓ is a nontrivial E-linear map.

Proof. Without loss of generality, suppose E = C. By Proposition 7.2.4, Theorem 6.2.2, and Theorem 6.5.2,
we immediately reduce to the case Sf = ∅ and π = π2. In this case, write Π = Π∅(π1, π2). Under the
decomposition

H3d
! (S(GSp4),V(ℓ1−3,ℓ2−3),C)[Πf ] =

⊕
S∞

⊕
ϵ

H
p(ϵ,S∞),q(ϵ,S∞)
(2) (S(GSp4),V(ℓ1−3,ℓ2−3),C)[Πf ]

provided by Propositions 5.3.3 and 5.3.5, Proposition 7.2.4(1) implies that [Z]∗ is trivial on components

with S∞ ̸= ∅, and maps H
p(ϵ,∅),q(ϵ,∅)
(2) (S(GSp4),V(ℓ1−3,ℓ2−3),C)(d)[Πf ] to H

p(ϵ),q(ϵ)
(2) (S(GL2),Vm2−2,C)[π2,f ].

Moreover, by Proposition 7.2.4(2) and Proposition 3.7.3, [Z]∗ is a pure tensor ℓ ⊗ s, and s is surjective
provided it is nontrivial. Thus, for any single choice of ϵ, it suffices to show that

H
p(ϵ,∅),q(ϵ,∅)
(2) (S(GSp4),V(ℓ1−3,ℓ2−3),C)[Πf ]⊗H

1−p(ϵ),1−q(ϵ)
(2) (S(GL2),Vm2−2,C)[π

∨
2,f ]

⟨[Z]∗·,·⟩−−−−−−−→ C
(89)

is nontrivial.
Indeed, let

φϵ
∞ = ⊗v|∞φϵvm1,v,m2,v

∈ SF⊗R(⟨e2, e4⟩ ⊗ V )⊗ τ ϵ
ℓ1,ℓ2,∅ ⊗ χ∨

m1,−ϵm2
,

where φϵvm1,v,m2,v
is the vector-valued Schwartz function of (7.1.6). Also let

(90) θϵ : SAF,f
(⟨e2, e4⟩ ⊗ V ) ↠

(
Π⊗ τ ϵ

ℓ1,ℓ2,∅
)K2

be the C-linear map

ϕf 7→ θϕf⊗φϵ
∞
(f1 ⊗ f2),

where f1 ∈ π1 and f2 ∈ π2 are nonzero newforms of weights −m1 and ϵm2, respectively.



TATE CLASSES AND ENDOSCOPY FOR GSp4 OVER TOTALLY REAL FIELDS 33

Now Proposition 7.2.4 implies that the composite map

SAF,f
(⟨e2, e4⟩ ⊗ V )⊗ (π∨

2 ⊗ χ∨
−ϵm2

)K1
θϵ⊗id−−−−→

(
Π⊗ τ ϵ

ℓ1,ℓ2,∅
)K2 ⊗ (π∨

2 ⊗ χ∨
−ϵm2

)K1

⟨[Z]∗◦clϵ∅,cl
′
ϵ⟩−−−−−−−−→ C

(91)

is given by

(92) ϕf ⊗ β 7→ P∅(θϕf⊗φϵ
∞
(f1 ⊗ f2), β)

up to a nonzero scalar, where
φϵ
∞ = ⊗vφϵvm1,v,m2,v

for φϵvm1,v,m2,v
∈ SFv (⟨e2, e4⟩ ⊗ V ) as in (7.1.6). Now let

ϕ∞ =
⊗
v|∞

(ϕ−ϵvm2,v
⊗ ϕ0m1,v−m2,v

) ∈ SF⊗R(⟨e2, e4⟩ ⊗ V ).

We wish to show that (92) is nontrivial; by Proposition 7.1.8, it suffices to show instead that the map

ϕf ⊗ β 7→ P∅(θϕf⊗ϕ∞(f1 ⊗ f2), β)
is nontrivial. However, this is immediate from Theorem 6.5.2 and Proposition 7.1.9. □

8. Non-tempered theta lifts on GSp6

8.1. Theta lift from GSO(VB) to GSp6.

8.1.1. For the remainder of this section, fix a non-split quaternion algebra B over F , and let π be a tempered
automorphic representation of PB×. We consider the representation π ⊠ 1 of GSO(VB)(AF ) ≃ (B× ×
B×/Gm)(AF ) and its theta lift Θ(π ⊠ 1) to GSp6(AF ); this is well-defined because VB is anisotropic, and
descends to PGSp6(AF ) because the similitude theta lift preserves central characters. We remark that
Θ(π ⊠ 1) need not be irreducible (because we are using the connected similitude group GSO(VB)).

Proposition 8.1.2. The theta lift Θ(π ⊠ 1) lies in the L2 subspace of A(PGSp6(AF )).

