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CONGRUENCES OF MODULAR FORMS
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Abstract. Let E/Q be an elliptic curve and let K be an imaginary quadratic field. Under a certain Heegner

hypothesis, Kolyvagin constructed cohomology classes for E using K-CM points and conjectured they did
not all vanish. Conditional on this conjecture, he described the Selmer rank of E using his system of classes.

We extend work of Wei Zhang to prove new cases of Kolyvagin’s conjecture by considering congruences of

modular forms modulo large powers of p. Additionally, we prove an analogous result, and give a description
of the Selmer rank, in a complementary “definite” case (using certain modified L-values rather than CM

points). Similar methods are also used to improve known results on the Heegner point main conjecture of

Perrin-Riou. One consequence of our results is a new converse theorem, that p-Selmer rank one implies
analytic rank one, when the residual representation has dihedral image.

Contents

1. Introduction 2
1.1. Comparison to previous results 4
1.2. Iwasawa theory 4
1.3. Comparison to previous results 5
1.4. Overview of the proofs 5
Structure of the paper 6
1.5. Notational conventions 6
Acknowledgments 7
2. Ultrafilters and patching 7
2.1. Ultraproducts 7
2.2. Ultraprimes 8
2.3. Local cohomology 9
2.4. Patched cohomology 10
2.5. Selmer structures and patched Selmer groups 13
2.6. Selmer groups and duality over discrete valuation rings 15
3. Bipartite Euler systems 19
3.1. Admissible primes 19
3.2. Euler systems for anticyclotomic twists 20
3.3. Euler systems over discrete valuation rings 21
3.4. Euler systems over Λ 28
4. Geometry of modular Jacobians 30
4.1. Purely toric reduction of semistable abelian varieties 30
4.2. Multiplicity one 31
4.3. Shimura curves 33
4.4. Shimura sets 34
4.5. Special fibers of Shimura curves 35
4.6. Geometric level raising 37
4.7. CM points 39
5. Construction of bipartite Euler systems 42
5.1. The CM class construction 42
5.2. p-adic interpolation 45
5.3. Kolyvagin classes 46
6. Deformation theory 51

1



2 NAOMI SWEETING

6.1. Review of relative deformation theory 51
6.2. Patching adjoint Selmer groups 56
6.3. Annihilating two Selmer groups 57
7. Proof of main results: anticyclotomic main conjectures 60
7.1. Notation 60
7.2. A result of Skinner-Urban 62
7.3. The Heegner point main conjecture 64
8. Proof of main results: Kolyvagin’s conjecture and p-converse theorem 67
8.1. Nonvanishing of (κ(1, ·), λ(1, ·)) and p-converse theorem 67
8.2. Kolyvagin’s conjecture 67
8.3. Comparing periods 70
8.4. Ordinary cyclotomic Iwasawa theory 71
8.5. Non-ordinary Iwasawa theory 74
8.6. Proof of Theorem 8.1.1 76
Appendix A. Degrees of modular parametrizations and congruence numbers 77
A.1. Overview 77
A.2. Constructions and notations 77
A.3. Tamagawa factors and the method of Ribet-Takahashi 79
References 81
Declarations 83
Data 83

1. Introduction

Let f be a weight 2 cuspidal eigenform, new of level Γ0(N), without complex multiplication. The Birch
and Swinnerton-Dyer Conjecture predicts:

(1) r(Af/Q) = [Ef : Q] ords=1 L(f, s),

where Af is a representative of the isogeny class of GL2-type abelian varieties associated to f , r denotes the
Mordell-Weil rank, and Ef is the coefficient field of f . In pioneering works on this problem, Perrin-Riou [57]
and Kolyvagin [45, 46] studied ranks of elliptic curves over an auxiliary imaginary quadratic field K through
the theory of Heegner points on modular curves. We prove, in new cases, conjectures made by both authors.

Fix a quadratic imaginary field K, and a prime ℘ of Ef of residue characteristic p, with O = Of,℘ the
completion at ℘ of the ring of integers Of ⊂ Ef . Assume the following generalized Heegner hypothesis:

(Heeg) N = N+N−, where all ℓ|N+ are split in K, all ℓ|N− are inert in K, and N− is squarefree,

as well as:

(unr) p ∤ 2N disc(K).

The rational p-adic Tate module VpAf of Af is equipped with an action of Ef ; write Vf := VpAf ⊗Ef
Ef,℘

for the ℘-adic Galois representation attached to f , and let Tf ⊂ Vf be a Galois-stable O-lattice. We shall

assume that T f := Tf/℘Tf is absolutely irreducible as a representation of the Galois group GQ := Gal(Q/Q).
For purposes of exposition in this introduction, we sometimes assume:

(sclr) The image of the GQ action on T f contains a nontrivial scalar.

By [18, Lemma 6.1], (sclr) holds when p > 5.
To formulate Kolyvagin’s conjecture, we use the hypothesis

(disc) disc(K) ̸= −3,−4,

and that the number of prime factors ν(N−) is even. If m is a squarefree product of primes inert in K, one
can use Heegner points of conductor m on the Shimura curve XN+,N− to construct classes

c(m) ∈ H1(K,Tf/Im),
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where Im is the ideal of O = Of,℘ generated by ℓ + 1 and the ℓth Hecke eigenvalue aℓ(f) for all ℓ|m. (See
(4.3.1) for the definition of XN+,N− , and (5.3.4), (8.2.7) for the definition of c(m).) These classes are a mild
generalization of the ones constructed by Kolyvagin [46]. We are able to prove the following result towards
Kolyvagin’s conjecture that the system {c(m)} is nontrivial:

Theorem A (Corollary 8.2.8). Assume (Heeg), (unr), and (disc) hold for f, ℘, and K, and ν(N−) is even.
Suppose the following conditions hold:

(♢)



• The modulo ℘ representation T f associated to f is absolutely

irreducible; if p = 3, then T f is not induced from a character of
GQ(

√
−3).

• If p is inert in K, then there exists some prime ℓ0||N .
• If ap is not a ℘-adic unit, then there exist primes ℓi||N for i = 1, 2

(possibly with ℓ1 = ℓ2) such that T f |GQℓi
is ramified for i = 1, 2 and

T
GQℓ1

f = (T f⊗χK
)
GQℓ2 = 0, where f ⊗ χK is the quadratic twist.

Then there exists a nonzero Kolyvagin class

0 ̸= c(m) ∈ H1(K,Tf/Im).

As Kolyvagin observed, Theorem A can be used to give a description of the Selmer ranks r± = rkO Sel(K,Tf )
±,

where superscripts refer to the action of complex conjugation. Indeed, define the vanishing order of the sys-
tem {c(m)} as

(2) ν := min {ν(m) : c(m) ̸= 0}

where as before ν denotes the number of prime factors. Then we have:

Corollary B (Corollary 8.2.8). Under (sclr) and the assumptions of Theorem A,

max
{
r+, r−

}
= ν + 1.

Moreover r++r− is odd, and the larger eigenspace for complex conjugation has eigenvalue (−1)ν+1ϵf , where
ϵf is the global root number of f .

The latter two assertions can alternatively be deduced from the parity conjecture proven by Nekovár̆ [52].
Since c(1) ∈ Sel(K,Tf ) is the Kummer image of the classical Heegner point yK ∈ Af (K), the Gross-Zagier

formula implies that L′(f/K, 1) ̸= 0 if and only if c(1) ̸= 0, or equivalently if and only if yK is non-torsion.
Hence Corollary B yields a so-called p-converse theorem (in fact, under slightly weaker hypotheses):

Corollary C (Corollary 8.1.3). Assume that (Heeg), (unr), and Condition ♢ hold for f , ℘, and K, and
ν(N−) is even. Then L′(f/K, 1) ̸= 0 if and only if rkO Sel(K,Tf ) = 1, in which case Af has Mordell-Weil
rank [Ef : Q] over K.

Now suppose instead that ν(N−) is odd; it turns out that Kolyvagin’s construction, suitably modified,
may still be used to relate Selmer ranks and CM points. The Jacquet-Langlands correspondence associates
to f a quaternionic modular form

(3) ϕf : XN+,N− → Of ,

where XN+,N− is a double coset space for a definite quaternion algebra, usually called a Shimura set. (See
(4.4.2) for the definition.) If m is a squarefree product of primes inert in K, there exist analogues of CM
points of conductor m on XN+,N− . Using the values of ϕf at these points, we construct certain special
elements (well-defined up to units)

(4) λ(m) ∈ O/Im.

Here the ideal Im ⊂ O is as before; see (5.3.4) and (8.2.7) for the definition of λ(m). The analogues of
the elements λ(m) for p-power conductor have long been used in anticyclotomic Iwasawa theory, e.g. [3].
However, for squarefree m, a novel observation of this work is that the elements λ(m) encode the same
information about the Selmer ranks of Af/K as Kolyvagin’s classes c(m).



4 NAOMI SWEETING

Theorem D (Corollary 8.2.8). Suppose that (Heeg), (unr), (sclr), (disc), and Condition ♢ hold for f, ℘,
and K, and that ν(N−) is odd. Then the vanishing order

ν := min {ν(m) : λ(m) ̸= 0}
is finite and

ν = max
{
r+, r−

}
.

Moreover (−1)ν = ϵf and r+ + r− is even.

As before, the final statement is a consequence of the parity conjecture; we include it only to emphasize
that it follows from the non-vanishing of some λ(m), in analogy to the indefinite case.

1.1. Comparison to previous results. In the indefinite case, the first results towards Kolyvagin’s con-
jecture were obtained by Zhang [81], under a number of additional assumptions: that p ≥ 5, that the Galois
representation associated to T f is surjective, and additional hypotheses on the residual ramification. In

particular, under the hypotheses of [81], there exists a class c(m) whose reduction in H1(K,T f ) is nonzero;
this is not the case in general. In the definite case, the classes λ(m) are a novel feature of this work and
were not considered in [81]. Since the results of this paper were first announced, alternative approaches to
Kolyvagin’s conjecture have been introduced by Burungale, Castella, Grossi, and Skinner [7] in the split
ordinary case, and by Kim [43] in the ordinary case with surjective residual Galois representation and some
ramification conditions, based on various forms of the Iwasawa main conjectures for f . In the context of
multiplicative reduction, Kolyvagin’s conjecture has also been studied by Skinner and Zhang [69].

The converse theorem we obtain (Corollary C) is new in several cases, most notably when the image of the
Galois action on T f is dihedral, or when p = 3. A number of authors have also obtained p-converse theorems
by purely Iwasawa-theoretic methods, without first proving Kolyvagin’s conjecture; see for instance the work
of Skinner [70] and Wan [78] in the split ordinary case, Kim [42] in the ordinary case, Castella-Wan [17]
and Burungale-Büyükboduk-Lei [6] in the non-ordinary case, Burungale-Tian [11] and Burungale-Castella-
Skinner-Tian [10] in the CM case, Castella-Grossi-Lee-Skinner [15] in the residually reducible case, and
Venerucci [77] in the case of multiplicative reduction.

1.2. Iwasawa theory. Now suppose again that ν(N−) is even, and assume as well that ℘ is a prime of
ordinary reduction for f , with p split in K. While the Kolyvagin classes are constructed by varying the
conductor of CM points on XN+,N− over squarefree integers, one may instead p-adically interpolate CM
points of p-power conductor to obtain a class:

(5) κ∞ ∈ H1(K,Tf ⊗ Λ(Ψ)),

where Λ = OJGal(K∞/K)K is the anticyclotomic Iwasawa algebra, given Gal(K/K)-action by the tautolog-
ical character Ψ. (Note that the specialization of κ∞ at the trivial character is a multiple of c(1).) The
methods used to prove Theorem A also yield a result towards Perrin-Riou’s Heegner point main conjecture.
To state it, let Wf be the p-divisible GQ-module Vf/Tf .

Theorem E (Corollary 7.3.2). Suppose that (Heeg), (unr), and Condition ♢ hold for f, ℘, and K, and
that ν(N−) is even. Suppose further that ap is a ℘-adic unit and p splits in K. Then there is a pseudo-
isomorphism of Λ-modules:

Sel(K∞,Wf )
∨ ≈ Λ⊕M ⊕M

for some torsion Λ-module M , and

charΛ

(
Sel(K,Tf ⊗ Λ)

Λ · κ∞

)
= charΛ(M)

as ideals of Λ⊗Qp. If (sclr) holds, then the equality is true in Λ.

For precise definitions of the above Selmer groups and of κ∞, which is denoted κ(1) in the text, see §5.2.
Finally, we have the following result on the anticyclotomic main conjecture for f when ν(N−) is odd.

Evaluating the quaternionic modular form ϕf on CM points of p-power conductor on the Shimura set
XN+,N− , one constructs the algebraic p-adic L-function

(6) λ∞ ∈ Λ,

denoted λ(1) in the text. The square of λ∞ has an interpolation property for twisted L-values of f .
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Theorem F (Corollary 7.3.3). Suppose that (Heeg), (unr), and Condition ♢ hold for f, ℘, and K, and that
ν(N−) is odd. Suppose further that ap is a ℘-adic unit and p splits in K. Then there is a pseudo-isomorphism
of Λ-modules:

Sel(K∞,Wf )
∨ ≈M ⊕M

for some torsion Λ-module M , and
(λ∞) = charΛ(M)

as ideals of Λ⊗Qp. If additionally (sclr) holds, then the equality is true in Λ.

One direction of this equality is due to Skinner-Urban’s work on the Iwasawa main conjecture [71]; indeed,
along with [29] in the non-ordinary case, this is an essential ingredient in all of our results, as explained below.

1.3. Comparison to previous results. The hypotheses in Zhang’s proof of Kolyvagin’s conjecture were
carried over to Burungale, Castella, and Kim’s proof [8] of the lower bound on the Selmer group in the
Heegner point main conjecture, where it was also assumed that p is not anomalous. While the methods
used in this paper build on those of [8], Castella and Wan [16] have used a different method to prove a
three-variable main conjecture when ν(N−) is even. Their result also requires some hypotheses on residual
ramification avoided here, and that N be squarefree. (Also see the references cited in §1.1 for several results
on the Heegner point main conjecture in other contexts.)

For upper bounds on the Selmer group in Theorem E and Theorem F, various technical assumptions on
the residual representation and on the image of the Galois action were used in prior works by Bertolini and
Darmon [3] and Howard [37, 38], and in Chida-Hsieh’s higher-weight generalization [18].

Since the results of this paper were first announced, Burungale, Castella, and Skinner [9] have also given
an independent proof of Theorem E when N− = 1 and p > 3 using base change.

1.4. Overview of the proofs. To prove Theorems A and D, we extend Kolyvagin’s construction to a larger
system of classes

(7) c(m,Q1) ∈ H1(K,Tf/℘
M ), λ(m,Q2) ∈ O/℘M ,

where M is a fixed integer, and m,Q1, Q2 are squarefree products of auxiliary primes satisfying certain
congruence conditions, such that ν(N−Q1) is even and ν(N−Q2) is odd. The classes (7) form a bipartite
Euler system in the sense of Howard [38] for each fixed m and a Kolyvagin system for each fixed Q1. If
ν(N−) itself is even, then the classes c(m, 1) = c(m) agree with Kolyvagin’s original construction. The Euler
system relations are of the form:

(8) locq c(m,Q1) ∼ λ(m,Q1q) ∼ ∂q′c(m,Q1qq
′),

where q, q′ are two additional auxiliary primes not dividing Q1; and

(9) loc±ℓ c(m,Q1) ∼ ∂∓ℓ c(mℓ,Q1),

where ℓ is an additional auxiliary prime not dividing m. Here locq, ∂q′ , loc
±
ℓ , ∂

±
ℓ are certain localization

maps landing in subspaces of the local cohomology free of rank one over O/℘M . The classes c(m,Q1) were
introduced by Zhang, although the λ(m,Q2) are only implicit in [81].

If c(m,Q1) ̸= 0, then one can use (8) and (9) to find an auxiliary ℓ — either prime or equal to 1 —
such that ∂qc(mℓ,Q1) ̸= 0 for some q|Q1. By (8), this implies λ(mℓ,Q1/q) ̸= 0. On the other hand, if
λ(m,Q2) ̸= 0 and q|Q2, then by (8) c(m,Q2/q) ̸= 0. Combining these two observations, we reduce the
non-vanishing of some class c(m, 1) or λ(m, 1) — depending on the parity of ν(N−) — to exhibiting a single
Q2 such that λ(1, Q2) ̸= 0.

Now, if there exists a newform g of level NQ2 with a congruence to f modulo ℘M , then λ(1, Q2) is
essentially the reduction of the algebraic part of the L-value Lalg(g/K, 1) modulo ℘M , which is related to the
length of the Selmer group of g by the Iwasawa main conjecture [71, 29]. To complete the proof, it therefore
suffices to choose a suitable Q2 and construct such a g with a small Selmer group. We remark that our
results can only be obtained by working modulo ℘M for a large M , since in general it will not be possible to
choose g such that Lalg(g/K, 1) is a ℘-adic unit; in [81], M = 1 is fixed throughout, and the need to show
that the L-value is a unit is responsible for most of the additional hypotheses.

To construct g, we use deformation-theoretic techniques developed by Ramakrishna [59], and extended by
Fakhruddin-Khare-Patrikis [28]. Standard level-raising methods work by producing a modulo ℘ eigenform
of the desired level, and then using that all modulo ℘ eigenforms lift to characteristic zero, but this is not
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the case modulo ℘M . Instead, we deform the representation Tf/℘
M to a ℘-adic Galois representation of a

suitable auxiliary level, and then apply modularity lifting to ensure the resulting representation is modular.
The auxiliary level Q2 must be chosen to control two Selmer groups: the adjoint Selmer group governing
the deformation problem, and the Selmer group Sel(K,Wg) that is related to the L-value. (Here, Wg is the
p-divisible Galois module constructed analogously to Wf = Vf/Tf .)

We now make some remarks on the construction of the Euler system. The elements c(m,Q1) (resp.
λ(m,Q2)) are constructed from CM points of conductor m on the Shimura curve XN+,N−Q1

(resp. Shimura
set XN+,N−Q2

), associated to the indefinite quaternion algebra over Q with discriminant N−Q1 (resp. the
definite quaternion algebra with discriminant N−Q2). Similar Euler system constructions have been made by
many authors, e.g. in [18, 3] as well as in [81], but all have relied on certain hypotheses ensuring an integral
multiplicity one property for the space of algebraic modular forms on XN+,N−Qi

, which we do not impose
here. Instead, we obtain a control on the failure of multiplicity one, using the work of Helm [35] on maps
between Jacobians of modular curves and Shimura curves. The construction of the Euler system is intimately
related to level-raising, and so our method also improves results on level-raising of f to algebraic eigenforms
modulo ℘M new at multiple auxiliary primes, which had previously been restricted to the multiplicity one
case. A precise statement is given in Theorem 4.6.7.