By the usual criterion for square-integrability [25, Lemma I.4.11], we must check that, for each standard
parabolic subgroup P =MN of GSp6, the characters of Z(M) appearing in the cuspidal component of the
normalized Jacquet module

Θ(π ⊠ 1)N ⊗ δ−1/2
P

all lie in the interior of the cone spanned by the negatives of the characters appearing in the action of Z(M)
on N . Since π⊠1 is not a theta lift from GSp2 = GL2, [29, Theorem I.1.1] implies that the Jacquet modules
are given by:

(93) Θ(π ⊠ 1)N =

{
| · |2Θ′(π ⊠ 1), M = GSp4×GL1

0, otherwise.

Here Θ′(π⊠1) denotes the theta lift to GSp4, and | · | is the norm character of GL1 . On the other hand, the
action of Z(M) on N is through positive powers of |·|, and δP = |·|6; thus the criterion for square-integrability
is satisfied.

Proposition 8.1.3. Suppose Π is an irreducible constituent of Θ(π⊠1). Then for all non-archimedean v of
odd residue characteristic, if πv is unramified with Satake parameters

{
α, α−1

}
, then Πv is unramified with

a Langlands parameter ϕv such that, under the composite

WFv

ϕv−→ P̂GSp6 = Spin7
rspin−−−→ GL8,

the eigenvalues of Frobv (with multiplicity) are q±1/2α±1, q±1, 1, and 1.

Proof. Propositions 8.1.2 and 4.2.3 imply that Πv is an irreducible constituent of Θv(πv ⊠ 1) for all v.

Since πv is tempered at all unramified v, Ind
GO(V )(Fv)
GSO(V )(Fv)

πv ⊠ 1 is irreducible. Adopting the notation of

(4.3.2) with G = GSO(V ) and H = GSp6, πv ⊠ 1 is the spherical representation πχ for the unramified

character of TG(Fv) defined by (q1/2α, q−1/2α, α−1). Then Proposition 4.3.3 implies that Θv(πv ⊠ 1) is
the irreducible representation σµ with µ = (q1/2α, q−1/2α, q, α−1q−1/2). Recall that any µ determines an
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unramified Langlands parameter for H: the characters xi, λ ∈ HomFv (TG,Gm) correspond to cocharacters

in HomC(Gm, T̂G), and any unramified character µ = (β1, β2, β3, t) may be viewed as the element

λ(t)
∏
i

xi(βi) ∈ T̂H(C).

Then the Langlands parameter of σµ is the conjugacy class of the unramified map

ϕµ :WFv
→ T̂H(C) ↪→ Ĥ(C)

such that ϕ(Frobv) is the element corresponding to µ. Now, the eigenvalues of rspin ◦ ϕµ(Frobv) on C8 are
given by t

∏
i∈S βi as S ranges over subsets of {1, 2, 3}; the proposition follows.

□

8.2. Contributions to the cohomology of Shimura varieties.

8.2.1. Consider the Shimura variety for GSp6 as in §3.6, and let k = (kv)v|∞ be a tuple of integers with
kv ≥ 3 for all v. Following the notation of (3.4.1), we obtain a local system V(k−3,k−3,0) of Q(k)-vector
spaces. Let σkv be the unique irreducible representation of K3,v with trivial central character and whose
restriction to U(3) has highest weight (kv, 0,−kv), and let σk be the representation ⊗v|∞σkv of K3. One
calculates that

(94) dimHomK3

(
σk, V(k−3,k−3,0),C ⊗ ∧2,2p∗GSp6

)
= 1,

where (2,2) is the constant plectic Hodge type. Thus we have, from (30), a class map

(95)
(
A(2)(GSp6(AF ))⊗ σk

)K3 → H2,2
(2) (S(GSp6),V(k−3,k−3,0),C).

8.2.2. We now choose a totally indefinite, non-split quaternion algebra B over F . Let π be an auxiliary
automorphic representation of PB×(AF ) of weight 2k = (2kv)v|∞.

Lemma 8.2.3. Fix a prime ℓ and an isomorphism ι : Qℓ
∼−→ C. Let Π̃ be a discrete automorphic represen-

tation of GSp6(AF ) which is nearly equivalent to a constituent of the theta lift ι∗Θ(π⊠1), and let H be any
Qℓ[Gal(Q/F c)×GSp6(AF,f )]-stable subquotient of

H4d
ét (S(GSp6)Q,V(k−3,k−3,0),Qℓ

)[Π̃f ]

which is pure of weight 4d. Then Gal(Q/F c) acts on H via χ−2d, where χ is the ℓ-adic cyclotomic character.