The proof of Theorem E is similar to that of Theorem A: the p-adically interpolated Heegner class κ∞
is viewed as the bottom layer of an Euler system {κ(Q1),λ(Q2)}. (The squarefree conductor m no longer
plays a role.) If g, as above, is a newform of level NQ2 with a congruence to f , then λ(Q2) is congruent to
Bertolini and Darmon’s anticyclotomic p-adic L-function of g [3]. Using this and an Euler system argument,
we reduce the lower bound on the Selmer group in the Heegner point main conjecture to the lower bound on
the Selmer group in the anticyclotomic main conjecture for g, which was proven in [71]. Finally, the upper
bound on the Selmer group in Theorems E and F follows by standard arguments from the construction of
the Euler system.

In the text, the arguments described above are phrased in the language of ultrapatching, which amounts
to a formalism for letting M tend to infinity; this also forces each prime factor of m, Q1, Q2 to tend to
infinity in order to satisfy the congruence conditions. (The number of prime factors of m, Q1, and Q2

remains bounded.) This method was inspired by [67], where ultrapatching was applied to the Taylor-Wiles
construction. Our setting is different in that we patch Galois cohomology groups and Selmer groups rather
than geometric étale cohomology groups. The benefit of ultrapatching is that it allows us to consider the
Euler system classes as characteristic zero objects in patched Selmer groups, significantly streamlining the
Euler system arguments. For instance, with patching, we are able to make precise the heuristic that the
non-vanishing of each Euler system class c(m,Q1) or λ(m,Q2) is equivalent to the (m,Qi)-transverse Selmer
group being rank one or zero, respectively, cf. Lemma 8.2.4.

Structure of the paper. In §2, we review basic properties of ultrafilters and introduce patched cohomology
and Selmer groups. In §3, we present a simplified version of the theory of bipartite Euler systems that
appeared in [38], using patched cohomology. In §4, we establish the geometric inputs that will be used to
construct bipartite Euler systems: the work of Helm on maps between modular curves and Shimura curves,
the modulo ℘M level-raising result, and the behavior of Heegner points on Shimura curves under reduction
and specialization. In §5, we present a general framework for constructing bipartite Euler systems out of
CM points, which we then specialize for our applications. In §6, we give the deformation-theoretic input to
construct the newform g (in fact a sequence gn satisfying increasingly deep congruence conditions). We then
prove Theorems E and F in §7. Theorems A and D are proven in §8. Finally, in the appendix we generalize
some results on degrees of modular parametrizations, proved in special cases by Ribet-Takahashi [64] and
Khare [41, §3.2]. These results are needed to compare different normalizations of periods in §8.

1.5. Notational conventions.

• If N is a squarefree positive integer, then ν(N) denotes its number of prime factors.
• If L is an algebraic extension of Q, we write GL = Gal(L/L) for its absolute Galois group.
• If L is a number field, we write AL (resp. Af,L) for its ring of adèles (resp. finite adèles). If v is
a place of L, then we write GLv

for the absolute Galois group of the completion Lv, and Iv ⊂ GLv

for the inertia subgroup if v is nonarchimedean. We write OL for the ring of integers of L and OL,℘
(resp. OL,(℘)) for the completion (resp. localization) at a prime ideal ℘ ⊂ OL. If Σ is a finite set

of places of L, then LΣ denotes the largest algebraic extension of L unramified outside Σ. If Σ is a
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finite set of places of Q and ΣL is the set of places of L lying over places in Σ, then we abbreviate
LΣ := LΣL .

• The symbol Frobv always denotes an arithmetic Frobenius element.
• If L is a number field and A is a GL-module, then L(A) is the smallest algebraic extension of L such
that GL(A) acts trivially on A.

• We fix, for each place v of Q, an embedding Q ↪→ Qv, which induces an embedding GQv
↪→ GQ.

• For most of the paper, we will fix a quadratic imaginary field K ⊂ Q ⊂ C. In this case we also fix
embeddings K ↪→ Kw for all places w of K, which induce embeddings GKw

↪→ GK . If w is induced
by a place v of Q and the embedding K ⊂ Q ↪→ Qv chosen above, then we make these choices
compatibly with the ones for Q, so that GKw is a subgroup of GQv .

• The p-adic cyclotomic character is denoted χ : GQ → Z×p .
• Starting in §3, we shall fix a cuspidal eigenform f of weight 2 and trivial character, new of level
N , and without complex multiplication. For all primes ℓ, let aℓ(f) be the ℓth coefficient of the
normalized q-expansion of f , and let ϵf = ±1 be the global root number. We denote by Of ⊂ C the
ring of integers of the number field generated over Q by the Fourier coefficients aℓ(f). We denote by
℘ a prime of Of lying over an odd prime p; except in §6, we also assume p ∤ N . We write O for the
completion of Of at ℘, and let E = Frac(O). We let π ∈ O be a uniformizer.

• For f as above, we denote by Vf the ℘-adic Galois representation associated to f , defined in the
beginning of this introduction. Fix a GQ-stable O-lattice Tf ⊂ Vf . We will always assume that

T f := Tf/π is absolutely irreducible, in which case Tf is determined up to rescaling. We also write
Wf = Tf ⊗O E/O ∼= Vf/Tf .

Acknowledgments. I am grateful to Mark Kisin for suggesting this problem and for his ongoing encourage-
ment. Special thanks are additionally due to Francesc Castella, who first alerted me to the relation between
Kolyvagin’s conjecture and the Heegner point main conjecture. It is also a pleasure to thank many other
people with whom I had helpful conversations and correspondence over the course of this project: Olivier
Fouquet, Aaron Landesman, Alice Lin, Sam Marks, Alexander Petrov, Robert Pollack, Christopher Skinner,
Alexander Smith, Florian Sprung, Matteo Tamiozzo, Xin Wan, and Calvin Yost-Wolff. Finally, I wish to
thank the anonymous referees for their careful reading and many valuable suggestions which have led to
many improvements in the exposition. This work was supported by NSF Grant #DGE1745303.

2. Ultrafilters and patching

2.1. Ultraproducts. The following discussion is inspired by the unpublished notes of Manning [48, §I.1].

2.1.1. A (non-principal) ultrafilter F for the natural numbers N = {0, 1, . . .} is a collection of subsets of N
satisfying the following properties:

(1) Every set S ∈ F is infinite.
(2) For every S ⊂ N, either S ∈ F or N− S ∈ F.
(3) If S1 ⊂ S2 ⊂ N and S1 ∈ F, then S2 ∈ F.
(4) If S1, S2 ∈ F, then S1 ∩ S2 ∈ F.

Throughout this paper, we fix once and for all a non-principal ultrafilter F on N, which is possible assuming
the axiom of choice. We will say that a statement P holds for F-many n ∈ N if the set S of n for which P
holds lies in F.

Proposition 2.1.2. Suppose that C is a finite set and S ⊂ N lies in F. Then for any function t : S → C,
there is a unique c ∈ C such that t(n) = c for F-many n.

Proof. The function t defines a finite partition of N:

N = (N− S) ⊔
⊔
c∈C

t−1(c).

An easy induction argument shows that, for any partition of N into a finite number sets, exactly one of the
sets lies in F. Since N− S ̸∈ F, the result follows. □
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2.1.3. If M = {Mn}n∈N is a sequence of sets indexed by N, then F defines an equivalence relation ∼ on∏
Mn:

(mn)n∈N ∼ (m′n)n∈N ⇐⇒ {n : mn = m′n} ∈ F.

The quotient
∏
Mn/ ∼ is called the ultraproduct of the sequence M and is denoted U(M). The ultra-

product is functorial: let M′ = {M ′n} be another sequence of sets and suppose given, for F-many n, maps
φn : Mn → M ′n. Then there is a natural map φU : U(M) → U(M′). In particular, if each Mn is endowed
with the structure of an abelian group (resp. R-module for a fixed ring R), then U(M) is naturally an
abelian group (resp. R-module).

Proposition 2.1.4. (1) Let M = {Mn}n∈N and M′ = {M ′n}n∈N be sequences of nonempty sets, and
suppose given maps φn : Mn →M ′n for F-many n. If φn is injective (resp. surjective, bijective) for
F-many n, then φU is injective (resp. surjective, bijective).

(2) Let M be a finite set and suppose M = {M}n∈N is the constant sequence. Then the diagonal map
M → U(M) is an isomorphism.

(3) Suppose M = {Mn}n∈N, where each Mn is a nonempty finite set such that #Mn < C for F-many
n. Then U(M) is finite and #U(M) = #Mn for F-many n.

Proof. (1) Suppose φn is injective for F-many n and let m,m′ ∈ U(M) be the equivalence classes of
sequences (mn)n∈N and (m′n)n∈N. If φU (m) = φU (m′), then for F-many n, φn(mn) = φn(m

′
n).

Hence for F-many n, mn = m′n, so m = m′ in U(M). Therefore φU is injective.
Now suppose φn is surjective for F-many n, and let m′ ∈ U(M′) be an element represented by

(m′n)n∈N. We will show that m′ lies in the image of φU . Let S ∈ F be such that φn is surjective for
n ∈ S. Define a new sequence (mn)n∈N by choosing mn ∈ Mn arbitrarily for n ̸∈ S, and choosing
mn ∈Mn such that φn(mn) = m′n for n ∈ S. Then the equivalence class m of this sequence satisfies
φU (m) = m′. Hence, φU is surjective.

(2) The diagonal map is clearly injective, and it is surjective by Proposition 2.1.2.
(3) By Proposition 2.1.2, there exists some c < C such that #Mn = c for F-many n. Let [c] =
{0, . . . , c− 1} and choose isomorphisms of sets

φn :Mn
∼−→ [c]

for F-many n. By (1), φU induces an isomorphism from U(M) to the ultraproduct C of the constant
sequence {[c]}n∈N. However, C is canonically isomorphic to [c] by (2).

□

Proposition 2.1.5. Let S be the category of sequences of abelian groups indexed by N. Then U is exact as
a functor from S to the category of abelian groups.

Proof. Let A = (An)n∈N, B = (Bn)n∈N, and C = (Cn)n∈N be three sequences of abelian groups, and suppose
given exact sequences

0→ An
φn−−→ Bn

ψn−−→ Cn → 0

for all n ∈ N. We wish to show that

0→ U(A) φU

−−→ U(B) ψU

−−→ U(C)→ 0

is exact. By Proposition 2.1.4(1), it suffices to show that the kernel of ψU is the image of φU . Suppose
(bn)n∈N represents an element b ∈ kerψU . Then, by definition, ψn(bn) = 0 for F-many n, so for F-many
n there exists an ∈ An with φn(an) = bn. Hence, there exists a sequence (an)n∈N representing an element
a ∈ U(A) with φU (a) = b. We have shown that kerψU ⊂ imφU . Since the opposite inclusion is clear, this
completes the proof. □

2.2. Ultraprimes.
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2.2.1. Fix a number field L with algebraic closure L and let ML be its set of places. For each s ∈ ML, we
assume fixed an embedding L ↪→ Ls, which identifies GLs with a subgroup of GL.

1 If ML is the constant
sequence of sets {ML}n∈N, then we define the set of ultraprimes of L as

ML = U(ML).

By definition, an ultraprime s ∈ ML is an equivalence class of sequences (sn)n∈N, where each sn is a place of
L.

The map s 7→ (s, s, . . .) induces an embedding ML ↪→ ML, written s 7→ s, and we say an ultraprime is
constant if it lies in the image of this embedding.

We will say s ∈ ML is archimedean if it is a constant ultraprime s = s for an archimedean place s of L; s
is non-archimedean otherwise.

Proposition 2.2.2. Let s be a non-constant ultraprime. Then there exists a unique Frobenius element
Frobs ∈ GL with the following property: for each finite Galois extension L ⊂ E ⊂ L, and for any repre-
sentative (sn)n∈N of s, there are F-many n such that sn is unramified in E/L and the Frobenius of sn in
Gal(E/L) is the natural image of Frobs.

Proof. Let (sn)n∈N be a representative of s, and fix for the time being a finite Galois extension E/L inside
L. If sn is archimedean or ramified in E for F-many n, then Proposition 2.1.2 implies that s is constant.
Thus for F-many n, the Frobenius of sn is a well-defined element of Gal(E/L) (determined exactly, and
not only up to conjugacy, by the fixed embeddings E ↪→ L ↪→ Lsn). By Proposition 2.1.2, the map
n 7→ Frobsn ∈ Gal(E/L) sends F-many n to a (unique) common value gE ∈ Gal(E/L). Note that gE does
not depend on the representative (sn)n∈N. By the uniqueness of gE , the association E 7→ gE is compatible
with restriction to subextensions E′ ⊂ E, hence defines an element of the absolute Galois group. □

2.2.3. Let s be an ultraprime. We define its abstract Galois group Gs as GLs if s = s is constant, and as the
semi direct product

Ẑ(1)⋊ ⟨Frobs⟩
otherwise. Here, ⟨Frobs⟩ denotes the free profinite group on one generator, where the generator acts on Ẑ(1)
by Frobs ∈ GL. We define the inertia group Is ⊂ Gs of s to be the usual inertia group if s is constant, and

the normal subgroup Ẑ(1) ⊂ Gs otherwise.

2.3. Local cohomology.

2.3.1. For any (topological) GL-module A and for any s ∈ ML, there is a natural action of Gs on A (factoring
through the quotient Gs → ⟨Frobs⟩ if s is nonconstant). We define local cohomology groups by:

Hi(Ls, A) := Hi(Gs, A),

Hi(Is, A) := Hi(Is, A), i ≥ 0,

where on the right-hand side we take continuous cochain cohomology. (In particular, for all s ∈ ML,
Hi(Ls, A) = Hi(Ls, A).)

Proposition 2.3.2. Let s ∈ ML be an ultraprime represented by a sequence (sn)n∈N. If A is a finite, discrete
GL-module unramified outside finitely many primes, then for F-many n there are canonical isomorphisms
(functorial in A, compatible with cup products, and compatible with the natural restriction maps):

Hi(Lsn , A) ≃ Hi(Ls, A),

Hi(Isn , A) ≃ Hi(Is, A), i ≥ 0.

Proof. If s is the constant ultraprime s, then sn = s for F-many n, and the desired isomorphisms are given
by Proposition 2.1.4(2); so suppose s is nonconstant. For F-many n, the action of the decomposition group
Gsn at sn on A is unramified and the Frobenius of sn acts by Frobs. Let ℓn be the prime of Q lying under
sn; since L/Q is a finite extension and A is finite, for F-many n we have ℓn ∤ |A|. Restricting to these n, the
inflation map induces isomorphisms:

Hi(Gtsn , A) ≃ H
i(Lsn , A), Hi(Itsn , A) ≃ H

i(Isn , A),

1We will usually apply this formalism with L = Q or L = K, in which case the choices of embeddings L ↪→ Ls are fixed

according to the conventions of §1.5.
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where Gtsn and Itsn denote the tame quotients and we again take continuous cochain cohomology. The tame
Galois group Gtsn is identified with the semidirect product:

Itsn ⋊ ⟨Frobsn⟩ ≃ Ẑ(ℓn)(1)⋊ ⟨Frobsn⟩.

In particular, both Gtsn and Gs have cohomological dimension two; and both Itsn and Is have cohomological
dimension one. So it suffices to prove the first isomorphism of the proposition when i ≤ 2 and the second

when i ≤ 1. Now note that, on any finite quotient of Ẑ(1), the actions of Frobsn and Frobs agree for F-many
n. The proposition therefore follows from the following easy lemma in group cohomology (applied to both
Gtsn and Gs). □

Lemma 2.3.3. Let G = I ⋊ ⟨F ⟩ be a group, where I is abelian and profinite of cohomological dimension at
most one, and ⟨F ⟩ denotes the free profinite group on one generator, acting on I by an automorphism. If A
is a finite Z[F ]-module, viewed as a G-module via G ↠ ⟨F ⟩, then there are canonical isomorphisms for the
continuous cochain cohomology:

Hi(I, A) = Hi(I/|A|, A), i = 0, 1,

Hi(G,A) = Hi(I/|A|⋊ ⟨F ⟩, A), i = 0, 1,

H2(G,A) = H1(⟨F ⟩,Hom(I/|A|, A)),

Proof. The only identities that are not immediate are for Hi(G,A), with i = 1, 2. For i = 1, we claim that
the inflation map induces an isomorphism

H1(I/|A|⋊ ⟨F ⟩, A) ∼−→ H1(G,A).

Equivalently, if H := |A|I ⊂ G, we wish to show that the restriction map H1(G,A) → H1(H,A) is trivial.
Indeed, the restriction map factors throughH1(I, A)→ H1(H,A), which is the zero map since I acts trivially
on A.

For i = 2, the Hochschild-Serre spectral sequence gives a canonical isomorphism

H2(G,A) = H1(⟨F ⟩, H1(I, A)) = H1(⟨F ⟩,Hom(I/|A|, A)),

since both ⟨F ⟩ and I have cohomological dimension at most 1.
□

2.4. Patched cohomology.

2.4.1. Let S ⊂ ML be a finite set of ultraprimes
{
s(1), s(2), . . . , s(r)

}
. A representative of S is a sequence

(Sn)n∈N, with Sn ⊂ ML, such that Sn =
{
s
(1)
n , · · · , s(r)n

}
for some sequences (s

(i)
n )n∈N representing s(i). If

L = Q and S contains no archimedean ultraprimes, we will also refer to S being represented by the sequence
of squarefree integers

∏
ℓn∈Sn

ℓn. If A is a GL-module, we say A is unramified outside S ⊂ ML if it is
unramified outside S ∩ML.

Definition 2.4.2. Let A be a finite GL-module unramified outside a finite set S ⊂ ML, represented by a
sequence (Sn)n∈N with Sn ⊂ ML. Then we define the ith unramified-outside-S patched cohomology, for all
i ≥ 0, by:

Hi(LS/L,A) = U
({
Hi(LSn/L,A)

}
n∈N

)
.

Remark 2.4.3. When i = 0, the patched cohomology H0(LS, A) is canonically isomorphic to H0(L,A).

Proposition 2.4.4. Let A be a finite GL-module unramified outside a finite set S ⊂ ML. Then:

(1) The patched cohomology Hi(LS/L,A) is independent of the choice of representative (Sn)n∈N of S.
(2) The maps A 7→ Hi(LS/L,A) are functorial in A.

(3) Given a finite set S′ ⊂ ML containing S, there is a natural map Hi(LS/L,A) → Hi(LS′
/L,A),

compatible with the functoriality of (2).
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Proof. Given two sequences (Sn)n∈N and (Tn)n∈N ⊂ML representing S, we have Sn = Tn for F-many n; for
these n we have

Hi(LSn/L,A) = Hi(LTn/L,A).

Hence Proposition 2.1.4(1) shows that U
({
Hi(LSn/L,A)

}
n∈N

)
and U

({
Hi(LTn/L,A)

}
n∈N

)
are canoni-

cally isomorphic. This shows (1); (2) and (3) are immediate from the functoriality of the ultraproduct. □

Lemma 2.4.5. Let A be a finite GL-module unramified outside a finite set S ⊂ ML. Then Hi(LS/L,A) is
finite for all i ≥ 0.

Proof. By Proposition 2.1.4(3), it suffices to show that the cardinality of Hi(LS/L,A) remains bounded as
S ranges over finite sets of ML of cardinality |S| such that A is unramified outside S. This is clear when
i = 0, and the case i ≥ 3 is handled by [51, Chapter 1, Theorem 4.10(c)]. For i = 1 and 2, let S0 be the set
of primes at which A is ramified, or with residue characteristic dividing |A|. Now the map

Hi(LS/L,A)→
∏

v∈S∪S0

Hi(Lv, A)

has kernel contained in Xi
S0
(A), which is finite by part (a) of loc. cit. Moreover S0 is finite and Hi(Lv, A)

is finite for all v ∈ S0. For v ∈ S \ S0, we have |Hi(Lv, A)| ≤ |A|2 by the local Euler characteristic formula
and local Poitou-Tate duality; hence

|Hi(LS/L,A)| ≤ |Xi
S0
(A)| ·

∏
v∈S0

|Hi(Lv, A)| · |A|2|S|,

which gives the desired uniform bound. □

2.4.6. Suppose A is a topological GL-module unramified outside a finite set S ⊂ ML. If A is profinite, then
its unramified-outside-S patched cohomology is defined as:

Hi(LS/L,A) = lim←−
A↠A′

Hi(LS/L,A′)

where the inverse limit runs over finite quotients and the transition maps are induced by Proposition 2.4.4(2).
Similarly, if A is ind-finite, then its unramified-outside-S patched cohomology is defined as

Hi(LS/L,A) = lim−→
A′⊂A

Hi(LS/L,A′),

where the direct limit runs over finite submodules. If A is finite, then both these definitions recover Definition
2.4.2. If A is either profinite or ind-finite, then the totally patched cohomology is defined as

Hi(L,A) = lim−→
S⊂T⊂ML

Hi(LT/L,A),

where the direct limit is over finite subsets such that A is unramified outside S and the transition maps are
induced by Proposition 2.4.4(3).

By construction, the maps A 7→ Hi(LS/L,A) and A 7→ Hi(L,A) are functorial in topological GL-modules
which are either profinite or ind-finite.

Definition 2.4.7. A profinite topological GL-module A is said to be countably profinite if it admits only
countably many finite quotients, or equivalently, if it admits a presentation as a countable inverse limit of
finite discrete GL-modules.

Lemma 2.4.8. Suppose A is countably profinite. Then for all i ≥ 0, the natural map induces an isomorphism

Hi(Ls, A) ≃ lim←−
A↠A′

Hi(Ls, A
′)

where the inverse limit runs over finite quotients of A. Similarly, if A is ind-finite, then for all i ≥ 0, the
natural map induces an isomorphism

Hi(Ls, A) ≃ lim−→
A′⊂A

Hi(Ls, A
′)

where the inverse limit runs over finite sub-GL-modules of A.
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Proof. In the countably profinite case, this follows from [55, Corollary 2.7.6] applied to Gs. In the ind-finite
case, it is clear by the exactness of direct limits. □

2.4.9. Suppose A is a topologicalGL-module which is ind-finite or countably profinite, and unramified outside
a finite set S ⊂ ML; let s ∈ ML be any ultraprime. Using Lemma 2.4.8, we can define localization maps

ResSs : Hi(LS/L,A)→ Hi(Ls, A)

Ress : H
i(L,A)→ Hi(Ls, A)

as follows.

• If A is finite, define ResSs as the composite

Hi(LS/L,A) = U
({
Hi(LSn/L,A)

}
n∈N

)
→ U

({
Hi(Lsn , A)

}
n∈N

)
≃ Hi(Ls, A),

where (sn)n∈N and (Sn)n∈N are sequences representing s and S and the last isomorphism is by
Proposition 2.3.2.

• If A is countably profinite, define ResSs as the composite

Hi(LS/L,A) = lim←−
A↠A′

Hi(LS/L,A′)
ResSs−−−→ lim←−

A↠A′
Hi(Ls, A

′) ≃ Hi(Ls, A),

where the inverse limit runs over finite quotients of A and the last isomorphism is by Lemma 2.4.8.
• If A is ind-finite, similarly define ResSs as the composite

Hi(LS/L,A) = lim−→
A′⊂A

Hi(LS/L,A′)
ResSs−−−→ lim−→

A′⊂A
Hi(Ls, A

′) ≃ Hi(Ls, A),

where the direct limit runs over finite submodules of A.
• Suppose S′ ⊃ S is a finite subset of ML. By construction ResSs coincides with the composite

Hi(LS/L,A)→ Hi(LS′
/L,A)→ Hi(Ls, A);

hence we obtain a well-defined map

Ress : H
i(L,A)→ Hi(Ls, A).

We now observe that patched cohomology recovers the usual Galois cohomology when S contains only
constant ultraprimes.

Proposition 2.4.10. Suppose A is a countably profinite or ind-finite topological GL-module unramified
outside a finite set S ⊂ML; let S ⊂ ML be the corresponding set of constant ultraprimes. Then:

(1) Hi(LS/L,A) is canonically isomorphic to Hi(LS/L,A).
(2) If s ∈ML is any place and s = s is the corresponding constant ultraprime, then the restriction map

Ress : H
i(LS/L,A)→ Hi(Ls, A) = Hi(Ls, A)

coincides with the usual one under the identification of (1).

Proof. If A is finite, (1) is immediate from the definition; the general case of (1) follows by taking limits,
using [55, Corollary 2.7.6] in the countably profinite case. (The finiteness condition there is satisfied by
Lemma 2.4.5.) Given (1), (2) is clear from the definition.

□

Proposition 2.4.11. If A is either countably profinite or ind-finite, then, for all i, the natural map
Hi(LS/L,A)→ Hi(L,A) identifies Hi(LS/L,A) with the kernel of the composition

Hi(L,A)
Ress−−−→

∏
s∈ML−S

Hi(Ls, A)→ Hi(Is, A).

Proof. It suffices to show that, for all finite sets T ⊂ ML − S,

Hi(LS/L,A) ≃ ker

(
Hi(LS∪T, A)→

∏
s∈T

Hi(Is, A)

)
.

This holds when A is finite by Propositions 2.1.5 and 2.3.2; the general case follows by taking limits. □
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Lemma 2.4.12. Let

0→ A→ B → C → 0

be an exact sequence of either countably profinite or ind-finite GL-modules unramified outside S. Then there
is an induced long exact sequence beginning:

0→ H0(LS/L,A)→ H0(LS/L,B)→ H0(LS/L,C)→

→ H1(LS/L,A)→ H1(LS/L,B)→ · · ·

Proof. If A, B, and C are all finite, then this follows from Proposition 2.1.5.
Now suppose that A, B, and C are all profinite. Let I, J , and K be directed sets indexing the finite

quotients A↠ Ai, B ↠ Bj , and C ↠ Ck, respectively. We define morphisms of directed sets t : J → I and
s : J → K by

At(j) = im(A→ Bj), Cs(j) = Bj/At(j).

Because the subgroup and quotient topologies on A and C agree with the profinite topologies, the images of
t and s are cofinal in I and K, respectively. We therefore have:

H∗(LS/L,A) = lim←
j∈J

H∗(LS/L,At(j)), H∗(LS/L,C) = lim←
j∈J

H∗(LS/L,Cs(j)).

For each j, the finite case of the lemma yields a long exact sequence in patched cohomology associated to
the short exact sequence of finite GL-modules

0→ At(j) → Bj → Cs(j) → 0;

by Lemma 2.4.5, each term in the long exact sequence is finite. Since countable inverse limits of finite abelian
groups are exact, taking limits completes the proof. The ind-finite case is analogous. □

The following lemma will be needed in the proof of Corollary 8.2.8 below.

Lemma 2.4.13. Let A be a countably profinite or ind-finite GL-module unramified outside a finite set S. If
s ̸∈ S has Frobs = 1 ∈ GL, then Ress H

1(LS/L,A) = 0.

One can easily show using the Chebotarev density theorem that there are infinitely many s ∈ ML with
Frobs = 1, so the lemma is not vacuous.

Proof. Without loss of generality, we may assume A is finite. Let S and s be represented by sequences
(Sn)n∈N and (sn)n∈N, respectively, with sn ̸∈ Sn. Because A is finite, a class c ∈ H1(LS/L,A) is represented
by a sequence of cocycles cn ∈ H1(LSn/L,A). The restriction of cn to GL(A) is a homomorphism GL(A) → A;
let L(cn) be the fixed field of its kernel, which is a finite extension of L. Then for F-many n, sn is unramified
in L(cn)/L with Frobsn = 1 ∈ Gal(L(cn)/L). For these n, Ressn cn ∈ H1(Lsn , A) is the trivial unramified
cocycle Frobsn 7→ 0. Hence Ressn cn = 0 for F-many n, which shows Ress c = 0. □

2.5. Selmer structures and patched Selmer groups.

2.5.1. For any topological GL-module A and any ultraprime s ∈ ML, define

H1
unr(Ls, A) := ker

(
H1(Ls, A)→ H1(Is, A)

)
.

Definition 2.5.2. Let A be a countably profinite or ind-finite Zp[GL]-module. A (generalized) Selmer
structure (F ,S) for A consists of:

• a finite set S ⊂ ML, containing all constant ultraprimes s = s with s lying over p or ∞, such that A
is unramified outside S;

• for each s ∈ ML, a closed Zp-submodule (the local condition)

H1
F (Ls, A) ⊂ H1(Ls, A)

such that H1
F (Ls, A) = H1

unr(Ls, A) for all s ̸∈ S.

If A is an R-module for some ring R and GL acts on A by R-module automorphisms, then the patched local
and global cohomology groups inherit an R-module structure; a Selmer structure for A over R is a Selmer
structure such that every local condition is an R-submodule.



14 NAOMI SWEETING

2.5.3. If B ⊂ A is any closed Galois-stable submodule, then a Selmer structure (F ,S) for A induces Selmer
structures on B and A/B defined in the usual way:

H1
F (Ls, B) = ker

(
H1(Ls, B)→ H1(Ls, A)

H1
F (Ls, A)

)
,

H1
F (Ls, A/B) = im

(
H1
F (Ls, A)→ H1(Ls, A/B)

)
.

Note that these Selmer structures are well-defined because, if s ̸∈ S, then the unramified local condition for
A at s induces the unramified local condition for B and A/B; the proof is the same as for [49, Lemma 1.1.9].

2.5.4. To a generalized Selmer structure we associate the patched Selmer group, defined by the exact
sequence:

(10) 0→ SelF (A)→ H1(LS/L,A)→
∏
s∈S

H1(Ls, A)

H1
F (Ls, A)

.

By Proposition 2.4.11, SelF (A) does not depend on S but only on the local conditions, so we sometimes omit
S from the notation. By Proposition 2.4.10, if S consists only of constant ultraprimes, then this definition
recovers the usual notion of Selmer groups.

2.5.5. If B ⊂ A is Galois-stable, and B,A/B are equipped with the induced Selmer structures, then by
definition there are natural maps:

SelF (B)→ SelF (A)→ SelF (A/B).

Proposition 2.5.6. Let (F ,S) be a generalized Selmer structure for A. If A is countably profinite and each
continuous finite quotient A↠ A′ is equipped with the Selmer structure induced by F , then:

lim
←−

SelF (A
′) ≃ SelF (A).

If instead A is ind-finite and each finite submodule A′ ⊂ A is given its induced Selmer structure, then:

lim
−→

SelF (A
′) ≃ SelF (A).

Proof. We show the countably profinite case; the ind-finite case is similar. By definition, SelF (A) is the
kernel of

lim
←−

H1(LS/L,A′)→
∏
s∈S

H1(Ls, A)

H1
F (Ls, A)

,

whereas

lim
←−

SelF (A
′) = lim

←−
ker

(
H1(LS/L,A′)→

∏
s∈S

H1(Ls, A
′)

H1
F (Ls, A′)

)

= ker

(
H1(LS/L,A)→ lim

←−

H1(Ls, A
′)

H1
F (Ls, A′)

)
.

Since H1
F (Ls, A) is a closed subgroup of H1(Ls, A), it is isomorphic to the inverse limit:

H1
F (Ls, A) = lim

←−
im
(
H1
F (Ls, A)→ H1(Ls, A

′)
)
= lim
←−

H1
F (Ls, A

′).

This implies the result. □

Remark 2.5.7. The following remark will be needed in §3.3. Suppose L/Q is Galois, and let A be a
countably profinite or ind-finite topological GL-module unramified outside a finite set S ⊂ ML. For an
element γ ∈ GQ, consider the twist Aγ of A, where the GL action is precomposed with the conjugation map

φγ : GL → GL.

If s 7→ sγ denotes the natural action of GQ on ML (factoring through Gal(L/Q)), then there are canonical
isomorphisms

Hi(LS/L,A) ∼= Hi(LSγ

/L,Aγ),(11)

Hi(Ls, A) ∼= Hi(Lsγ , Aγ), ∀s ∈ ML.(12)
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Indeed, when A is finite, these are induced functorially from the map induced by φγ : GL → GL on usual
Galois cohomology, using Proposition 2.3.2 in the local case; in general, they are induced by taking limits,
applying Lemma 2.4.8 in the local case. In particular, a generalized Selmer structure (F ,S) for A induces a
generalized Selmer structure (Fγ ,Sγ) for Aγ by setting HiFγ (Ls, Aγ) to be the image of HiF (Lsγ−1 , A) under
(12) for all s ∈ ML. Note that (11) then induces a canonical isomorphism

(13) SelF (A) ∼= SelFγ (Aγ).

2.6. Selmer groups and duality over discrete valuation rings.

2.6.1. Let O be a discrete valuation ring, with uniformizer π, which is a finite flat extension of Zp; write
E = O[1/π].

Proposition 2.6.2. Let s ∈ ML be any ultraprime and let R = O, O/πj, or E/O. Then there is a canonical
isomorphism

H2(Ls, R(1)) ∼=


R, s non-archimedean;

R[2], s = s, s archimedean, Ls = R;
0, s = s, s archimedean, Ls = C.

Proof. For R = O/πj , this follows from Proposition 2.3.2. The cases R = O and R = E/O follow from the
case O/πj by Lemma 2.4.8. □

2.6.3. For a topological O[GL]-module A, let

A∗ = HomO(A,E/O(1))

be the Cartier dual. By Proposition 2.6.2, the cup product induces a pairing

(14) ⟨·, ·⟩s : Hi(Ls, A)× H2−i(Ls, A
∗)→ E/O, i = 0, 1, 2,

for all s ∈ ML.

Proposition 2.6.4. Suppose A is a countably profinite O[GL]-module unramified outside a finite set S
containing all s = s with s|p∞. Then:

(1) The pairing ⟨·, ·⟩s is perfect if s ∈ ML is non-archimedean, or if i = 1.
(2) If s ∈ ML is not equal to s for a prime s|p, then H1

unr(Ls, A) and H1
unr(Ls, A

∗) are exact annihilators
under ⟨·, ·⟩s.

(3) For i = 0, 1, 2, the induced pairing

Σs∈S⟨·, ·⟩s : Hi(LS/L,A)× H2−i(LS/L,A∗)→ E/O

is identically zero.

Proof. Let d be the valuation of the different of E/Qp, i.e.

{x ∈ E : tr(xO) ⊂ Zp} = π−d · O,

and let tr′ : E/O → Qp/Zp be the composite

E/O π−d

−−→ E/π−dO tr−→ Qp/Zp.

If we set A′ := HomZp
(A,Qp/Zp(1)), then the map φ 7→ tr′ ◦φ defines an isomorphism A∗

∼−→ A′. This
isomorphism fits into a commutative diagram

Hi(Ls, A)× H2−i(Ls, A
∗) E/O

Hi(Ls, A)× H2−i(Ls, A
′) Qp/Zp

∼

⟨·,·⟩s

tr′

⟨·,·⟩s
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for i = 0, 1, 2. It is then not difficult to check that each of (1), (2), (3) follows from its analog for A′. So
without loss of generality we may suppose O = Zp. We may also assume without loss of generality that A
is finite, since the general case of each statement follows by taking limits using Lemma 2.4.8. Then (1) and
(2) follow from Proposition 2.3.2 and the usual local Tate duality. For (3), S is represented by a sequence
(Sn)n∈N such that A is unramified outside Sn and each Sn contains all s|p∞. Since A is finite, the pairing
map Σs∈S⟨·, ·⟩s is the ultraproduct of the maps

Σsn∈Sn
⟨·, ·⟩sn : Hi(LSn/L,A)×H2−i(LSn/L,A∗)→ Qp/Zp,

which are all identically zero by global Tate duality. □

2.6.5. Suppose A is an O[GL]-module such that either A or A∗ is countably profinite. If (F ,S) is a generalized
Selmer structure for A over O, then we define the dual Selmer structure (F∗,S) for A∗ by:

H1
F∗(Ls, A

∗) = H1
F (Ls, A)

⊥.

Here ⊥ denotes the orthogonal complement under the pairing of (14); the local conditions outside S are
unramified by Proposition 2.6.4(2). Moreover, the proof of that proposition shows that the dual local
conditions do not change if we instead view A as a Zp[GL] module. We observe that the dual Selmer
structure to (F∗,S) is again (F ,S). When A is finite, the dual Selmer groups are related by the Greenberg-
Wiles formula:

Proposition 2.6.6. Let A be a finite O[GL]-module, and let (F ,S) be a Selmer structure for A over O. We
have:

#SelF (A)

#SelF∗(A∗)
=

#H0(LS/L,A)

#H0(LS/L,A∗)

∏
s∈S

#H1
F (Ls, A)

#H0(Ls, A)
.

Proof. Suppose s ∈ S is represented by the sequence (sn)n∈N. Then Proposition 2.3.2 implies that, for
F-many n, we have isomorphisms

Hi(Lsn , A)
∼= Hi(Ls, A)

and

Hi(Lsn , A
∗) ∼= Hi(Ls, A

∗)

for i = 0, 1, 2, compatible with the duality of Proposition 2.6.4(1). Let H1
Fn

(Lsn , A) ⊂ H1(Lsn , A) be the im-

age of H1
F (Ls, A) under the first isomorphism; then its orthogonal complement H1

F∗
n
(Lsn , A

∗) ⊂ H1(Lsn , A
∗)

is the image of H1
F∗(Ls, A

∗). This defines dual Selmer structures (Fn, Sn) and (F∗n, Sn) on A for F-many n,
where (Sn)n∈N represents S. By Propositions 2.1.5 and 2.3.2,

SelF (A) = U
(
{SelFn

(A)}n∈N
)
, SelF∗(A∗) = U

({
SelF∗

n
(A∗)

}
n∈N

)
,

so by [24, Theorem 2.19] and Proposition 2.1.4(3), we have

#SelF (A)

#SelF∗(A∗)
=

#H0(L,A)

#H0(L,A∗)
·
∏

sn∈Sn

#H1
Fn

(Lsn , A)

#H0(Lsn , A)

for F-many n; since

#H1
Fn

(Lsn , A) = #H1
F (Ls, A)

for F-many n by definition, and likewise for H0, this implies the proposition. □

2.6.7. Given two Selmer structures (F ,S) and (G,T) for A, we may define Selmer structures (F + G,S ∪ T)
and (F ∩ G,S ∪ T) by the local conditions:

H1
F+G(Ls, A) = H1

F (Ls, A) + H1
G(Ls, A),

H1
F∩G(Ls, A) = H1

F (Ls, A) ∩ H1
G(Ls, A).