Proof. Let K =
∏
Kv ⊂ GSp6(AF,f ) be a neat compact open subgroup. It suffices to show that Frobp acts

as p−2d on HK for almost all p such that p splits completely in F c and Kp is hyperspecial. Assume without

loss of generality that Π̃p is unramified with local Langlands parameter

ϕp :WQp
→ LGSp6 = GSpin7(C)d ×WQp

,

and consider the 8d-dimensional representation defined by the composite:

(96) WQp

ϕp−→ GSpin7(C)d
r⊗d
spin−−−→ GL8d(C).

In light of our chosen isomorphism Qℓ
∼−→ C, (96) defines an 8d-dimensional ℓ-adic unramified local Galois

representation Vp. By [22, §2], since p splits in F c, the action of the geometric Frobenius Frob−1
p on

H4d
ét (SK(GSp6)Q,V(k−3,k−3,0),Qℓ

)[Π̃f ] satisfies the characteristic polynomial of p3 Frob−1
p on Vp. Now by

Proposition 8.1.3, for almost every such p the representation Vp is given by⊗
v|p

(
Qℓ(−1)⊕Q2

ℓ ⊕Qℓ(1)⊕ ρπ|Fv
⊕ ρπ|Fv

(1)
)
,

where ρπ is the 2-dimensional ℓ-adic Galois representation associated to π, which we normalize to have
weight one. (Recall, e.g. from [1], that ρπ is pure since it appears in the cohomology of a compact Shimura
curve; for this we use that the Jacquet-Langlands transfer JL(π) is discrete series at some finite place of F ,
because B is nonsplit.) On the other hand, we have assumed that H is pure of weight 4d, and HK is a

subquotient of H4d
ét (SK(GSp6)Q,V(k−3,k−3,0),Qℓ

)[Π̃f ] because the K-invariants functor is exact; comparing

with the weights in Vp, it follows that Frobp acts as p−2d on HK . □
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9. Triple product periods

9.1. The vector-valued period problem.

9.1.1. Let π1, π2, m1, m2, ℓ1, ℓ2, ϵ, τ
ϵ
ℓ1,ℓ2

, and σℓ1 be as in (5.3.1) and (8.2.1) for k = ℓ1, and let B be
a non-split totally indefinite quaternion algebra over F , ramified at a set S of places of F at which πi are
both discrete series.

9.1.2. For auxiliary automorphic representations π of PB(AF )× of weight 2ℓ1, we will consider triple product
period integrals of Θ(π ⊠ 1) along the subgroup

(97) H̃ := (GSp4×Gm
GL2) ⊂ GSp6 .

The maximal compact-modulo-center subgroup of H̃(F ⊗ R) is

(98) (K2 ×K1)0 := (K2 ×K1) ∩ H̃(F ⊗ R).

To define the vector-valued period integral, note that (by the classical branching law for unitary groups),
the space

(99) Hom(K2×K1)0(σℓ1 ⊗ τ ϵ
ℓ1,ℓ2 ⊗ χ∨

−ϵm2
,C)

is one-dimensional, say with generator sϵ.
We then define, for any auxiliary representation π of PB(AF )× of weight 2ℓ1, the triple product period:

P̃ϵ
S,π1,π2,π(α, β, γ) =

∫
[H̃]

sϵ(α(g, g
′)⊗ β(g)⊗ γ(g′)) d(g, g′) ̸= 0,

α ∈ (Θ(π ⊠ 1)⊗ σℓ1)
K3 , β ∈ (ΠS(π1 ⊗ π2)⊗ τ ϵ

ℓ1,ℓ2)
K2 , γ ∈ (π∨

2 ⊗ χ∨
−ϵm2

)K1 .

(100)

Since we will not give a precise formula for P̃ϵ
S,π1,π2,π

and are only interested in its non-vanishing, we ignore

the problem of normalization. The non-vanishing of (100), for a good choice of π, is the key input to the
non-vanishing of the Hodge classes we construct in the next section.

9.1.3. The strategy for calculating (100) is to use the seesaw diagram:

GSO(VB)×Gm GSO(VB) GSp6

GSO(VB) H̃

There are two main inputs to the non-vanishing of our period integral (for a good choice of π): the first
is a vector-valued version of the usual global seesaw identity, and the second is a non-vanishing result for
the vector-valued theta lifts along the “other” diagonal in the seesaw diagram, i.e. from GSp4 and GL2 to
GSO(VB).

9.2. Vector-valued seesaw identity.

9.2.1. Continuing with the notation from (7.1.1), let m1 ≥ m2 + 2 ≥ 4 be integers such that m1 ≡ m2

(mod 2), with ℓ1 and ℓ2 as in (7.1.6). Let σℓ1 be the unique representation of K3 of trivial central character
and whose restriction to U(3) has highest weight (ℓ1, 0,−ℓ1). Let

φ̃ℓ1 ∈ (S0
≤2ℓ1(3)⊗ σℓ1 ⊗ χ−2ℓ1,0)

(K3×L)0

be a generator, which makes sense by Proposition 7.1.3. If (K2 × K1)0 is the intersection of K3 with
GSp4,R×Gm

GL2,R inside GSp6,R, then we have, for any ϵ = ±1,

(101) dimHom(K2×K1)0(σℓ1 , τ
ϵ
ℓ1,ℓ2 ⊗ χ

∨
−ϵm2

) = 1;

let s′ denote a generator. Also let (K2 ×K1 × L)0 = (K2 ×K1)0 × L ∩ (K3 × L)0.