Corollary 2.6.8. Let A be an O[GL]-module such that either A or A∗ is countably profinite, and let (F ,S)
and (G,T) be generalized Selmer structures for A over O. Then

SelF+G(A)

SelF∩G(A)
⊂
∏

s∈S∪T

H1
F+G(Ls, A)

H1
F∩G(Ls, A)
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and
SelF∗+G∗(A∗)

SelF∗∩G∗(A∗)
⊂
∏

s∈S∪T

H1
F∗+G∗(Ls, A

∗)

H1
F∗∩G∗(Ls, A∗)

are exact annihilators under the perfect pairing

Σs∈S∪T⟨·, ·⟩s :
∏

s∈S∪T

H1
F+G(Ls, A)

H1
F∩G(Ls, A)

×
∏

s∈S∪T

H1
F∗+G∗(Ls, A

∗)

H1
F∗∩G∗(Ls, A∗)

→ E/O

induced by (14).

Proof. By Proposition 2.5.6 and Lemma 2.4.8, we may assume without loss of generality that A is finite.
Proposition 2.6.4(3) implies that the spaces

SelF+G(A)

SelF∩G(A)
,
SelF∗+G∗(A∗)

SelF∗∩G∗(A∗)

annihilate each other under Σs∈S∪T⟨·, ·⟩s, so it suffices to show

(15)
#SelF+G(A)

#SelF∩G(A)
· #SelF∗+G∗(A)

#SelF∗∩G∗(A)
=
∏

s∈S∪T

#H1
F+G(Ls, A)

#H1
F∩G(Ls, A)

.

By Proposition 2.6.6, the left-hand side of (15) is∏
s∈S∪T

#H1
F+G(Ls, A)

#H0(Ls, A)
·
#H1
F∗+G∗(Ls, A

∗)

#H0(Ls, A∗)
,

or equivalently ∏
s∈S∪T

#H1
F+G(Ls, A)

#H0(Ls, A)
· #H1(Ls, A)

#H1
F∩G(Ls, A)#H0(Ls, A∗)

because H1
F∩G(Ls, A) is the exact annihilator of H1

F∗+G∗(Ls, A
∗) under ⟨·, ·⟩s. So it suffices to show

(16)
∏

s∈S∪T

#H1(Ls, A)

#H0(Ls, A) ·#H0(Ls, A∗)
= 1.

Now note that, by the local Euler characteristic formula, Proposition 2.6.4(1), and Proposition 2.3.2,

#H1(Ls, A)

#H0(Ls, A)#H0(Ls, A∗)
=

#H1(Ls, A)

#H0(Ls, A)#H2(Ls, A)
= 1

unless s = s, where s|∞ or s|p; moreover we have∏
s=s,
s|p

#H1(Ls, A)

#H0(Ls, A)#H0(Ls, A∗)
=
∏
s=s,
s|∞

#H0(Ls, A)#H0(Ls, A
∗)

#H1(Ls, A)
= (#A)[L:Q].

This shows (16) and completes the proof. □

2.6.9. Now suppose that A = T is a topological O[GL] module, unramified outside a finite set S ⊂ ML, which
is free of finite rank over O. In particular, T is countably profinite. Suppose S ⊂ ML is a finite set containing
all archimedean places and all places over p, such that T is unramified outside S. If T † = HomO(T,O(1)) is
the dual, then the cup product induces a local Tate pairing

(17) ⟨·, ·⟩s : H1(Ls, T )× H1(Ls, T
†)→ O.

Proposition 2.6.10. The kernels on the left and right of (17) are the O-torsion submodules; moreover, the
induced pairing

H1(LS/L, T )× H1(LS/L, T †)→
∏
s∈S

H1(Ls, T )× H1(Ls, T
†)

∑
⟨·,·⟩s−−−−→ O

is identically zero.
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Proof. For each s, we have the short exact sequence

0→ H1(Ls, T )/π
j → H1(Ls, T/π

j)→ H2(Ls, T )[π
j ]→ 0

arising from the long exact sequence in Gs-cohomology associated to 0→ T → T → T/πj . Hence

0→ lim←−
j

HomO
(
H2(Ls, T )[π

j ],O/πj
)
→ lim←−

j

HomO(H
1(T/πj),O/πj)→ HomO(H

1(Ls, T ),O)→ 0

is exact. By Proposition 2.6.4(1) and Lemma 2.4.8, this is canonically identified with an exact sequence

(18) 0→ lim←−
j

H0(Ls, T
∗)/πj → H1(Ls, T

†)→ HomO(H
1(Ls, T ),O)→ 0,

where the third arrow is induced by (17). The first term in (18) is clearly π-power-torsion, while the last
term is torsion-free, and so we can identify lim←−j H

0(Ls, T
∗)/πj with H1(Ls, T

†)[π∞]. This proves the first

claim, and the second follows from Proposition 2.6.4(3) using the commutativity of the diagram

H1(Ls, T )× H1(Ls, T
†) O

H1(Ls, T/π
j)× H1(Ls, T

†/πj) O/πj

for all s ∈ S and all j ≥ 1. □

Given a Selmer structure (F ,S) for T over O, taking the orthogonal complement of each local condition
under (17) yields a Selmer structure (F†,S) for T †.

Definition 2.6.11. A closed O-submodule H1
F (Ls, T ) ⊂ H1(Ls, T ) is said to be saturated if the quotient

H1(Ls, T )/H
1
F (Ls, T ) is π-torsion free. A Selmer structure (F ,S) for T over O is saturated if each local

condition H1
F (Ls, T ) is saturated.

Note that, if T is unramified outside S ⊂ ML, then H1
unr(Ls, T ) is saturated for all s ̸∈ S because H1(Is, T )

is π-torsion-free.

Proposition 2.6.12. If H1
F (Ls, T ) is saturated, then for all j ≥ 1, we have

H1
F∗(Ls, T

∗[πj ]) = H1
F†(Ls, T

†/πj)

under the natural identification T ∗[πj ] ≃ T †/πj. In particular, if (F ,S) is a saturated Selmer structure for
T , then

SelF∗(T ∗[πj ]) = SelF†(T †/πj).

Proof. For ease of notation, we abbreviate Hi(T †) = Hi(Ls, T
†), etc. We have an identification T † ⊗O

(E/O) ≃ T ∗ and an embedding T †/πj ↪→ T ∗; let H1
F∗(T †/πj) be the induced local condition from this

embedding. Consider the following commutative diagram with exact rows:

0 H0(T ∗)/ div H1
F†(T

†) HomO

(
H1(T )

H1
F (T )

,O
)

0

0 H0(T ∗)/πj H1
F∗(T †/πj) HomO

(
H1(T )

H1
F (T )

,O/πj
)

0.

α β γ

Here, the first horizontal map on each row is the Kummer map, the subscript / div refers to the quotient by
the maximal divisible submodule, and the exactness of the top row uses (18). By the saturation hypothesis,
γ is surjective, and α clearly is as well, so β is surjective by the snake lemma. □

Proposition 2.6.13. Let (F ,S) be a Selmer structure for T over O. Then:

rkO SelF (T )− rkO SelF†(T †) = rkOH
0(L, T )− rkOH

0(L, T †)+∑
s∈S

(
rkO H1

F (Ls, T )− rkO H0(Ls, T )
)
.
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Proof. We first reduce to the case that (F ,S) is saturated. Indeed, if we define

H1
F̃ (Ls, T ) := ker

(
H1(Ls, T )→

H1(Ls, T )

H1
F (Ls, T )

⊗Qp
)

for all s, then (F̃ ,S) is a saturated Selmer structure for T . Now, there is an exact sequence 0→ SelF (T )→
SelF̃ (T )→

∏
s∈S

H1
F̃ (Ls,T )

H1
F (Ls,T )

. Since the final term is a finitely generated torsion O-module, we have

rkO SelF (T ) = rkO SelF̃ (T ).

So, replacing F with F̃ if necessary, we may assume (F ,S) is saturated. By Propositions 2.6.6 and 2.6.12,
we have for each j:

lgO SelF (T/π
j)− lgO SelF†(T †/πj) = lgO H0(L, T/πj)− lgO H0(L, T †/πj)

+
∑
s∈S

(
lgO H1

F (Ls, T/π
j)− lgO H0(Ls, T/π

j)
)
.

Since SelF (T ) is a finitely generated O-module, it follows from [49, Lemma 3.7.1] that

lgO SelF (T/π
j) = j · rkO SelF (T ) +O(1)

as j varies, and likewise for SelF†(T †) and each term on the right-hand side; the proposition follows. □

3. Bipartite Euler systems

3.1. Admissible primes.

3.1.1. Let f , N , ℘, O, E, π, Vf , Tf , and Wf be as in §1.5. Then Vf is a two-dimensional E-vector space
equipped with a non-degenerate, symplectic, GQ-equivariant pairing:

(19) Vf × Vf → ∧2Vf ∼= E(1).

Recall that T f = Tf/π is absolutely irreducible as an O[GQ]-module. Since the dual lattice to Tf is also
O[GQ]-stable, after rescaling we may assume that (19) restricts to an O(1)-valued pairing

(20) Tf × Tf → O(1)

which identifies Tf with HomO(Tf ,O(1)). We will sometimes use the condition:

(sclr) The image of the GQ action on T f contains a nontrivial scalar.

Fix an imaginary quadratic field K/Q of discriminant coprime to Np.

Definition 3.1.2. A nonconstant ultraprime q ∈ MQ is said to be admissible with sign ϵq = ±1 for f if
Frobq has nonzero image in Gal(K/Q), χ(Frobq) ̸≡ 1 (mod p), and Tf admits a basis of eigenvectors for
Frobq with eigenvalues ϵq and χ(Frobq)ϵq.

For example, if Frobq ∈ GQ is a complex conjugation, then q is admissible with either choice of ϵq.

3.1.3. If q is admissible with sign ϵq, then we write Fil+q,ϵq Tf ⊂ Tf for the eigenspace of Frobq with eigenvalue

χ(Frobq)ϵq. We abusively write q for the unique ultraprime in MK lying over q ∈ MQ, whose Frobenius is

Frob2q .

Definition 3.1.4. If q is admissible with sign ϵq for f , then we define the ordinary local condition (with
sign ϵq) as:

H1
ord,ϵq(Kq, Tf ) = im

(
H1(Kq,Fil

+
q,ϵq Tf )→ H1(Kq, Tf )

)
.

The subscript ϵq will often be omitted (from this and future notation) when there is no risk of confusion.
Similarly, let

H1
ord,ϵq(Kq,Wf ) = im

(
H1(Kq, (Fil

+
q,ϵq Tf )⊗O E/O)→ H1(Kq,Wf )

)
.
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Example 3.1.5. Suppose Frobq ∈ GQ is a complex conjugation and let {e1, e2} be a basis of Tf such that
Frobq e1 = −e1 and Frobq e2 = e2. Then as noted above, q is admissible with either choice of ϵq; if ϵq = +1,

then Fil+q,ϵq Tf = ⟨e1⟩, and if ϵq = −1, then Fil+q,ϵq Tf = ⟨e2⟩. The local cohomology group H1(Kq, Tf ) is free
of rank 4, with a canonical decomposition into rank 2 subspaces:

H1(Kq, Tf ) = H1(Kq, ⟨e1⟩)⊕ H1(Kq, ⟨e2⟩).

The former is the ordinary local condition if ϵq = +1, and the latter if ϵq = −1. The unramified subspaces
H1

unr(Kq, ⟨ei⟩) are free O-modules of rank one.

Proposition 3.1.6. Let q be admissible with sign ϵq. Then H1
ord,ϵq

(Kq, Tf ) is its own exact annihilator

under the local Tate pairing

H1(Kq, Tf )× H1(Kq, Tf )→ O

induced by (17) and (20).

Proof. The Frobenius Frobq ∈ GQ acts on Tf with eigenvalues χ(Frobq)ϵq and ϵq. Let e1, e2 ∈ Tf be

generators of the corresponding eigenspaces, so Fil+q,ϵq Tf = ⟨e1⟩. Then

(21) H1(Kq, Tf ) = H1(Kq, ⟨e1⟩)⊕ H1(Kq, ⟨e2⟩),

and H1
ord,ϵq

(Kq, Tf ) = H1(Kq, ⟨e1⟩). Since the pairing (19) is symplectic, each of the direct summands in (21)

is isotropic for the pairing on H1(Kq, Tf ). Now note that:

(22) H1(Kq, Tf )tors ⊂ H1(Kq, ⟨e1⟩).

Indeed, in the exact sequence

0→ H1
unr(Kq, ⟨e2⟩)→ H1(Kq, ⟨e2⟩)→ H1(Iq, ⟨e2⟩),

the last term is automatically torsion-free, and the first is as well since Frob2q acts trivially on e2. We claim

(22) implies the proposition. Suppose y ∈ H1(Kq, Tf ) pairs trivially with H1
ord,ϵq

(Kq, Tf ), and write

y = y1 + y2

in the decomposition (21). Since y1 pairs trivially with H1
ord,ϵq

(Kq, Tf ), y2 does as well. But y2 also pairs

trivially with H1(Kq, ⟨e2⟩), so y2 lies in the kernel of the local Tate pairing, hence is a torsion class (Proposition
2.6.10), hence trivial by (22). □

3.1.7. For any finite set S ⊂ MK such that Tf is unramified outside S, and any admissible q ̸∈ S with sign
ϵq, define a localization map

locq,ϵq : H
1(KS/K, Tf )→ H1

unr(Kq, Tf )→
H1

unr(Kq, Tf )

H1
unr(Kq, Tf ) ∩ H1

ord,ϵq
(Kq, Tf )

= H1
unr(Kq, Tf/Fil

+
q,ϵq Tf ) ≈ O.

(23)

Define as well a residue map

∂q,ϵq : H
1(K,Tf )→ H1(Kq, Tf )→ H1

ord,ϵq(Kq, Tf )→
H1

ord,ϵq
(Kq, Tf )

H1
unr(Kq, Tf ) ∩ H1

ord,ϵq
(Kq, Tf )

= H1(Iq,Fil
+
q,ϵq Tf )

Frob2
q=1 ≈ O,

(24)

where the second map is given by the projection Tf ↠ (Frobq−ϵq)Tf ≃ Fil+q,ϵq Tf . We similarly define the
maps locq,ϵq , ∂q,ϵq for Wf .

3.2. Euler systems for anticyclotomic twists.
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3.2.1. Let R be a complete flat Noetherian local O-algebra with finite residue field, equipped with an anti-
cyclotomic character φ : GK → R× which is trivial modulo the maximal ideal of R. We write Tφ for the
anticyclotomic twist Tf ⊗O R(φ), which is a countably profinite GK-module. If q is admissible with sign ϵq,

then φ(Frob2q) = 1, so

(25) H1(Kq, Tφ) = H1(Kq, Tf )⊗O R.

We extend the ordinary local condition of the previous subsection by linearity to define the local condition
H1

ord,ϵq
(Kq, Tφ), and likewise the maps locq,ϵq , ∂q,ϵq .

3.2.2. We will always suppose given a finite set S ⊂ MK and a generalized Selmer structure (F ,S) for Tφ
over R. For any finite set of ultraprimes T, let N = NS be the set of pairs {Q, ϵQ} where Q ⊂ MQ is a
finite set of ultraprimes disjoint from the image of S in MQ and ϵQ : Q → {±1} is a function such that q is
admissible with sign ϵQ(q) for all q ∈ Q. (We will drop the subscript S when it is clear from context or when
S contains only constant ultraprimes.) Given a pair {Q, ϵQ} ∈ N, we identify Q with a subset of MK and
define a generalized Selmer structure (F(Q, ϵQ),S ∪ Q) for Tφ by the local conditions:

(26) H1
F(Q,ϵQ)

(Ks, Tφ) =

{
H1
F (Ks, Tφ), s ̸∈ Q

H1
ord,ϵQ(q)

(Kq, Tφ), s = q ∈ Q.

For δ ∈ Z/2Z, let Nδ ⊂ N be the collection of pairs {Q, ϵQ} ∈ N such that |Q| ≡ δ (mod 2). Given two

pairs {Q, ϵQ} ∈ Nδ and {Q′, ϵQ′} ∈ Nδ
′
such that Q ∩ Q′ = ∅, write

{QQ′, ϵQQ′} ∈ Nδ+δ
′

for the pair formed in the obvious way from Q ∪ Q′ and the sign functions ϵQ, ϵQ′ . The pair {∅, ∅} ∈ N will
be abbreviated as 1.

Similarly, suppose given {Q, ϵQ} ∈ N and an additional ultraprime q ̸∈ Q which is admissible with sign
ϵq. Then we write {Qq, ϵQq} ∈ N for the pair formed in the obvious way from Q ∪ {q} and the natural sign
function.

Definition 3.2.3. A bipartite system (κ, λ) for (Tφ,F ,S) of parity δ ∈ Z/2Z consists of the following
data:

(1) for each pair {Q, ϵQ} ∈ Nδ, a cyclic submodule

(κ(Q, ϵQ)) ⊂ SelF(Q,ϵQ)(Tφ);

(2) for each pair {Q, ϵQ} ∈ Nδ+1, a principal ideal

(λ(Q, ϵQ)) ⊂ R.

A bipartite Euler system is a bipartite system satisfying the “reciprocity laws”:

(1) For each {Qq, ϵQq} ∈ Nδ+1,

locq((κ(Q, ϵQ))) = (λ(Qq, ϵQq)) ⊂ R.

(2) For each {Qq, ϵQq} ∈ Nδ,

∂q((κ(Qq, ϵQq))) = (λ(Q, ϵQ)) ⊂ R.

We say (κ, λ) is nontrivial if there exists some {Q, ϵQ} ∈ N such that either λ(Q, ϵQ) ̸= 0 or κ(Q, ϵQ) ̸= 0
depending on the parity of |Q|+ δ.

We will suppress ϵQ from the notation when it is clear from context and write simply κ(Q), λ(Q), F(Q).

3.3. Euler systems over discrete valuation rings.
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3.3.1. Suppose that R is a discrete valuation ring with uniformizer ϖ, and let Wφ = Tφ ⊗O E/O =Wf ⊗O
R(φ). Let τ ∈ GQ be a complex conjugation, and let Tw(Tφ) be the module Tφ with GK-action twisted by
τ . Then there is a perfect GK-equivariant pairing

(·, ·)τ : Tφ × Tw(Tφ)→ R(1)(27)

induced by

(x⊗ r, y ⊗ s)τ = rs(x, yτ ), r, s ∈ R, x, y ∈ Tf ,
where (·, ·) is the pairing of (20).

Using the local isomorphisms

H1(Ks,Tw(Tφ)) ∼= H1(Ksτ , Tφ)

of Remark 2.5.7, the pairing (27) induces local pairings

(28) H1(Ks, Tφ)× H1(Ksτ , Tφ)→ R.