Proposition 9.2.2. The Schwartz function

s′(φ̃ℓ1) ∈
(
SR(⟨e2, e4, e6⟩ ⊗ V )⊗ τ ϵℓ1,ℓ2 ⊗ χ

∨
−ϵm2

⊗ χ−2ℓ1,0

)(K2×K1×L)0

is a nonzero scalar multiple of the tensor product φϵm1,m2
⊗ ϕϵm2

.
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Proof. Assume ϵ = +; the other case is similar. Let ϕ ∈ S0
≤2ℓ1

(3) be the contraction of φϵm1,m2
⊗ ϕϵm2

with

any nonzero vector of pure weight. Then ϕ generates the irreducible U(2) × U(1)-representation of highest
weight (ℓ2 − 2,−ℓ1,m2). We wish to show that U(3) · ϕ is the irreducible U(3)-representation of highest
weight (ℓ1, 0,−ℓ1).

First, if U(3) · ϕ = V1⊕ V2 is any nontrivial U(3)-stable decomposition, then the irreducible U(2)×U(1)-
representation (U(2)×U(1))·ϕ must project nontrivially to both V1 and V2. Hence if the U(3)-representation
with highest weight (a, b, c) appears in U(3) · ϕ, it follows (using the branching law for unitary groups) that

a ≥ ℓ2 − 2 ≥ b ≥ −ℓ1 ≥ c,
a+ b+ c = 0.

(102)

On the other hand, considering Proposition 7.1.3(2), we have

(103) |a|+ |b|+ |c| ≤ 2ℓ1.

The combination of (102) and (103) force c = −ℓ1. On the other hand, by [10, Proposition 4.2.1], if
(a, b, c) appears in S0(3) with c < −1 then either b = a = 1 or b = 0. Since a + b = ℓ1 ≥ 3, we
conclude (a, b, c) = (ℓ1, 0,−ℓ1). Since U(3) · ϕ is generated by a single vector which has pure weight, it
is also multiplicity-free as a representation of U(3), so it is irreducible with highest weight (ℓ1, 0,−ℓ1), as
desired. □

9.2.3. We now return to the global situation. Choose an isomorphism VB ⊗F R ≃ V ⊗F R, which induces an
isomorphism GSO(VB)(F ⊗R) ≃ GSO(V )(F ⊗R). Then let L =

∏
v|∞ L ⊂ GSO(VB)(F ⊗R), and similarly

for (Kn ×L)0, etc. We fix vector-valued Schwartz functions as follows:

φ−ϵ
m1,m2

= ⊗v|∞φ−ϵv
m1,v,m2,v

∈
(
SF⊗R(⟨e2, e4⟩ ⊗ V )⊗ τ−ϵ

ℓ1,ℓ2
⊗ χ∨

m1,ϵm2

)(K2×L)0

(7.1.6)

≃
(
SF⊗R(⟨e2, e4⟩ ⊗ VB)⊗ (τϵℓ1,ℓ2)

∨ ⊗ χ−m1,−ϵm2

)(K2×L)0

ϕ−ϵ
m2

= ⊗v|∞ϕ−ϵvm2,v
∈
(
SF⊗R(⟨e6⟩ ⊗ V )⊗ χ−ϵm2

⊗ χ∨
m2,−ϵm2

)(K1×L)0

(Proposition 7.1.4)

≃
(
SF⊗R(⟨e6⟩ ⊗ VB)⊗ χ−ϵm2 ⊗ χ∨

m2,−ϵm2

)(K1×L)0

φ̃ℓ1 = ⊗v|∞φ̃ℓ1,v ∈ (SR(⟨e2, e4, e6⟩ ⊗ V )⊗ σℓ1 ⊗ χ−2ℓ1,0)
(K2×L)0

(9.2.1)

≃ (SR(⟨e2, e4, e6⟩ ⊗ VB)⊗ σℓ1 ⊗ χ−2ℓ1,0)
(K2×L)0

(104)

Proposition 9.2.4. Let sϵ be as above. For all

α ∈ (A0(PGSO(VB)(AF ))⊗ χ2ℓ1,0)
L
, β ∈

(
ΠS(π1, π2)⊗ τ ϵ

ℓ1,ℓ2

)K2
,

γ ∈
(
π∨
2 ⊗ χ∨

−ϵm2

)K1
, ϕ1,f ∈ SAF,f

(⟨e2, e4⟩ ⊗ VB), ϕ2,f ∈ SAF,f
(⟨e6⟩ ⊗ VB),

and up to a nonzero scalar depending on the normalizations, we have the identity:∫
[Z

H̃
\H̃]

sϵ

(
θϕ1,f⊗ϕ2,f⊗φ̃ℓ1

(α)(g, g′)⊗ β(g)⊗ γ(g′)
)
d(g, g′) =∫

[PGSO(VB)]

α(g)θϕ1,f⊗φ−ϵ
m1,m2

(β)(g)θϕ2,f⊗ϕ−ϵ
m2

(γ)(g) dg.