The pairing (27) also induces a perfect pairing

Wφ × Tw(Tφ)→ R(1)⊗O E/O = (R⊗Qp/Zp)(1).

Recall that we have fixed a generalized Selmer structure (F ,S) for Tφ over R. For any {Q, ϵQ} ∈ N, we write
(F(Q),Sτ ∪ Q) for the Selmer structure on Wφ which is dual to the Selmer structure (F(Q)τ ,Sτ ∪ Q) on
Tw(Tφ) (see Remark 2.5.7).

Definition 3.3.2. We say (F ,S) is self-dual if, for all s ∈ MK , H1
F (Ks, Tφ) and H1

F (Ksτ , Tφ) are exact
annihilators under the local pairing.

Equivalently, (F ,S) is self-dual if, after identifying Tw(Tφ) and T
†
φ = HomO(Tφ,O(1)) via (27), the local

conditions given by (F†,S) and (Fτ ,Sτ ) coincide.

3.3.3. If q ∈ MQ is admissible, then qτ = q; let

⟨·, ·⟩τq : H1(Kq, Tφ)× H1(Kq, Tφ)→ R

be the pairing obtained from (28) by identifying H1(Kqτ , Tφ) = H1(Kq, Tφ). Then unraveling the definition
of ⟨·, ·⟩τq shows that

(29) ⟨c1, c2⟩τq = ⟨c1,Frobq c2⟩q, c1, c2 ∈ H1(Kq, Tφ),

where

⟨·, ·⟩q : H1(Kq, Tφ)× H1(Kq, Tφ)→ R

is the local pairing induced by (20), extending linearly using (25). (Here Frobq acts naturally on H1(Kq, Tφ) =
H1(Kq, Tf )⊗O R since Tf is a GQ-module.)

Lemma 3.3.4. The residual representation T f is absolutely irreducible as an O[GK ]-module. Moreover, if

(sclr) holds, then there exists an element z ∈ GK that acts as a nontrivial scalar on T f .

Proof. The discriminant of K is coprime to Np by assumption, so we have K∩Q(T f ) = Q. Hence the image
of GK → Aut(Tf ) coincides with the image of GQ → Aut(Tf ), and this implies the lemma. □

Corollary 3.3.5. Suppose that (F ,S) is self-dual. Then (F ,S) is saturated, and for all j ≥ 0, we have
isomorphisms

SelF (Tφ/ϖ
j) = SelF (Wφ[ϖ

j ]) = SelF (Wφ)[ϖ
j ].

Proof. Self-duality implies saturation by Proposition 2.6.10, so the first isomorphism results from Proposition
2.6.12. The second is immediate from Lemmas 3.3.4 and 2.4.12. □

Proposition 3.3.6. Suppose that (F ,S) is self-dual. Then, for each {Q, ϵQ} ∈ N:

(1) (F(Q),S ∪ Q) is self-dual.
(2) There is a non-canonical isomorphism of R-modules:

SelF(Q)(Wφ) ≈ (R⊗Qp/Zp)rQ ⊕MQ ⊕MQ

for some finite-length R-module MQ and an integer rQ.
(3) rQ = rkR SelF(Q)(Tφ).
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Proof. For (1), we need only check self-duality of the local conditions for q ∈ Q; this follows from Proposition
3.1.6 and (29) because H1

ord,ϵQ(q)
(Kq, Tf ) is Frobq-stable for all q ∈ Q. For (2), it suffices to show that

SelF(Q)(Wφ)[ϖ
s]/ϖ SelF(Q)(Wφ)[ϖ

s+1] is an even-dimensional vector space for all s. For this, we claim the
proof of [37, Theorem 1.4.2] applies with the obvious modifications for patched Selmer groups. Indeed, we
use Lemma 3.3.4 to check the hypothesis H.1 of op. cit.; the (patched analogue of) Hypothesis H.3, or
equivalently the condition in [38, Definition 2.2.2], follows from Corollary 3.3.5 and [49, Lemma 3.7.1(i)].
Hypotheses H.2 and H.5 are not used in the proof of loc. cit., and Hypothesis H.4 is clear from the discussion
in (3.3.1).

Finally, (3) follows from Corollary 3.3.5, (1), and [49, Lemma 3.7.1(ii)].
□

3.3.7. For the next proposition, we require the following extension of (3.1.7). Let q be admissible with sign
ϵq. Since Wφ =Wf ⊗O R(φ), we have

(30) H1(Kq,Wφ) = H1(Kq,Wf )⊗O R

by the same reasoning as (25). We use (30) to define, by linearity, the subspace H1
ord,ϵq

(Kq,Wφ) and the

localization maps locq,ϵq , ∂q,ϵq following (3.1.7). By Proposition 3.3.6(1) combined with Proposition 2.6.12,
for any {Q, ϵQ} ∈ N and any q ∈ Q, we have

(31) H1
F(Q)(Kq,Wφ) = H1

ord(Kq,Wφ).

Proposition 3.3.8. Suppose (F ,S) is self-dual. For any {Qq, ϵQq} ∈ N, exactly one of the following holds:

(1) locq(SelF(Q)(Tφ)) = 0, ∂q(SelF(Qq)(Tφ)) ̸= 0, and rQq = rQ + 1. Moreover,

lgMQq = lgRMQ − lgR coker ∂q(SelF(Qq)(Tφ))

= lgRMQ − lgR locq(SelF(Q)(Wφ)).

(2) locq(SelF(Q)(Tφ)) ̸= 0, ∂q(SelF(Qq)(Tφ)) = 0, and rQq = rQ − 1. Moreover,

lgRMQq = lgRMQ + lgR coker locq(SelF(Q)(Tφ))

= lgRMQ + lgR ∂q(SelF(Qq)(Wφ)).

Proof. Consider the Selmer structures (Fq,S ∪ Qq) and (Fq,S ∪ Qq) for Tφ, where Fq(Q) = F(Q) + F(Qq)
and Fq(Q) = F(Q) ∩ F(Qq). By Proposition 2.6.13, we have:

rkR SelFq(Q)(Tφ) = rkR SelFq(Q)τ (Tw(Tφ)) + 1

= rkR SelFq(Q)(Tφ) + 1;

the second equality is by (13). Moreover, because F(Q) is self-dual, Proposition 2.6.10 implies that the
image of

SelFq(Q)(Tφ)

SelFq(Q)(Tφ)
↪→

H1
Fq(Q)(Kq, Tφ)

H1
Fq(Q)(Kq, Tφ)

=
H1

unr(Kq, Tφ)

H1
Fq(Q)(Kq, Tφ)

⊕ H1
ord(Kq, Tφ)

H1
Fq(Q)(Kq, Tφ)

≈ R2(32)

is self-annihilating under the R-bilinear local pairing induced by ⟨·, ·⟩τq , which is symmetric by (29) because
the pairing (20) is alternating and GQ-equivariant. Since a two-dimensional nondegenerate quadratic space
cannot contain three distinct isotropic lines, the image of (32) is contained either in the ordinary or unramified
part. In other words, exactly one of locq(SelF(Q)(Tφ)) and ∂q(SelF(Qq)(Tφ)) is nonzero, which gives the
alternative of the proposition.

For the relation between MQ and MQq, we suppose we are in case (1), because the two arguments are
analogous. By Corollary 2.6.8, the image of

SelFq(Q)(Wφ)

SelFq(Q)(Wφ)
↪→

H1
Fq(Q)(Kq,Wφ)

H1
Fq(Q)(Kq,Wφ)

=
H1

unr(Kq,Wφ)

H1
Fq(Q)(Kq,Wφ)

⊕ H1
ord(Kq,Wφ)

H1
Fq(Q)(Kq,Wφ)

≈ (R⊗Qp/Zp)⊕2

is the exact annihilator of ∂q(SelF(Qq)(Tφ)) under the perfect induced local pairing

⟨·, ·⟩τq :
H1
Fq(Q)(Kq, Tφ)

H1
Fq(Q)(Kq, Tφ)

×
H1
Fq(Q)(Kq,Wφ)

H1
Fq(Q)(Kq,Wφ)

→ R⊗Qp/Zp.
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This implies that ∂q(SelF(Qq)(Wφ)) is divisible and

(33) lgR locq(SelF(Q)(Wφ)) = lgR coker ∂q(SelF(Qq)(Tφ)).

Now, for any short exact sequence of R-modules

0→ A→ B → C → 0,

there is an induced exact sequence

(∗) 0→
(
A ∩Bdiv

Adiv

)
→ A/div → B/div → C/div → 0,

where the subscript div denotes the maximal ϖ-divisible submodule andM/div =M/Mdiv for any R-module
M . Also note that

lim←−
j

SelF(Qq)(Wφ)div[ϖ
j ] = SelF(Qq)(Tφ)

by Corollary 3.3.5 and Proposition 2.5.6, compatibly with the map ∂q, and so we can identify

(34)
SelFq(Q)(Wφ) ∩ SelF(Qq)(Wφ)div

SelFq(Q)(Wφ)div
= coker ∂q

(
SelF(Qq)(Tφ)

)
.

Consider the short exact sequences:

0→ SelFq(Q)(Wφ)→ SelF(Q)(Wφ)→ locq
(
SelF(Q)(Wφ)

)
→ 0(35)

0→ SelFq(Q)(Wφ)→ SelF(Qq)(Wφ)→ ∂q
(
SelF(Qq)(Wφ)

)
→ 0.(36)

By (∗) and (34), we obtain the exact sequences of finite-length R-modules:

0→ SelFq(Q)(Wφ)/div → SelF(Q)(Wφ)/div → locq
(
SelF(Q)(Wφ)

)
→ 0(37)

0→ coker ∂q
(
SelF(Qq)(Tφ)

)
→ SelFq(Q)(Wφ)/div → SelF(Qq)(Wφ)/div → 0.(38)

From this and (33), we deduce

lgR SelF(Q)(Wφ)/div = lgR SelF(Qq)(Wφ)/div + 2 lgR locq
(
SelF(Q)(Wφ)

)
,

which gives the result. □

The following result will allow us to control the alternative in Proposition 3.3.8.

Theorem 3.3.9. Let c ∈ H1(KT/K, Tφ) be any nonzero element, where T ⊃ S is a finite set. Then there
are infinitely many admissible ultraprimes q ̸∈ T, with associated signs ϵq, such that locq,ϵq c ̸= 0.

The proof is via a series of lemmas.

Lemma 3.3.10. There is an integer j such that, for all n ≥ 0,

ϖjH1(K(Tφ)/K, Tφ/ϖ
n) = 0.

If (sclr) holds, then we may take j = 0.

Proof. Let G = Gal(K(Tφ)/K), and let Z ⊂ G be its center; Lemma 3.3.4 implies that Tφ⊗OE is absolutely
irreducible as an E[GK ]-module, and so Z acts on Tφ by scalars. We claim:

(39) Z ̸= {1} .

Assuming (39), the lemma follows from the inflation-restriction exact sequence

H1(G/Z,H0(Z, Tφ/ϖ
n)) ↪→ H1(G,Tφ/ϖ

n)→ H1(Z, Tφ/ϖ
n)

(and Lemma 3.3.4 for the extra assertion under (sclr)). Let us now prove (39). Let G′ = Gal(K(Tf )/K),
and let L/K be the Galois subfield of K(Tf ) cut out by the center Z ′ = Z(G′) ⊂ G′. By [61, Theorem 5.5]
or [54, Theorem B.5.2], Z ′ is nontrivial. Let E/K be the Galois extension determined by the kernel of φ;
then it suffices to show that EL/L and K(Tf )/L are linearly disjoint. Both EL and K(Tf ) are Galois over
Q, so GQ acts on Gal(EL/L) and Gal(K(Tf )/L) by conjugation. If τ ∈ GQ is a complex conjugation, then
τ acts trivially on Gal(K(Tf )/L) but by inversion on the pro-p-group Gal(EL/L), so the two groups have
no nontrivial common quotient compatible with the GQ-action; hence EL ∩K(Tf ) = L. □
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Lemma 3.3.11. Suppose given a cocycle

c ∈ H1(K,Tφ/ϖ
n)

such that ϖjc ̸= 0, where j is as in Lemma 3.3.10. Then, for any integer M ≥ n, there exists a sign ϵ = ±1
and infinitely many rational primes q such that:

(1) q is inert in K and unramified in the splitting field Q(Tf , c).
(2) Frobq ∈ Gal(Q(Tf )/Q) has distinct eigenvalues ±1 on Tf ⊗ R/ϖM (where R has trivial Galois

action).
(3) For any cocycle representative, c(Frob2q) has nonzero component in the ϵ eigenspace for Frobq.

Proof. Abbreviate L = K(Tφ/ϖ
M ), and let ϕ ∈ HomGK

(GL, Tφ/ϖ
n) be the image of c under restriction;

by hypothesis ϕ ̸= 0. Without loss of generality, we may suppose that the image of ϕ is contained in
Tφ/ϖ

n[ϖ] ≃ Tφ/ϖ, which, since φ is residually trivial, is the extension of scalars T f ⊗O/℘ R/ϖ. Fix a
complex conjugation τ ∈ GQ. Now,

HomGK
(GL, T f ⊗R/ϖ)

has a natural action of Gal(K/Q), so we may assume without loss of generality that ϕτ = ϵϕ for some
ϵ ∈ {±1} . Also, since T f is absolutely irreducible as an O[GK ]-module by Lemma 3.3.4, there exists g ∈ GL
such that ϕ(g) has nonzero component in the ϵ eigenspace of τ . Then

ϕ(τgτg) = τϕτ (g) + ϕ(g) = ϵτϕ(g) + ϕ(g)

has nonzero component in the ϵ eigenspace as well. Any q with Frobenius τg in L(ϕ) satisfies the desired
conditions. □

Remark 3.3.12. If p ≥ 5 and the image of the Galois action on Tf is sufficiently large, then we can instead
use primes q such that p ∤ q2 − 1, as is more common in the literature.

Proof of Theorem 3.3.9. By Lemmas 2.4.12 and 3.3.4,

H1(KT/K, Tφ)[ϖ] = 0.

Thus there exists some n such that the image c of c in H1(KT/K, Tφ/ϖ
n) satisfies ϖjc ̸= 0, for some j

as in Lemma 3.3.10. By definition, c is represented by a sequence of classes cm ∈ H1(KTm/K, Tφ/ϖ
n)

such that ϖjcm ̸= 0 for F-many m, where (Tm)m∈N represents T. For each m, apply Lemma 3.3.11 with
M = max {m,n} to obtain a prime qm ̸∈ Tm and a sign ϵm. If q ∈ MQ is the equivalence class of the sequence
(qm)m∈N, and ϵq ∈ U({±1}m∈N) ≃ {±1} is the equivalence class of the sequence (ϵm)m∈N, then q satisfies
the theorem with the sign ϵq. Since there are infinitely many choices for each qm, there are also infinitely
many choices for q. □

Corollary 3.3.13. For any {Q, ϵQ} ∈ N, there exists some {QQ′, ϵQQ′} ∈ N such that rQQ′ = 0; moreover,
we may choose Q′ such that Q′ ∩ T = ∅ for any fixed finite set T ⊂ MQ.

Proof. If rQ > 0, then Theorem 3.3.9 and Proposition 3.3.8 imply that there exists an admissible ultraprime
q ̸∈ T ∪ Q with sign ϵq such that such that rQq = rQ − 1. The corollary follows by induction on rQ. □

Combining Proposition 3.3.8 and Theorem 3.3.9 allows us to prove the main result of this subsection.

Theorem 3.3.14. Suppose that (F ,S) is self-dual and that (κ, λ) is a nontrivial bipartite Euler system with
parity δ for (Tφ,F ,S). Then there exists an integer C (possibly negative) such that:

(1) For all {Q, ϵQ} ∈ Nδ, rQ is odd, rQ = 1 if and only if κ(Q) ̸= 0, and in that case

lgRMQ = lgR

(
SelF(Q)(Tφ)

(κ(Q))

)
+ C.

(2) For all {Q, ϵQ} ∈ Nδ+1, rQ is even, rQ = 0 if and only if λ(Q) ̸= 0, and in that case

lgRMQ = ordϖ λ(Q) + C.

In particular,

δ = rkR SelF (Tφ) + 1 (mod 2).

Proof. The proof will be in several steps.
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Step 1. If λ(Q) ̸= 0 for some {Q, ϵQ} ∈ Nδ+1, then rQ = 0.

Proof. If 0 ̸= c ∈ SelF(Q)(Tφ), then by Theorem 3.3.9, there exists an admissible ultraprime q with sign ϵq
such that locq c ̸= 0. By Proposition 3.3.8, ∂q(κ(Qq)) = 0, which contradicts the reciprocity laws. □

Step 2. If κ(Q) ̸= 0 for some {Q, ϵQ} ∈ Nδ, then rQ = 1.

Proof. Choose an admissible ultraprime q with sign ϵq such that locq κ(Q) ̸= 0. Then by the reciprocity laws,
λ(Qq) ̸= 0, so by Step 1 rQq = 0. Proposition 3.3.8 implies rQ = 1. □

Step 3. For all {Q, ϵQ} ∈ N, rQ ≡ δ + |Q|+ 1 (mod 2).

Proof. If {QQ′, ϵQQ′} ∈ N, then by Proposition 3.3.8

rQ − rQQ′ ≡ |Q′| (mod 2).

In particular, the parity of rQ − |Q| is constant as Q ∈ N varies, so Steps 1 and 2 imply Step 3. □

Step 4. Suppose rQ = 0 for some {Q, ϵQ}. Then, for all admissible ultraprimes q ̸∈ Q ∪ S with sign ϵq,
rQq = 1 and

lgRMQq + ordϖ λ(Q) = lgRMQ + lgR

(
SelF(Qq)(Tφ)

(κ(Qq))

)
.

Proof. By Step 3, λ(Q) and κ(Qq) are well-defined. Then Step 4 follows from Proposition 3.3.8, since by the
reciprocity laws

lgR

(
SelF(Qq)(Tφ)

(κ(Qq))

)
+ lgR coker ∂q(SelF(Qq)(Tφ)) = ordϖ λ(Q).

□

The same reasoning implies:

Step 5. Suppose that rQ = 1 and q ̸∈ Q∪S is an admissible ultraprime with sign ϵq such that rQq = 0. Then

lgRMQq + lgR

(
SelF(Q)(Tφ)

(κ(Q))

)
= lgRMQ + ordϖ λ(Qq).

Now consider the graph X whose vertices are the elements of N, and where the edges are between vertices
of the form {Q, ϵQ} and {Qq, ϵQq}, for some admissible ultraprime q with sign ϵq (cf. [38, §2.4]). We say
{Q, ϵQ} is a core vertex if rQ ≤ 1. The core subgraph X0 of X is the full subgraph on core vertices.

Step 6. Assume X0 is path-connected. Then the theorem holds.