(105)

Proof. This is formal from Proposition 9.2.2 and the usual seesaw identity, i.e. exchanging the order of
integration. □

9.3. Proof of the non-vanishing result.

Proposition 9.3.1. Let πBi be the Jacquet-Langlands transfers of πi to B(AF )×.
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(1) The map

θφ−ϵ
m1,m2

: SAF,f
(⟨e2, e4⟩ ⊗ VB)⊗ (ΠS(π1, π2)⊗ τ ϵ

ℓ1,ℓ2)
K2 → (A(GSO(VB))(AF )⊗ χ−m1,−ϵm2)

L
,

defined by
(ϕ, α) 7→ θϕ⊗φ−ϵ

m1,m2
(α),

has image containing
(
(πB1 ⊠ πB2 )⊗ χ−m1,−ϵm2

)L
.

(2) The map

θϕ−ϵ
m2

: SAF,f
(⟨e6⟩ ⊗ VB)⊗

(
π∨
2 ⊗ χ∨

−ϵm2

)K1 →
(
A(GSO(VB))(AF )⊗ χ∨

m2,−ϵm2

)L
,

defined by
(ϕ, α) 7→ θϕ⊗ϕ−ϵ

m2
(α),

has image containing
(
((πB2 )∨ ⊠ (πB2 )∨)⊗ χ∨

m2,−ϵm2

)L
.

Proof. In the general setup of §4, suppose ΘV,W (π) = Π for cuspidal automorphic representations π of
G(V )(AF ) and Π of H(W )(AF ). Then by definition we have a surjective composite

(106) SAF
(W2 ⊗ V )

θ−→ A(R0(AF )) ↠ Π⊗ π∨.

Now, the theta kernel satisfies

θ(ϕ)(g, h) = θ(ϕ)

((
1 0
0 −1

)
g

(
1 0
0 −1

)
, h

)
(cf. [30]), so we deduce that Π⊗ π∨ = Π∨⊗π also appears in the spectrum of the theta kernel. (Recall that
the central characters of Π and π must agree since the central character of the Weil representation is trivial.)
In particular ΘW,V (Π) contains the nonzero irreducible constituent π. For (1), take W =W4, V = VB , and
Π = ΠS(π1, π2). As in the proof of Proposition 4.2.3, the global theta lift gives rise to a nontrivial map:

(107) SAF
(⟨e2, e4⟩ ⊗ VB) ↠ ΠS(π1, π2)

∨ ⊗ΘW4,VB
(ΠS(π1, π2)) ↠ ΠS(π1, π2)

∨ ⊗ (π1 ⊠ π2).

(Since GSO(VB) is anisotropic, all theta lifts are square-integrable.) The map (107) is a restricted tensor
product of local maps. To prove (1), it suffices to show that, for all v|∞ and for some vector 0 ̸= s ∈ τ ϵvℓ1,v,ℓ2,v ,
the contraction s(φ−ϵv

m1,v,m2,v
) has nontrivial image under the local component

(108) SFv
(⟨e2, e4⟩ ⊗ VB) ↠ Π+(π1,v, π2,v)

∨ ⊗
(
πB1,v ⊠ πB2,v

)
of (107). This follows from Remark 7.1.10. The proof of (2) is analogous, invoking instead Proposition
7.1.4(2). □

Finally we come to the main result of this section:

Lemma 9.3.2. There exists an automorphic representation π of PB(AF )× of weight 2ℓ1, along with vectors

α ∈ (Θ(π ⊠ 1)⊗ σℓ1)
K3 , β ∈ (ΠS(π1 ⊗ π2)⊗ τ ϵ

ℓ1,ℓ2)
K2 , γ ∈ (π∨

2 ⊗ χ∨
−ϵm2

)K1 ,

such that:

P̃ϵ
S,π1,π2,π(α, β, γ) =

∫
[H̃]

sϵ(α(g, g
′)⊗ β(g)⊗ γ(g′)) d(g, g′) ̸= 0.