Proof. For every {Q, ϵQ} ∈ X0, set

CQ =

{
lgRMQ − lgR

(
SelF(Q)(Tφ)

(κ(Q))

)
, if {Q, ϵQ} ∈ Nδ,

lgRMQ − ordϖ λ(Q), if {Q, ϵQ} ∈ Nδ+1.

(A priori, CQ could be −∞.) By Steps 4 and 5, CQ is constant along paths contained in X0. Moreover, if
(κ, λ) is nontrivial, then Steps 1 and 2 imply that there exists Q ∈ X0 with CQ finite. Under the additional
assumption that X0 is path-connected, the common value of CQ for Q ∈ X0 is the global constant C of the
theorem. □

In the rest of the proof, we will establish the path-connectedness of X0.

Step 7. If v = {Q, ϵQ} and v′ = {QQ′, ϵQQ′} are core vertices, then they are connected by a path in X0.

Proof. We proceed by induction on |Q′|, where the base case |Q′| = 1 is trivial. If rQQ′/q ≤ 1 for any q ∈ Q′,
then we may apply the inductive hypothesis, so assume otherwise. By Proposition 3.3.8, rQQ′ = 1 and
∂q(SelF(QQ′)(Tφ)) = 0 for all q ∈ Q′. Hence

SelF(QQ′)(Tφ) ⊂ SelF(Q)(Tφ).

Then, by Theorem 3.3.9 and Proposition 3.3.8, there exists an admissible ultraprime q ̸∈ Q∪Q′∪S with sign
ϵq such that rQq = rQQ′q = 0. For any ultraprime q′ ∈ Q′,

{
QQ′q/q′, ϵQQ′qq′ |QQ′q/q′

}
∈ N is a core vertex,

which is connected to v′ in X0. By the inductive hypothesis,
{
QQ′q/q′, ϵQQ′qq′ |QQ′q/q′

}
is also connected to

the core vertex {Qq, ϵQq}, hence to v, by a path in X0. This completes the inductive step. □
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Step 8. If v = {Q, ϵQ} is a core vertex and T ⊂ MQ is any finite set, then there exists a core vertex
v′ = {Q′, ϵQ′} such that v and v′ are connected by a path in X0 and Q′ ∩ T = ∅.

Proof. By iterating, it suffices to assume that Q∩T consists of exactly one ultraprime q ∈ Q. If rQ/q ≤ 1, then
the conclusion is obvious, so suppose otherwise. As in the proof of Step 7, choose an admissible ultraprime
q′ ̸∈ Q ∪ S ∪ T with associated sign ϵq′ such that rQq′ = 0, which implies rQq′/q = 1. The core vertex

v′ =
{
Qq′/q, ϵQq′ |Qq′/q

}
has the desired properties. □

Finally, we have:

Step 9. The core subgraph X0 is path-connected.

Proof. Let {Q1, ϵQ1
} and {Q2, ϵQ2

} be two core vertices; we wish to show they are connected by a path in
X0. Without loss of generality, by Step 8, we may assume Q1 ∩ Q2 = ∅. (This step is necessary because the
sign functions ϵQ1 and ϵQ2 need not agree on Q1 ∩Q2.) Consider {Q1Q2, ϵQ1Q2} ∈ N. This may not be a core
vertex, but, by Corollary 3.3.13, there exists {Q3, ϵQ3

} ∈ N such that {Q1Q2Q3, ϵQ1Q2Q3
} is a core vertex.

We may then conclude by Step 6. □

□

Proposition 3.3.15. In the setting of Theorem 3.3.14, there exists a constant C ′ ≥ 0 depending on |S|, Tf ,
and the ramification index of R/O, but not on φ, such that C ≥ −C ′. If (sclr) holds, then we may take
C ′ = 0.

Proof. By Theorem 3.3.14, it suffices to show that there exists a constant C ′ with the desired dependencies
and a pair {Q, ϵQ} ∈ N such that rQ = 0 and lgRMQ ≤ C ′. Inspecting the proof of Lemma 3.3.10, we first
note that the constant j in Lemma 3.3.11 can be chosen to depend only on Tf and the ramification index of
R/O, and we can take j = 0 under (sclr).

Moreover, if k is the residue field of R, then d = dimk H
1(KS/K,Wφ[ϖ]) is also bounded with a bound

depending only on |S| and Tf , by the proof of Lemma 2.4.5. We now construct a sequence {Qi, ϵQi
} recursively

(starting from Q1 = 1) by the following rules:

• If rQi = 0 and the exponent of SelF(Qi)(Wφ) ̸= 0 is ni > (i+ 2) · j, then choose any qi+1 ̸∈ Qi with
sign ϵqi+1

such that the exponent of locqi+1
(SelF(Qi)(Wφ)) is at least ni − j.

• If rQi
> 0, then choose any qi+1 ̸∈ Qi with sign ϵqi+1

such that

lgR coker(locqi+1
SelF(Qi)(Tφ)) ≤ j.

These choices are possible by Lemma 3.3.11 and Corollary 3.3.5, cf. the proof of Theorem 3.3.9. In either
of the above two cases, set

{
Qi+1, ϵQi+1

}
=
{
Qiqi+1, ϵQiqi+1

}
; if neither holds, then end the construction.

For each i, let r′Qi
be the minimal number of generators of the torsion R-module ϖijMQi

, which is also the

dimension of the k-vector spaces ϖijMQi
/ϖij+1MQi

and (ϖijMQi
)[ϖ].

Claim. In the first case of the construction, r′Qi+1
< r′Qi

. In the second case, r′Qi+1
≤ r′Qi

.

Before proving the claim, we show it implies the proposition. After r1 ≤ d steps (where the inequality
holds by Corollary 3.3.5 and Proposition 3.3.6), we alternate between the two cases of the construction by
Proposition 3.3.8, and so the claim implies that the construction must halt after at most 2r′1 ≤ 2d more
steps. Hence for some i ≤ 3d, rQi = 0 and ϖ(i+2)jMQi = 0. In this case,

lgRMQi ≤ (i+ 2)j dimk SelF(Qi)(Wφ)[ϖ] ≤ (3d+ 2)j(d+ 3d),

the last inequality by the reasoning of [38, Corollary 2.2.10]. Since d and j have bounds depending only on
|S|, Tf , and the ramification index of R, and we may take j = 0 under (sclr), the proposition follows.

Now let us prove the claim, for which we abbreviate A := SelFqi+1
(Qi)(Wφ)/ div. Start with the first case.

From (35), we have an exact sequence

HomR/ϖni (SelF(Qi)(Wφ), A)→ HomR/ϖni (A,A)→ Ext1R/ϖni (locqi+1

(
SelF(Qi)(Wφ)

)
, A),(40)

where the last term is ϖj-torsion because locqi+1

(
SelF(Qi)(Wφ)

)
is a cyclic R/ϖni-module of length at least

ni − j. Hence there is a map f : SelF(Qi)(Wφ) → A such that the composite A ↪→ SelF(Qi)(Wφ)
f−→ A is
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multiplication by ϖj . Let B be the image of the resulting map

SelF(Qi)(Wφ)
f⊕locqi+1−−−−−−→ A⊕ locqi+1

(SelF(Qi)(Wφ)),

so that

dimkϖ
ijB/ϖij+1B ≤ 2r′Qi

.

Now, an elementary calculation shows that B contains ϖjA⊕ϖj locqi+1
(SelF(Qi)(Wφ)), so

dimkϖ
(i+1)jA/ϖ(i+1)j+1A+ 1 ≤ dimkϖ

ijB/ϖij+1B ≤ 2r′Qi
.

(Here we are using that ϖ(i+1)j locqi+1
(SelF(Qi)(Wφ)) ̸= 0, which holds because locqi+1

(SelF(Qi)(Wφ)) is

cyclic of length at least ni − j > (i+ 1)j.) On the other hand, ϖ(i+1)j SelF(Qiqi+1)(Wφ)/div is a quotient of

ϖ(i+1)jA by (38), so we have

2r′Qi+1
≤ dimkϖ

(i+1)jA/ϖ(i+1)j+1A ≤ 2r′Qi
− 1,

which proves the claim in this case.
We now consider the second case of the construction. Analogously to (37), (38), in this case we have exact

sequences:

0→ A→ SelF(Qiqi+1)(Wφ)/ div → ∂qi+1
(SelF(Qiqi+1)(Wφ))→ 0,(41)

0→ coker locqi+1
(SelF(Qi)(Tφ))→ A→ SelF(Qi)(Wφ)/ div → 0.(42)

By (42),

dimkϖ
ijA/ϖij+1A ≤ 2r′Qi

+ 1.

Since ∂qi+1
(SelF(Qiqi+1)(Wφ)) is cyclic and ϖj-torsion by the analogue of (33), the exact sequence (41)

shows that ϖ(i+1)j SelF(Qiqi+1)(Wφ)/ div injects into ϖijA, so we conclude 2r′Qi+1
≤ 2r′Qi

+ 1; hence r′Qi+1
≤

r′Qi
, as claimed. □

3.4. Euler systems over Λ. For this subsection, we assume:

(ord) ap(f) ̸∈ ℘.

3.4.1. Let K∞/K be the anticyclotomic Zp-extension, and let Λ be the anticyclotomic Iwasawa algebra
OJGal(K∞/K)K with canonical character

Ψ : GK → Λ×.

If γ is a topological generator of Gal(K∞/K), then as a ring Λ = OJT K where T = Ψ(γ)−1. For each height-
one primeP ⊂ Λ withP ̸= (℘), let SP be the integral closure of Λ/P in its field of fractions, so that Ψ induces
a character GK → Λ× → S×P. We write TP for the twist Tf ⊗O SP(Ψ), WP for TP ⊗Qp/Zp = TP ⊗O E/O,
and Tf for the interpolated twist Tf ⊗O Λ(Ψ). Also let Wf = T∗f be the Cartier dual with Λ action twisted
by the canonical involution ι, so that for each P there is a natural map

WP →Wf

of Λ[GK ]-modules (see, e.g., [37, §2]).

3.4.2. For each place v|p of K, there is a free rank-one direct summand Fil+v Tf ⊂ Tf on which Iv ⊂ GK
acts through the cyclotomic character; let grv Tf = Tf/Fil

+
v Tf be the quotient. Let S ⊂ MK be the set of

ultraprimes v = v lying over v|Np, and define the Selmer structure (FΛ,S) for Tf as follows:

(43) H1
FΛ

(Kv,Tf ) =


im
(
H1(Kv,Fil

+
v Tf ⊗ Λ)→ H1(Kv,Tf )

)
, v = v, v|p,

H1(Kv,Tf ), v = v, v|N∞, v = vτ ,

H1
unr(Kv,Tf ), otherwise.

Remark 3.4.3. If q||N is inert in K, then a direct calculation shows that the whole cohomology group
H1(Kq,Tf ) is ordinary in the sense of [38, §3.1], so (43) is consistent with the Selmer structure defined in
loc. cit. under the conditions therein.
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3.4.4. For each height-one prime P ⊂ Λ with P ̸= (℘), we also define the Selmer structure (FP,S) for TP
by:

(44) H1
FP

(Kv, TP) =

{
ker
(
H1(Kv, TP)→ H1(Kv, grv Tf ⊗ SP)⊗Zp

Qp
)
, v = v, v|p,

ker
(
(H1(Kv, TP)→ H1(Iv, TP)⊗Zp

Qp
)
, otherwise.

This is well-defined because H1(Iv, TP) is p-torsion-free when TP is unramified at v.
As in (3.3.1), for all Q ∈ N the Selmer structure (FΛ(Q),S) for Tf induces a dual Selmer structure

(FΛ(Q)
∗,S) for Wf .

Proposition 3.4.5. The Selmer structures (FP,S) are self-dual for all P ̸= (℘). Moreover, for all P ̸= (℘)
and for all Q ∈ N, the natural map induces well-defined homomorphisms:

SelFΛ(Q)(Tf )⊗Λ Λ/P→ SelFP(Q)(TP), SelFP(Q)(WP)→ SelFΛ(Q)∗(Wf )[P].

The first map is injective. Moreover, there is a finite set of height-one primes ΣΛ of Λ such that, for all
P ̸∈ ΣΛ, both maps have finite kernels and cokernels whose cardinalities are bounded by a constant depending
on Tf and [SP : Λ/P], but not on Q or on P itself.

Proof. The self-duality of FP follows from the self-duality of the usual ordinary (resp. unramified) local
condition on H1(Kv, TP ⊗Zp

Qp) for each v|p (resp. v|N).
By the proof of [38, Proposition 3.3.1] and the references therein, for the rest of the proposition it suffices

to show the following:

Claim. The inclusion Tf/PTf ↪→ TP induces maps

H1
FΛ(Q)(Kv,Tf )⊗ Λ/P→ H1

FP(Q)(Kv, TP), H1
FP(Q)(Kv,WP)→ H1

FΛ(Q)∗(Kv,Wf )[P]

with kernels and cokernels having bounds of the desired sort, for v = v with v|N , v = vτ , and for v = q ∈ Q.

For v = q ∈ Q,

H1
FΛ(Q)(Kq,Tf ) = H1

ord(Kq, Tf )⊗ Λ, H1
FP(Q)(Kq, TP) = H1

ord(Kq, Tf )⊗ SP,

so we clearly have local maps with kernel and cokernels bounded as desired (and similarly for Wf and WP).
So suppose that v = v with v|N and v = vτ . Then φ is trivial on Gv, so

H1(Kv,Tf ) = H1(Kv, Tf )⊗ Λ, H1(Kv, TP) = H1(Kv, Tf )⊗ SP.

In particular, H1(Kv, TP) is finite, so

H1
FP

(Kv, TP) = H1(Kv, TP).

Hence the desired local map H1
FΛ(Q)(Kv,Tf ) ⊗ Λ/P → H1

FP(Q)(Kv, TP) is well-defined and injective, and

its cokernel is identified with H1(Kv, Tf ) ⊗ SP/(Λ/P), which clearly has a bound of the desired sort. The
argument for the second map in the claim is similar. □

3.4.6. Recall that, for any finitely generated Λ-module M , there exists a unique Λ-module M ′ of the form
Λr ⊕

⊕
Λ/Pei

i such that M admits a map to M ′ with finite kernel and cokernel, where Pi are height-one
primes; we denote this relationship by M ∼ M ′. The characteristic ideal charΛ(M) is zero if r ≥ 1, and
equal to

∏
Pei
i otherwise. The following easy lemma is implicit in [49, p. 66].

Lemma 3.4.7. Let P ⊂ Λ be a height-one prime. Then there exists an integer d and a sequence of distinct
height-one primes Pm such that, for all finitely generated torsion Λ-modules M ,

lgO(M/Pm) = md ordP charΛ(M) +O(1)

as m varies (holding M fixed). Moreover [SPm : Λ/Pm] is constant for large enough m, and if P ̸= (℘),
then the rings Λ/Pm are abstractly isomorphic.

Proof. If P ̸= (℘) is generated by a distinguished polynomial f ∈ Λ, and π is a uniformizer for O, then
we may take Pm = f + πm (for sufficiently large m) and d = [SP : O]. If P = (℘), then we may take
Pm = Tm + π and d = 1. □
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Proposition 3.4.8. For all {Q, ϵQ} ∈ N, we have

SelFΛ(Q)∗(Wf )
∨ ∼ ΛrQ ⊕MQ ⊕MQ

for some torsion Λ-module MQ, where

rQ = rkΛ SelFΛ(Q)(Tf ).

Here, for a topological O-module M , M∨ denotes the Pontryagin dual.

Proof. This follows from Propositions 3.3.6 and 3.4.5 exactly as in the proof of [37, Theorem 2.2.10(b)]. □

Theorem 3.4.9. Suppose that {κ,λ} is a nontrivial bipartite Euler system with parity δ for the triple
(Tf ,FΛ,S). Then there exists a nonzero fractional ideal I ⊂ Λ⊗Qp such that:

(1) For all {Q, ϵQ} ∈ Nδ, rQ is odd, rQ = 1 if and only if κ(Q) ̸= 0, and in that case

charΛ(MQ) · I = charΛ

(
SelFΛ(Q)(Tf )

(κ(Q))

)
.

(2) For all {Q, ϵQ} ∈ Nδ+1, rQ is even, rQ = 0 if and only if λ(Q) ̸= 0, and in that case

charΛ(MQ) · I = (λ(Q)).

In particular,

δ = rkR SelF (Tf ) + 1 (mod 2).

If (sclr) holds, then I ⊂ Λ.

Proof. Let P ⊂ Λ be any height-one prime other than (℘); via the natural maps SelFΛ
(Tf ) → SelFP

(TP)
and Λ→ SP, the Euler system (κ,λ) defines an Euler system (κP, λP) of parity δ for the triple (TP,FP,S).
In particular, Theorem 3.3.14 applies.

By Lemmas 2.4.12 and 3.3.4, SelFΛ(Q)(Tf ) is Λ-torsion-free. Hence for fixed Q, by Proposition 3.4.5,
κ(Q) ̸= 0 if and only if κP(Q) ̸= 0 for all but finitely many P. Similarly, λ(Q) ̸= 0 if and only if λP(Q) ̸= 0
for all but finitely many P. Because

rkΛ SelFΛ(Q)(Tf ) = rkSP
SelFP(Q)(TP)

for all but finitely many P by Proposition 3.4.5, the claims about rQ follow from Theorem 3.3.14.
For any P and {Q, ϵQ} ∈ Nδ+1 such that λ(Q) ̸= 0, by Proposition 3.4.5 and Lemma 3.4.7 we have

eP(Q) := ordP(λ(Q))− ordP charΛ(MQ)

= lim
m→∞

lgO(SPm
/λPm

(Q))− lgOMQ,Pm

md
.

Applying Theorem 3.3.14, this quantity does not depend on {Q, ϵQ} (as long as λ(Q) ̸= 0); it is also clearly
zero for almost all P, so that

∏
P PeP defines a fractional ideal I of Λ satisfying (2). The same calculation

shows that I satisfies (1) as well. Then Proposition 3.3.15 shows that eP ≥ 0 if P ̸= (℘), and also for
P = (℘) under (sclr), which shows the desired integrality properties for I and completes the proof. □

4. Geometry of modular Jacobians

4.1. Purely toric reduction of semistable abelian varieties.

4.1.1. Fix a prime ℓ, and let A be an abelian variety over Qℓ whose Néron model A/Zℓ
is semistable with

purely toric reduction. We denote by AFℓ
the special fiber, by A0

Fℓ
the neutral connected component, and

by Xℓ(A) the character group of A0
Fℓ
, which is a free Z-module of finite rank with an action of Gal(Fℓ/Fℓ).

Also let Xℓ(A)∨ = Hom(Xℓ(A),Z) be the Z-dual. We recall the following basic result from the theory of
rigid analytic uniformizations.

Proposition 4.1.2. (1) With notation as above, there is a canonical GQℓ
-equivariant exact sequence:

0→ Xℓ(A∨)→ Xℓ(A)∨ ⊗Z Q×ℓ → A(Qℓ)→ 0.
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(2) Suppose that A0
Fℓ

splits over Fℓn . Taking Gal(Qℓ/Qℓn)-invariants in (1) gives an exact sequence
fitting into a commutative diagram of Gal(Qℓn/Qℓ)-modules:

0 Xℓ(A∨) Xℓ(A)∨ ⊗Z Q×ℓn A(Qℓn) 0

0 Xℓ(A∨) Xℓ(A)∨ Φℓ(A) 0.

id ordℓ sp

j

Here, j is the monodromy pairing of [34, §9], and Φℓ(A) is the component group of AFℓ
.