Proof. First, fix newforms

f1 ∈ πB1 , fϵ2 ∈ πB2 , f∨2 ∈ (πB2 )∨, (fϵ2 )
∨ ∈ (πB2 )∨

of weights m1, ϵm2, m2, and −ϵm2, respectively. Then Proposition 9.3.1 implies that we may choose
vectors

β ∈
(
ΠS(π1, π2)⊗ τ ϵ

ℓ1,ℓ2

)K2
, γ ∈ (π∨

2 ⊗ χ∨
−ϵm2

)K1

and Schwartz functions

ϕ1,f ∈ SAF,f
(⟨e2, e4⟩ ⊗ VB), ϕ2,f ∈ SAF,f

(⟨e6⟩ ⊗ VB)
such that:

(109) θϕ1,f⊗φ−ϵ
m1,m2

= f1 ⊗ fϵ2 ; θϕ2,f⊗φ−ϵ
m2

(γ) = f∨2 ⊗ (fϵ2 )
∨.
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Now, the automorphic function g 7→ f1(g) · f∨2 (g) corresponds to a Hilbert modular form on B× of weight
2ℓ1 and trivial central character. We may therefore choose some automorphic representation π of PB(AF )×
of weight 2ℓ1, with a vector α0 of weight −2ℓ1, such that∫

[PB×]

α0(g)f1(g)f
∨
2 (g) dg ̸= 0.

Now, we turn α0 into an automorphic form α on PGSO(VB)(AF ) by setting α(pZ(g1, g2)) = α0(g1). It is

clear that α is a vector in ((π ⊠ 1)⊗ χ2ℓ1,0)
L
. Then Proposition 9.2.4 allows us to compute:

P̃S,π1,π2,π(θϕ1,f⊗ϕ2,f⊗φ̃m1,m2
(α), β, γ) =

(∫
[PB×]

α0(g)f1(g)f
∨
2 (g) dg

)
·

(∫
[PB×]

fϵ2 (g)(f
ϵ
2 )

∨(g) dg

)
̸= 0.

□

10. Proof of main result: Hodge classes in the non-generic case

10.1. Construction.

10.1.1. Consider the inclusions of Shimura varieties:

(110) S(GSp6)
ι1←− S(H̃)

ι2−→ S(GSp4)× S(GL2),

where

H̃ := GSp4×Gm
GL2 ⊂ GSp6 .

Note that ι∗1V(ℓ1−3,ℓ1−3,0) contains ι
∗
2Wm1,m2

as a direct factor with multiplicity one by [17, Theorem 2.5].
Since ι2 is an open and closed embedding at sufficiently small level, one obtains from (110) a map

(111) Hi(S(GSp6),V(ℓ1−3,ℓ2−3,0))→ Hi(S(GSp4)× S(GL2),Wm1,m2).

It follows from Saito’s theory of mixed Hodge modules [32] that this is a map of mixed Hodge strucutres.
The Hodge classes we construct will be the images of classes on S(GSp6) under the map (111).

10.1.2. Let π1, π2, and ΠSf
be as in (5.3.1), where |Sf | ≥ 2 is even. We let B be the unique quaternion

algebra over F which is ramified at Sf and split at all archimedean places. For any finite set Σ ⊃ Sf of
places of F , including all infinite ones, we consider the unramified Hecke algebra with Q-coefficients:

(112) T̃Σ = ⊗v ̸∈ΣH(GSp6(Fv),GSp6(Ov)).

For an auxiliary automorphic representation π of PB× which is tempered, unramified outside of Σ, and of

weight 2ℓ1, the Hecke action on Θ(π ⊠ 1) defines a maximal ideal IΣ ⊂ T̃Σ.

Definition 10.1.3. Fix π and Σ as above and a sufficiently small compact open subgroup K =
∏
Kv ⊂

GSp6(AFf
) such that Kv = GSp6(Ov) for v ̸∈ Σ. Then we define

Hdg(π,K,Σ) ⊂ H4d(S(GSp4)× S(GL2),Wm1,m2)0

to be the image of the composite map

H4d(SK(GSp6),V(ℓ1−3,ℓ2−3,0))(2d)[I
Σ]

(111)−−−→H4d(S(GSp4)× S(GL2),Wm1,m2
)

−→H4d(S(GSp4)× S(GL2),Wm1,m2
)0.

Here the final map is the projection from Lemma 3.2.3(2).

Lemma 10.1.4. Any ξ ∈ Hdg(π,K,Σ) is a Hodge class of weight (2d, 2d). Moreover, for any finite prime
λ of Q(m1,m2) lying above ℓ, Gal(Q/F c) acts by χ−2d on

Hdg(π,K,Σ)⊗Q(m1,m2) Q(m1,m2)λ ⊂ H4d
ét (S(GSp4)× S(GL2)Q,Wm1,m2,λ),

where χ is the ℓ-adic cyclotomic character.
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Proof. We first compute the Galois action, for which we may extend scalars to Qℓ. Let S be the set of

automorphic representations of GSp6(AF ) such that Π̃Kf ̸= 0 is annihilated by IΣ, and fix an isomorphism

ι : Qℓ
∼−→ C which induces the prime λ of Q(m1,m2). Then it suffices to show that, for all Π̃ ∈ S and all

automorphic representations Π ⊠ τ of GSp4(AF ) ×GL2(AF ) with Πf ⊠ τf non-Eisenstein, Gal(Q/F c) acts
by χ−2d on the image of

H4d
ét (SK(GSp6)Q,V(ℓ1−3,ℓ2−3,0),Qℓ

)[Π̃f ]→ H4d
ét (S(GSp4)Q × S(GL2)Q,Wm1,m2,Qℓ

)[Πf ⊠ τf ].

Since the calculation in Lemma 8.2.3 is based only on local Langlands parameters at cofinitely many primes,
and is insensitive to replacing the local Langlands parameters with Aut(C/Q)-conjugates, it also applies to

all Π̃ ∈ S, and the claim follows since Lemma 3.2.3(1) implies that

H4d
ét (S(GSp4)Q × S(GL2)Q,Wm1,m2,Qℓ

)[Πf ⊠ τf ]

is pure of weight 4d.
Now, H4d(S(GSp4) × S(GL2),Wm1,m2

)0 is a pure Hodge structure of weight 4d by Lemma 3.2.3, and
by construction

Hdg(π,K,Σ) ⊂ H4d(S(GSp4)× S(GL2),Wm1,m2)0

is a sub-Hodge structure. By Theorem 3.1.3, we have a canonical isomorphism

Hdg(π,K,Σ)⊗Q(m1,m2) Q(m1,m2)λ ⊗Q(m1,m2)λ Q̂ℓ ∼= ⊕j grj Hdg(π,K,Σ)⊗Q(m1,m2) C⊗C,ι−1 Q̂ℓ(−j)

compatible with the actions of Gal(Qℓ/Q(m1,m2)λ) on both sides. In particular,

grj(Hdg(π,K,Σ)⊗Q(m1,m2) C) =

{
Hdg(π,K,Σ)⊗Q(m1,m2) C, j = 2d,

0, else.

Hence the Hodge structure on Hdg(π,K,Σ) is trivial and in particular each ξ ∈ Hdg(π,K,Σ) is a Hodge
class, as desired. □

10.2. Nonvanishing.

10.2.1. To test the non-degeneracy of the subspace Hdg(π,K,Σ), we will use the following proposition.

Proposition 10.2.2. Let Π = ΠS , where S = Sf ⊔ S∞, and choose an auxiliary π as above. Suppose given

α ∈ (Θ(π ⊠ 1)⊗ σℓ1)
K3 , β ∈

(
ΠS(π1 ⊗ π2)⊗ τ ϵ

ℓ1,ℓ2,S∞

)K2
, γ ∈

(
π∨
2 ⊗ χ∨

−ϵm2

)K1
.

(1) Fix choices of signs ϵ = {ϵv}v|∞ and ϵ′ = {ϵv}v|∞. Then:

⟨ι2,∗ ◦ ι∗1(cl(α)), cl
ϵ
S(β)⊠ cl′ϵ′(γ)⟩ =

{
P̃S,π1,π2,π(α, β, γ), if S∞ = ∅ and ϵ = ϵ′;

0, otherwise.

(2) After choosing isomorphisms

ΠSf
≃
(
Π⊗ τ ϵ

ℓ1,ℓ2

)K3
, π∨

2,f ≃ (π∨
2 ⊗ χ−ϵm2

)K1 ,

the composite maps

ΠSf
⊗ π∨

2,f

clϵS ⊗ cl′ϵ−−−−−→ H4d
(2)(S(GSp4)× S(GL2),Wm1,m2,C)

⟨ι2,∗ι∗1α,·⟩−−−−−−→ C

are independent of ϵ up to a scalar.

Proof. The proof is essentially identical to Proposition 7.2.4. The only new ingredient is the calculation of
the (K2 ×K1)0-equivariant composite:

σℓ1 ⊗ τ ϵ
ℓ1,ℓ2,S∞

⊗ χ∨
−ϵ′m2

→ ∧2,2p∗GSp6
⊗ V(ℓ1−3,ℓ1−3,0),C ⊗ ∧p(ϵ,S∞),q(ϵ,S∞)p∗GSp4

⊗V(ℓ1−3,ℓ2−3),C ⊗ ∧1−p(ϵ′),1−q(ϵ′)p∗GL2
⊗ V ∨

m2−2,C

→ ∧3+p(ϵ,S∞)−p(ϵ′),3+q(ϵ,S∞)−q(ϵ′)p∗
H̃

1
H̃−−→ C,

(113)

which is automatically trivial unless S∞ = ∅ and ϵ = ϵ′, in which case one can check that it is not trivial. □
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Corollary 10.2.3. There exists a triple (π,K,Σ) as in Definition 10.1.3 and an element