(3) For any p ̸= ℓ, there is a canonical exact sequence of GQℓ
-modules:

0→ Xℓ(A)∨ ⊗Z Zp(1)→ TpA→ Xℓ(A∨)⊗Z Zp → 0.

Proof. Let T be the algebraic torus over Zℓ with character group Xℓ(A); let TFℓ
⊂ T be the special fiber and

T̂ the formal completion of T along TFℓ
. By [33, Theorem 3.6], the isomorphism TFℓ

∼= A0
Fℓ

lifts uniquely

to an isomorphism between T̂ and the formal completion Â of A along A0
Fℓ
. Then by [5, Theorem 1.2], this

isomorphism T̂ ∼= Â extends uniquely to a surjection of rigid analytic groups T rig → Arig, whose kernel M
is a lattice in T rig. By [5, Theorem 2.1] and étale descent, the rigid analytic torus with character group M
uniformizes (A∨)rig; hence by [5, Proposition 6.10], M is canonically identified with χℓ(A

∨), and so we have
an exact sequence of rigid analytic groups over Qℓ:

0→ χℓ(A
∨)→ T rig → Arig → 0.

Taking Qℓ-points gives the exact sequence in (1). For (2), the top row of the diagram is exact since
H1(Qℓn ,Xℓ(A∨)) = Hom(GQℓn

,Xℓ(A∨)) = 0. The commutativity of the leftmost square is [20, Theorem
2.1], and to establish the commutativity on the right it suffices to show that the image of Xℓ(A)∨ ⊗Z Z×ℓn in
A(Qℓn) = A(Zℓn) is exactly those points that reduce to the neutral connected component of A0

Fℓ
. But this

is clear because Xℓ(A)∨ ⊗ Z×ℓn = T̂ (Zℓn) maps isomorphically to Â(Zℓn) by construction, and by definition

Â(Zℓn) ⊂ A(Zℓn) is the set of points that reduce to A0
Fℓ
(Fℓn).

For (3), apply the snake lemma to the commutative diagram

0 Xℓ(A∨) Xℓ(A)∨ ⊗Z Q×ℓ A(Qℓ) 0

0 Xℓ(A∨) Xℓ(A)∨ ⊗Z Q×ℓ A(Qℓ) 0

pn pn pn

and take inverse limits in n. □

4.2. Multiplicity one.

4.2.1. Let N1 and N2 be coprime positive integers, with N2 squarefree. Consider the Hecke algebra T =
TN1,N2

generated over Z by operators Tℓ for all primes ℓ ∤ N = N1N2 and Uℓ for all ℓ|N, acting on the cusp
forms of weight two and level Γ0(N) which are new at all factors ℓ|N2. If I is the kernel of the projection
TN,1 → T, then we set

(45) JN1,N2

min := J0(N)/IJ0(N),

an abelian variety over Q with a (faithful) action of T. If N1, N2 are clear from context, we will omit the
superscript.

4.2.2. For any maximal ideal m ⊂ T and any T-module M , let Mm denote the m-adic completion. If A is
an abelian variety with an action of T, the m-adic Tate module is TmA := (TpA)m, where p is the residue
characteristic of m.

Proposition 4.2.3. Suppose m is non-Eisenstein with residue characteristic p ∤ 2N . Then TmJmin is free
of rank two over Tm.
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Proof. Throughout the proof, we will also view m ⊂ TN1,N2 as a maximal ideal of TN,1 via pullback. By
[63, Theorem 5.2(b)], J0(N)[m] is a two-dimensional vector space over TN,1/m. Now, by [35, Proposition
2.2], the dual map to the projection ϕ : J0(N)→ Jmin identifies J∨min with the neutral connected component
of J0(N)[I] (notation as in (45)); in particular, ϕ∨ is injective, so TmJ0(N) → TmJmin is surjective. Hence
Jmin[m] is a TN1,N2

/m-vector space of dimension at most two (in particular, exactly two because m is non-
Eisenstein), so the proposition follows as in [74, Corollary 2, p.332]. □

4.2.4. Now suppose that A is an abelian variety over Q with faithful T-action, admitting a T-equivariant
isogeny to Jmin. Then the Néron model of A over Zℓ has purely toric reduction for all ℓ|N2, and we will
apply the notations of §4.1.

Proposition 4.2.5 (Helm). Let m ⊂ T be non-Eisenstein of residue characteristic p ∤ 2N . Then the natural
maps induce Tm-module isomorphisms:

TmJmin ⊗Tm
Hom(Jmin, A)m

∼−→ TmA,

Xℓ(J∨min)m ⊗Tm
Hom(Jmin, A)m

∼−→ Xℓ(A∨)m, ∀ℓ|N2.

Here, all Hom-sets are understood to be T-equivariant morphisms, and tensor products are taken modulo
Z-torsion.

Proof. This follows from [35, Corollary 4.10, Proposition 4.14]. Note that [35] uses contravariant Tate
modules, so it is necessary to dualize to recover the covariant formulation. □

We record the following elementary lemma for later use.

Lemma 4.2.6. Let X = Xℓ(J∨min)m for some ℓ|N2 and m ⊂ T, where m is non-Eisenstein of residue
characteristic p ∤ 2N . If the associated residual representation ρm is ramified at ℓ or if p ∤ ℓ − 1, then X is
free of rank one over Tm. In general, there exist Tm-module maps

ϕi : X → Tm, ψi : Tm → X , i = 1, 2

such that
ϕi ◦ ψi = ψi ◦ ϕi = ti ∈ Tm ⊂ End(X )

and
t1 + t2 = ℓ− 1 ∈ Tm.

Proof. If ℓ− 1 is a p-adic unit, or if ρm is ramified at ℓ, then this follows from [35, Lemma 6.5]. In general,
abbreviate X∨ = HomZ(Xℓ(J∨min),Z)m. By Proposition 4.1.2(3), we have an exact sequence of Tm[GQℓ

]-
modules

(46) 0→ X∨(1)→ TmJmin
π−→ X → 0;

the action of GQℓ
on X is unramified and Frobenius acts as Uℓ [63, Proposition 3.8], which is a constant ±1

because the residue characteristic of m is p > 2.
By Proposition 4.2.3, TmJmin is free of rank two over Tm. Choose a basis {e1, e2} for TmJmin, which

identifies ∧2TmJmin
∼= Tm by the generator e1 ∧ e2. Let

⟨·, ·⟩ : TmJmin × TmJmin → ∧2TmJmin
∼= Tm

be the resulting alternating pairing, so that

(47) y = ⟨e1, y⟩e2 − ⟨e2, y⟩e1
for all y ∈ TmJmin. Define maps

ϕ̃i : TmJmin → Tm, i = 1, 2

ϕ̃1 : y 7→ ⟨y, (F − Uℓ)e2⟩

ϕ̃2 : y 7→ ⟨y, (F − Uℓ)e1⟩,

where F ∈ GQℓ
is any lift of Frobenius. We first claim that the maps ϕ̃i factor through π. Since Tm is

p-torsion-free, it suffices to check this after inverting p. It follows from (46) that, on TmJmin ⊗ Qp, F acts
semisimply with distinct eigenvalues Uℓ and ℓUℓ, and each eigenspace is isotropic for ⟨·, ·⟩ because the action
of GQℓ

on ∧2TmJmin is through the cyclotomic character. Since (F −Uℓ)y lies in the ℓUℓ-eigenspace of F for
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all y ∈ TmJmin ⊗Qp, the maps ϕ̃i ⊗Qp factor through the projection onto the Uℓ-eigenspace, hence through

π ⊗ Qp by the exact sequence (46). So indeed each ϕ̃i descends to a Tm-module map ϕi : X → Tm. Now
define maps

ψi : Tm → X , i = 1, 2

ψ1 : 1 7→ Uℓπ(e1)

ψ2 : 1 7→ −Uℓπ(e2).

We claim that ψi and ϕi satisfy the conclusion of the lemma. One readily calculates:

ϕ1 ◦ ψ1(1) = Uℓ⟨e1, (F − Uℓ)e2⟩
ψ1 ◦ ϕ1(π(e1)) = Uℓ⟨e1, (F − Uℓ)e2⟩π(e1)
ψ1 ◦ ϕ1(π(e2)) = Uℓ⟨e2, (F − Uℓ)e2⟩π(e1)

= Uℓ⟨e1, (F − Uℓ)e2⟩π(e2)− Uℓ(F − Uℓ)π(e2)
= Uℓ⟨e1, (F − Uℓ)e2⟩π(e2),

where in the last two steps we have used (47) and the fact that F = Uℓ on X . Similarly,

ϕ2 ◦ ψ2 = ψ2 ◦ ϕ2 = −Uℓ⟨e2, (F − Uℓ)e1⟩,

and

Uℓ⟨e1, (F − Uℓ)e2⟩ − Uℓ⟨e2, (F − Uℓ)e1⟩ = trTmJmin
Uℓ(F − Uℓ) = ℓ− 1.

□

4.3. Shimura curves.

4.3.1. If ν(N2) is even, then fix a maximal order OB of B and let XN1,N2,Z[ 1
N ] be the smooth projective

Shimura curve over SpecZ[ 1N ] described in [3, §5.1]. In particular, for N2 > 1 and for any field k of residue
characteristic not dividing N , the points XN1,N2(k) := XN1,N2,Z[ 1

N ](k) parametrize isomorphism classes of

triples (A, ι, C), where A is an abelian surface over k, ι is an embedding OB ↪→ Endk(A), and C ⊂ A[N1] is
a sub-group scheme of order N2

1 which is stable and cyclic for the action of OB . For N2 = 1, XN,1,Z[ 1
N ] is

the usual modular curve X0(N), and the preceding moduli interpretation applies to the open modular curve
Y0(N) ⊂ X0(N). We write XN1,N2

:= XN1,N2,Q for the generic fiber.

4.3.2. For all ℓ ∤ N2, we have the usual Hecke correspondences Tℓ (ℓ ∤ N) or Uℓ (ℓ|N1) on XN1,N2,Z[ 1
N ] ×

XN1,N2,Z[ 1
N ]; for ℓ|N2, we have the involution Uℓ of XN1,N2,Z[ 1

N ], whose action on the complex fiber is given

by the double coset operator of [18, p. 873]. By [35, Theorem 2.3], these correspondences induce, by Picard
functoriality, a faithful action of TN1,N2

on the Jacobian JN1,N2 := Jac(XN1,N2
). When N1 and N2 are

understood, we abbreviate J = JN1,N2 . By [35, Corollary 2.4], there is a noncanonical Hecke-equivariant
isogeny J → Jmin.

4.3.3. If q ∤ N is a prime, then we have the two natural degeneracy maps δq,1, δq,2 : XN1q,N2
→ XN1,N2

defined
on the level of the moduli problems by by δq,1(A, ι, C) = (A, ι, C[N1]) and δq,2(A, ι, C) = (A/C[q], ι, C/C[q]).
Consider the following Taylor-Wiles hypothesis on the residual representation ρm : GQ → GL2(T/m) associ-
ated to m:

(TW) if p = 3, then ρm is absolutely irreducible over Q(
√
−3).

If T(q)
N1q,N2

is the subalgebra of TN1q,N2
generated by all Hecke operators except for Uq, then a maximal ideal

m ⊂ TN1,N2 also defines a maximal ideal m(q) of T(q)
N1,N2

by pullback along the projection T(q)
N1q,N2

→ TN1,N2
.

Proposition 4.3.4 (Ihara’s Lemma). Let q ∤ N be any prime, and let m ⊂ TN1,N2 be a non-Eisenstein
maximal ideal of residue characteristic p ∤ 2N satisfying (TW). Then the natural map

δ∗q,1 + δ∗q,2 : JN1,N2 [m]⊕2 → JN1q,N2 [m(q)]

is injective.
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Proof. Let ℓ ∤ 6Npq be a prime such that p ∤ ℓ− 1 and T 2
ℓ − (ℓ+ 1)2 ̸∈ m; infinitely many such primes exist

by [26, Lemma 2] and (TW). Let XN1,N2(ℓ) be the Shimura curve defined analogously to XN1,N2 but with
an additional with Γ1(ℓ) level structure, and similarly for XN1q,N2

(ℓ); let JN1,N2(ℓ) and JN1q,N2(ℓ) be the

corresponding Jacobians. The forgetful projections XN1,N2
(ℓ)

γ−→ XN1ℓ,N2

δℓ,1−−→ XN1,N2
and XN1q,N2

(ℓ) →
XN1qℓ,N2

→ XN1q,N2
induce a commutative diagram of degeneracy maps:

JN1,N2 [p]⊕2 JN1q,N2 [p]

JN1ℓ,N2 [p]⊕2 JN1qℓ,N2 [p]

JN1,N2(ℓ)[p]⊕2 JN1q,N2(ℓ)[p].

δ∗q,1+δ
∗
q,2

(δ∗ℓ,1)
⊕2

α

(γ∗)⊕2

β

By [27, §3, Theorem 2] (and the end of [26] for the case p = 3), every Jordan-Hölder constituent of the
Fp[GQ]-module (kerβ) ⊗Fp Fp is one-dimensional. The same is true of kerα since the map γ∗ is injective
(as γ has degree ℓ − 1, which is prime to p). On the other hand, every Jordan-Hölder constituent of
JN1,N2 [m]⊗Fp

Fp is an irreducible two-dimensional representation because m is non-Eisenstein; so it suffices

to show that δ∗ℓ,1 : JN1,N2 [m]→ JN1ℓ,N2 [m(ℓ)] is injective. Indeed, the composite

JN1,N2 [m]⊕2
δ∗ℓ,1⊕δ

∗
ℓ,2−−−−−−→ JN1ℓ,N2 [m(ℓ)]

δℓ,1,∗⊕δℓ,2,∗−−−−−−−−→ JN1,N2 [m]⊕2

is given by the matrix (
ℓ+ 1 Tℓ
Tℓ ℓ+ 1

)
,

cf. [27, p. 447], which is injective because T 2
ℓ − (ℓ+ 1)2 ̸∈ m; so a fortiori δ∗ℓ,1 : JN1,N2 [m]→ JN1ℓ,N2 [m(ℓ)] is

injective, as desired. □

Theorem 4.3.5 (Helm). Let m ⊂ T be a non-Eisenstein maximal ideal of residue characteristic p ∤ 2N
satisfying (TW). Then there is an isomorphism of Tm-modules:

Hom(Jmin, J)m ≃
⊗
ℓ|N2

Xℓ(J∨min)m,

modulo Z-torsion on the right-hand side. Here, the tensor products are over Tm.

Proof. If p ̸= 3, this is [35, Theorem 8.7]. However, as explained in [35, Remark 8.12], the assumption p ̸= 3
is used only in the level-raising arguments of [35, §7]: in particular, the application of [27, Theorem A] in the
proof of [35, Lemma 7.1], and the application of Ihara’s Lemma in the proof of [35, Proposition 7.2]. Under
condition (TW), the first result still applies even when p = 3 by [26, Theorem 1]; and the necessary case of
Ihara’s Lemma is given by Proposition 4.3.4 above. □

4.4. Shimura sets.

4.4.1. Let B = BN2
be the quaternion algebra over Q ramified at the prime factors of N2 (and possibly

∞). Recall from [62, p. 369] that an oriented Eichler order (R,ϕ) of level N1 in B is an Eichler order R of
level N1 equipped with a local orientation ϕℓ for each ℓ|N . If ℓ|N1, then ϕℓ is the data of a maximal order
Rℓ ⊂ B ⊗Qℓ containing R⊗Zℓ. If ℓ|N2, then ϕℓ is the data of a homomorphism from R to a fixed field Fℓ2
of cardinality ℓ2. In particular, for a fixed R, there are exactly two choices of local orientation ϕℓ for each
ℓ|N . An isomorphism of oriented Eichler orders (R,ϕ) and (R′, ϕ′) is an automorphism of B (necessarily
inner) carrying R to R′, compatibly with the orientations.
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4.4.2. If ν(N2) is odd, then we define the Shimura set XN1,N2 to be the set of isomorphism classes of oriented
Eichler orders of level N1 in B. Because B×(Af ) has a natural transitive action on the set of oriented Eichler
orders of level N1, choosing an oriented Eichler order (R,ϕ) as a base point identifies XN1,N2

with the finite
double coset space

(48) B×(Q)\B×(Af )/R̂×.
When N1 and N2 are clear from context, the subscripts on XN1,N2

may be omitted. We will write Z[XN1,N2
]0

for the set of
∑
aiyi ∈ Z[XN1,N2 ] with

∑
ai = 0.

4.4.3. The set X × X carries Hecke correspondences Tℓ (ℓ ∤ N) and Uℓ (ℓ|N), given in the double coset
description as in [18, p. 873]. We let these correspondences act on the set Z[X]0 by Picard functoriality, i.e.
by identifying Z[X] with the set of formal 0-cycles Homset(X,Z). By the explicit description of the Jacquet-
Langlands correspondence in [27, p. 459], we obtain in this way a faithful action of TN1,N2

on Z[X]0. The
analogue of Theorem 4.3.5 is:

Theorem 4.4.4. Let m ⊂ T be a non-Eisenstein maximal ideal of residue characteristic p ∤ 2N satisfying
(TW). Then there is an isomorphism of Tm-modules:

Z[X]0m ≃
⊗
ℓ|N2

Xℓ(J∨min)m,

modulo Z-torsion on the right-hand side. Here, the tensor products are taken over Tm.

Proof. Choose any prime q|N2, so that ν(N2/q) is even. Let T′ = TN1q,N2/q, and write m as well for the
maximal ideal of T′ induced by the map T′ → T.

Applying Theorem 4.3.5 to the pair N1q,N2/q, we obtain an isomorphism of T′m-modules (modulo Z-
torsion)

(49) Hom(J
N1q,N2/q
min , JN1q,N2/q)m ≃

⊗
ℓ|N2/q

Xℓ(JN1q,N2/q,∨
min ).

By [35, Corollary 5.3, Lemma 8.2], this implies an isomorphism of Tm-modules

(50) Hom(JN1,N2

min , JN1q,N2/q
q -new )m ≃

⊗
ℓ|N2/q

Xℓ(JN1,N2,∨
min ),

where J
N1q,N2/q
q -new is the q-new quotient of JN1q,N2/q in the sense of [35, p. 66]. Then, by Proposition 4.2.5,

we have

(51) Xq(JN1q,N2/q,∨
q -new )m ≃ Xq(JN1,N2,∨

min )m ⊗
⊗
ℓ|N2/q

Xℓ(JN1,N2,∨
min )m.