ξC ∈ Hdg(π,K,Σ)⊗ C ⊂ H4d(S(GSp4)× S(GL2),Wm1,m2,C)

such that the induced map

(ξC)∗ : H3d
c (S(GSp4),V(ℓ1−3,ℓ2−3),C)(d)[ΠSf

]→ Hd(S(GL2),Vm2−2,C) ↠ Hd
! (S(GL2),Vm2−2,C)[π2,f ]

is of the form

ΠSf
⊗H3d

! (S(GSp4),V(ℓ1−3,ℓ2−3),C)ΠSf
(d)

ℓ⊗s−−→ π2,f ⊗Hd
! (S(GL2),Vm2−2,C)π2,f

,

where s is a surjection and ℓ is a nontrivial C-linear map.

Proof. By Proposition 10.2.2 and Lemma 9.3.2, there exists an automorphic representation π as in Definition
10.1.3 and a vector

α ∈ (Θ(π ⊠ 1)⊗ σℓ1)
K3

such that

ι2,∗ ◦ ι∗1(cl(α)) ∈ H4d(S(GSp4)× S(GL2),Wm1,m2,C)

induces, by Poincaré duality, a nontrivial map

H3d
c (S(GSp4),V(ℓ1−3,ℓ2−3),C)(d)[ΠSf

]→ Hd(S(GL2),Vm2−2,C) ↠ Hd
! (S(GL2),Vm2−2,C)[π2,f ].

Moreover, this map is of the form claimed in the corollary by Proposition 10.2.2(2) and the same argument
as in Theorem 7.2.5. For K sufficiently small and Σ sufficiently large,

Hdg(π,K,Σ)⊗ C ⊂ H4d(S(GSp4)× S(GL2),Wm1,m2,C)0

contains the image of ι2,∗ ◦ ι∗1(cl(α)) under the projection

H4d(S(GSp4)× S(GL2),Wm1,m2,C)→ H4d(S(GSp4)× S(GL2),Wm1,m2,C)0,

and this implies the corollary. □

Theorem 10.2.4. Let π1 and π2 be cuspidal automorphic representations of GL2(A) of weights m1 and m2,
respectively, where mi = (mi,v)v|∞ for integers mi,v, all of the same parity, such that m1,v ≥ m2,v + 2 ≥ 4.
Assume that the central characters of π1 and π2 agree and have infinity type ωmi

. Let ΠSf
be as in (5.3.1)

for a set Sf of finite places of F such that |Sf | ≥ 2 is even, and choose a coefficient field E ⊃ Q(m1,m2)
over which πi and ΠSf

are defined. Then there exists a triple (π,K,Σ) as in Definition 10.1.3 and a Hodge
class

ξ ∈ Hdg(π,K,Σ)(2d) ⊂ H4d(S(GSp4)× S(GL2),Wm1,m2
)(2d)

such that the induced map

ξ∗ : H3d
c (S(GSp4),V(ℓ1−3,ℓ2−3),E)(d)[ΠSf

]→ Hd(S(GL2),Vm2−2,E) ↠ Hd
! (S(GL2),Vm2−2,E)[π2,f ]

is nontrivial, and moreover the image of ξ∗ spans the E[GL2(AF,f )]-module Hd
! (S(GL2),Vm2−2,E)[π2,f ].

Proof. Let (π,K,Σ) be as in Corollary 10.2.3, and let ξ1, . . . , ξn ∈ Hdg(π,K,Σ) be a basis for this finite-
dimensional vector space over Q(m1,m2). Also, let

ξC =
∑

αiξi, αi ∈ C

be a vector satisfying the conclusion of Corollary 10.2.3. We may choose a functional λ ∈ Hom(πE2,f , E) so
that the composite

λC ◦ (ξC)∗ : H3d
c (S(GSp4),V(ℓ1−3,ℓ2−3),C)[ΠSf

]⊗ C→ Hd
! (S(GL2),Vm2−2,C)π2,f

is surjective. We claim that there exist scalars β1, · · · , βn ∈ Q(m1,m2) such that

λ ◦ (β1ξ∗1 + · · ·+ βnξ
∗
n) : H

3d
c (S(GSp4),V(ℓ1−3,ℓ2−3),E)[ΠSf

]→ Hd
! (S(GL2),Vm2−2,E)π2,f

is surjective; indeed, this condition corresponds to a Zariski-open subset U ⊂ AnQ(m1,m2)
because

Hd
! (S(GL2),Vm2−2,E)π2,f
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is finite-dimensional, and it is satisfied by (α1, . . . , αn) ∈ Cn, so it is also satisfied by infinitely many tuples
(β1, . . . , βn) ∈ Q(m1,m2)

n. For such a tuple, the Hodge class

ξ :=
∑

βiξi ∈ Hdg(π,K,Σ)

satisfies the conclusion of the theorem.
□
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