By [3, Proposition 5.3], Xq(JN1q,N2/q,∨) is identified with Z[XN1,N2
]0. It remains to show that the inclusion

J
N1q,N2/q,∨
q -new ↪→ JN1q,N2/q,∨ induces an isomorphism on character groups at q. Indeed, since the projection

JN1q,N2/q → J
N1q,N2/q
q -new has connected kernel, by [21, Theorem 8.2] the induced map on character groups is

surjective:

(52) Xq(JN1q,N2/q,∨) ↠ Xq(JN1q,N2/q,∨
q -new ).

After tensoring both sides with Q, (52) is an isomorphism because the q-old isogeny factors of JN1q,N2/q,∨

have good reduction at q. Since the source of (52) is a free Z-module, the surjection is an isomorphism. □

4.5. Special fibers of Shimura curves.

4.5.1. We again suppose ν(N2) is even, and fix an orientation on the maximal order OB ⊂ B = BN2
from

(4.3.1). In this subsection, we will recall – following [62] – the geometry of the special fiber of the canonical
model of XN1,N2 over Zq in two cases: q ∤ N, and q|N2.

Proposition 4.5.2. Suppose ν(N2) is even, and fix a prime q ∤ N1N2. Then:

(1) The supersingular locus XN1,N2
(Fq2)ss = XN1,N2(Fq2)ss is canonically identified with XN1,N2q. This

identification is compatible with all the Hecke correspondences Tℓ (ℓ ∤ Nq) and Uℓ (ℓ|N); moreover,
the action of Frobq on XN1,N2

(Fq2)ss coincides with the action of Uq on XN1,N2q.
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(2) If m ⊂ TN1,N2 is a non-Eisenstein maximal ideal of residue characteristic p ∤ 2Nq satisfying (TW),
then the Abel-Jacobi map induces a surjective composite

(53) Z[XN1,N2q]
0 → JN1,N2(Fq2)m → H1(Fq2 , TmJN1,N2)︸ ︷︷ ︸

φ

such that φ ◦ Uq = Frobq ◦φ.

Note in (1) that the correspondence Uq on XN1,N2q ×XN1,N2q is the graph of the involution that reverses
the local orientation at q, so it makes sense to refer to the action of Uq on XN1,N2q itself.

Proof. The first part is proven in [62, Theorem 3.4], but we recall the construction for use below in Proposition
4.7.12. If (A, ι, C) is a point ofXN1,N2

(Fq2)ss, then End0(A, ι) is isomorphic toBN2q, andR := End(A, ι, C) ⊂
End0(A, ι) is an Eichler order of level N1. Moreover, R has a natural orientation at all primes dividing ℓ|Nq,
which we now recall. For ℓ|N1, the local orientation is determined by the inclusion R ⊂ End(A, ι), where
the latter is a maximal order.

For ℓ|N2, if mℓ ⊂ OB is the unique maximal ideal of residue characteristic ℓ, then A[mℓ] is a vector space
of dimension one over OB/mℓ ≃ Fℓ2 , where the isomorphism is chosen according to the orientation of OB .
The action of R on A[mℓ] therefore defines a homomorphism R → Fℓ2 , which we take to be the orientation
of R at ℓ.

Finally, the Lie algebra of A is a Fq2-vector space of dimension 2, on which R acts by scalars valued in Fq2 ,
cf. [62, p. 24]. This defines a map R → Fq2 , which we take to be the local orientation at q. Thus for every

(A, ι, C) ∈ XN1,N2(Fq2)ss, we have described an oriented Eichler order of level N1 in BN2q, well-defined up

to the choice of isomorphism End0(A, ι) ≃ BN2q, i.e. up to B×N2q
(Q)-conjugacy. This describes a map

XN1,N2(Fq2)ss → XN1,N2q,

and [62, Theorem 3.4] shows that this map is an isomorphism.
The Hecke compatibility for operators coprime to q is clear from the construction. We can also see that

replacing (A, ι, C) by its Frobenius twist has the effect of switching the orientation of End(A, ι, C) at q,
which is precisely the action of Uq on XN1,N2q. In particular, Frob2q acts trivially on XN1,N2

(Fq2)ss, so all
the supersingular points are in fact defined over Fq2 , which shows (1).

For (2), the identity φ ◦ Uq = Frobq ◦φ follows from (1). We claim the surjectivity follows from the
proof of [47, Proposition 4.8] (replacing the Shimura curve therein with its compactification when N2 = 1),
although op. cit. imposes the additional assumptions [47, Assumption 4.1(1)-(5)] on p and ρm.

2 Indeed,
these conditions are used only thrice in the proof of [47, Proposition 4.8]: first, to establish Ihara’s Lemma
[47, Lemma 4.7], which in our case is Proposition 4.3.4; second, to deduce that H0

ét(XN1,N2,Fq
,Fp)m = 0,

which only requires that m is non-Eisenstein; and, third, to control the action of the Hecke operator denoted
Sp in [47, p. 2100], which is unnecessary in our context since all our Shimura curves have Γ0(N1) level
structure.

□

4.5.3. Now suppose instead that q|N2. The Shimura curve XN1,N2
has a canonical, semistable integral model

XN1,N2,Zq over SpecZq. We denote by X±N1,N2/q
the set XN1,N2/q × {±}.

Proposition 4.5.4. The set of irreducible geometric components of the special fiber XN1,N2,Fq of XN1,N2,Zq is

canonically identified with X±N1,N2/q
. Each component is defined over Fq2 , and the Frobenius action switches

the sign without changing the value in XN1,N2/q.
This identification is compatible with all the Hecke correspondences Tℓ (ℓ ∤ N) and Uℓ (ℓ|N , ℓ ̸= q);

moreover, the induced action of Uq on Z[X±N1,N2/q
] ∼= Z[XN1,N2/q]

2 is given by the matrix(
Tq −1
q 0

)
.

2In [47, Definition 4.5], it is also assumed that q2 ̸≡ 1 (mod p), but this is not used in the proof of Proposition 4.8 of op.

cit.
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Proof. This follows from [62, Theorem 5.4], but once again we recall the construction for use in Proposition
4.7.13 below. First, [62, Theorem 5.3] identifies the set of irreducible components with the set of so-called
pure triples (A, ι, C), where A is a superspecial abelian surface over Fq2 with an embedding ι : OB ↪→ End(A)
and C is a Γ0(N1)-level structure. The purity condition means that OB acts on the 2-dimensional Fq2-vector
space LieA via scalars, i.e. through a homomorphism OB → Fq2 . Since OB is given with an orientation at q,
we say a pure triple is of type + if this homomorphism agrees with the orientation, and of type − otherwise.

Now for any pure triple (A, ι, C), End0(A, ι) is isomorphic to BN2/q, and End(A, ι, C) is canonically an

oriented Eichler order of level N1 in End0(A, ι). (The orientation is defined as in the proof of Proposition
4.5.2.) Thus we have a well-defined map from the set of irreducible components to X±N1,N2/q

, sending a pure

triple (A, ι, C) of type δ ∈ {±} to (End(A, ι, C), δ). This map is an isomorphism by [62, Theorem 4.13], and
the Frobenius action is described in the following remark of op. cit. The Hecke equivariance is clear away
from q, and the action of Uq is described in [3, Proposition 5.8(2)]. □

4.5.5. Let Φ be the component group of the special fiber of the Néron model of JN1,N2 over Zq.

Proposition 4.5.6. Suppose m ⊂ TN1q,N2 is a non-Eisenstein maximal ideal. Then we have an isomorphism

(54)
Z[X±N1,N2/q

]0m

(U2
q − 1)

∼−→ Φm

with the following property: for all degree-zero divisors y =
∑
aiyi on XN1,N2/q,Qq

such that each yi lies in
XN1,N2/q(Qq2) and reduces to a smooth point of XN1,N2/q,Fq2

lying on the component yi, (54) sends the class

of
∑
aiyi to the image in Φm of [y] ∈ JN1,N2/q(Qq2).

Proof. This is [3, Propositions 5.13, 5.14]. □

4.6. Geometric level raising.

4.6.1. Let f , N , ℘, O, E, π, Vf , Tf , and Wf be as in §1.5. We also fix a factorization N = N1N2, where
N1 and N2 are coprime, and N2 is squarefree. If Q and Q′ are coprime squarefree positive integers, then we

abbreviate TQQ′ = TN1Q,N2Q′ , omitting any superscript or subscript which is equal to 1. From now on, we

will abbreviate Tj := Tf/π
j and Oj := O/πj for any integer j ≥ 1.

Definition 4.6.2. We say a prime q ∤ 2pN is j-admissible with sign ϵq = ±1 if aq(f) ≡ ϵq(q+1) (mod πj)

and q ̸≡ 1 (mod p). In this case, Tj has a unique subspace Fil+q,ϵq Tj , free of rank one over Oj , on which Frobq
acts as qϵq. We will omit the subscript ϵq when there is no risk of confusion. We say q is weakly admissible
with sign ϵq if it is j-admissible with sign ϵq for some j ≥ 1. A weakly admissible pair {Q, ϵQ} is an ordered
pair of a squarefree number Q and a function ϵQ : {q|Q} → {±1} such that q is weakly admissible with sign
ϵQ(q) for all q|Q. If {Q, ϵQ} is a weakly admissible pair, then for all q|Q, there is a unique root uq ∈ O of
the polynomial y2 − yaq(f) + q such that uq ≡ ϵQ(q) (mod ℘). We view O as a TQ-algebra by letting Uq
act through uq, and letting the other Hecke operators act through their eigenvalues on f ; let m

ϵQ
Q be the

associated maximal ideal (we will usually drop the superscript). Finally, a weakly admissible pair {Q, ϵQ} is
called j-level-raising if

lgO (TQ ⊗TQ O) ≥ j.

Remark 4.6.3. If {Q, ϵQ} is j-level-raising, then each q|Q is j-admissible with sign ϵQ(q). Indeed, in TQ
we have U2

q = 1 for each q|Q, but Uq acts on O by the unique root of y2 − yaq(f) + q congruent to ϵQ(q);
hence aq(f) = ϵQ(q)(q + 1) in TQ ⊗TQ O.

4.6.4. In light of the structural similarity of Theorems 4.3.5 and 4.4.4, let

(55) MQ =

{
Hom(JN1,N2Q

min , JN1,N2Q), ν(N2Q) even,

Z[XN1,N2Q]
0, ν(N2Q) odd.

Lemma 4.6.5. Suppose {Q, ϵQ} is a weakly admissible pair, and let

C =
∑
ℓ|N2

T f unram at ℓ

ordπ(ℓ− 1).
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Then there exists an O-module map

MQ ⊗TQ O → TQ ⊗TQ O
with kernel and cokernel annihilated by πC ; in particular, πC(MQ ⊗TQ O) is cyclic of length at least
lgO(TQ ⊗TQ O)− 2C.

Proof. We may assume that mQ ⊂ TQ descends to TQ. Now, by Theorem 4.3.5 or Theorem 4.4.4 (depending
on ν(N2Q)), we have

MQ,mQ
≃ ⊗ℓ|N2QXℓ

(
JN1,N2Q,∨
min

)
mQ

,

modulo Z-torsion on the right. Lemma 4.2.6 implies that there exists a collection of TQ-module maps

ϕi :MQ,mQ
→ TQ,mQ

, ψi : TQ,mQ
→MQ,mQ

, i = 1, . . . , 2ν(N2)

such that

ϕi ◦ ψi = ψi ◦ ϕi = ti ∈ TQ,mQ
⊂ End(MQ,mQ

)

and

t1 + . . .+ t2ν(N2) =
∏
ℓ|N2

T f unram at ℓ

(ℓ− 1) ∈ TQ,mQ
.

Since O is a discrete valuation ring, we may choose some i such that the image of ti in TQ ⊗TQ O divides
πC . Then ϕi and ψi induce O-module maps

MQ ⊗TQ O → TQ ⊗TQ O, TQ ⊗TQ O →MQ ⊗TQ O
whose composition in either direction is multiplication by a divisor of πC , which implies the result. □

The following corollary is not needed for geometric level raising, but will be used later in the construction
of bipartite Euler systems.

Corollary 4.6.6. Let {Q, ϵQ} be a weakly admissible pair that is (j+2C)-level raising, and suppose ν(N2Q)
is even. Then there exists a map of TQ[GQ]-modules

(56) TmQ
JN1,N2Q → Tj

that factors through Tj+C → Tj and is surjective after O-linearization, and this map is unique up to multi-
plication by a unit scalar.

Proof. Write TQ ⊗TQ O = O/πM for some M ≥ j + 2C. Note that

(57) TmQ
JN1,N2Q
min ⊗TQ O ∼= TM := Tf/π

M ;

indeed, they are both free of rank two over O/πM by Proposition 4.2.3, so (57) follows from [14, Théorème
1] and the Eichler-Shimura relation

Frob2ℓ −Tℓ Frobℓ+ℓ = 0 on TmQ
JN1,N2Q
min , ∀ℓ ∤ Np.

By (57) and Proposition 4.2.5, we have

TmQ
JN1,N2Q ⊗TQ O ∼=MQ ⊗TQ

(
TmQ

JN1,N2Q
min ⊗TQ O

)
∼=MQ ⊗TQ

TM .

The corollary now follows from Lemma 4.6.5 and the absolute irreducibility of T f .
□

Theorem 4.6.7. Assume T f satisfies (TW).

(1) If {Qq, ϵQq} is a weakly admissible pair, then

lgO (TQq ⊗TQq O) ≥ lgO

(
TQ ⊗TQ O

(aq(f)− ϵQq(q)(q + 1))

)
− C,

where C is the number of Lemma 4.6.5.
(2) If {Q, ϵQ} is a weakly admissible pair such that q is j-admissible with sign ϵQ(q) for all q|Q, then
{Q, ϵQ} is (j − ν(Q) · C)-level-raising.
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Proof. (2) follows from (1) by induction, so we prove (1). In the proof, we will abbreviate ϵq := ϵQq(q).
There are two cases, depending on the parity of ν(N2Q).

Case 1. ν(N2Q) is even.

Let us abbreviate JQ = JN1,N2Q and JQmin = JN1,N2Q
min . Consider the composite

MQq

(Uq − ϵq)
↠

H1
(
Fq2 , TmQ

JQ
)

(Frobq −ϵq)
≃MQ,mQ

⊗TQ,mQ

TmQ
JQmin

(Frobq −ϵq)

induced from Proposition 4.5.2(2) and Proposition 4.2.5. Since TmQ
JQmin is free of rank two over TQ,mQ

and

Frobq acts with the characteristic polynomial Frob2q −Tq Frobq +q (whose roots are distinct modulo mQ), we
may fix an identification

TmQ
JQmin

(Frobq −ϵq)
≃

TQ,mQ

(Tq − ϵq(q + 1))

of TQ,mQ
-modules. Using the Hecke compatibility from Proposition 4.5.2(1), we obtain a map

MQq ⊗TQq O ↠MQ ⊗TQ

O
(aq(f)− ϵq(q + 1))

,

hence (by Lemma 4.6.5) a map

MQq ⊗TQq O → TQ ⊗TQ

O
(aq(f)− ϵq(q + 1))

with cokernel annihilated by πC . Since the action of TQq on MQq factors through TQq, we conclude

lgO (TQq ⊗TQq O) ≥ lgO

(
TQ ⊗TQ O

(aq(f)− ϵq(q + 1))

)
− C.

Case 2. ν(N2Q) is odd.

By Proposition 4.5.6, the action of TqQ,mQq
on

MQ,mQ
⊗TQ

(
T2
Q/ im

(
Tq − ϵq −1

q −ϵq

))
,

with Uq acting by ϵq, factors through TQq,mQq
. Hence the action of TqQ on

A :=MQ ⊗TQ

O
(aq(f)− ϵq(q + 1))

likewise factors through TQq (again with Uq acting by ϵq). By Lemma 4.6.5, A has a TqQ-module map to

TQ ⊗TQ O
(aq(f)− ϵq(q + 1))

with cokernel annihilated by πC , from which the result follows as in Case 1. □

Remark 4.6.8. If {Q, ϵQ} ∈ N in the notation of (3.2.2), then for F-many n there is a corresponding weakly
admissible pair {Qn, ϵQn}, where (Qn)n∈N is a sequence representing Q. To be precise, if Q = {q1, . . . , qr},
we choose sequences (qni )n∈N representing each qi; for F-many n, the product Qn = qn1 · · · qnr , equipped with
sign function ϵQn

(qni ) = ϵQ(qi), forms a weakly admissible pair {Qn, ϵQn
}. It follows from the definition of

N and from the theorem that, for any j ≥ 0, there exist F-many n such that the pair {Qn, ϵQn
} is j-level-

raising. We say that a sequence of weakly admissible pairs {Qn, ϵQn} (defined for F-many n) represents the
pair {Q, ϵQ} if it is obtained from this construction for some choice of representatives (qni )n∈N.

4.7. CM points.

4.7.1. Let us now fix an imaginary quadratic field K ⊂ Q, and a positive integer N = N+N− such that
every prime factor of N+ is split in K, and N− is a squarefree product of primes inert in K. Let B = BN−

be the quaternion algebra over Q ramified at the factors of N−, and possibly ∞. For each ℓ|N , we have a
fixed embedding K ↪→ Q ↪→ Qℓ. If ℓ|N+, this determines a distinguished prime l of K above ℓ. We write
lc for its conjugate. If ℓ|N−, this determines a distinguished isomorphism OK/ℓ ≃ Fℓ2 . Finally, for each
positive integer m, let Om,K ⊂ OK be the order of conductor m.
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4.7.2. Assume ν(N−) is even, and again fix an orientation on the maximal order OB of B from (4.3.1).

Definition 4.7.3. Let m be a positive integer coprime to N , and write K[m] for the ring class field of
conductor m. The set of (positively oriented) CM points of conductor m,

CMN+,N−(m) ⊂ XN+,N−(K[m]),

is the set of triples (A, ι, C) over K[m] admitting an isomorphism Om,K
∼−→ End(A, ι, C) such that:

(1) The action of Om,K on the K[m]-vector space LieA is through the natural inclusion Om,K ⊂ K ⊂
K[m].

(2) For all primes ℓ|N+, Om,K ⊗ Zℓ = OK,l ×OK,lc acts on the ℓ-primary component Cℓ ⊂ C through
the projection to OK,l.

(3) For all primes ℓ|N−, let mℓ ⊂ OB be the unique maximal ideal of residue characteristic ℓ. Then

A[mℓ](K[m]) is a rank-one vector space over OB/mℓ ≃ Fℓ2 , where the isomorphism comes from
the orientation of OB at ℓ. We require that the action of Om,K/ℓ = OK/ℓ on this vector space
correspond to our distinguished isomorphism OK/ℓ ≃ Fℓ2 .

4.7.4. If A is an abelian variety, any element γ ∈ (End(A)⊗ Af )× defines an abelian variety Aγ with a map
f : Aγ → A in the isogeny category of abelian varieties such that f∗(TℓAγ) = γℓTℓA for all ℓ. In this way,
we obtain a canonical action of

PicOm,K = K×\A×f,K/Ô
×
m,K

on CMN+,N−(m). We denote by

(58) rec : Gal(K[m]/K)→ K×\A×f,K/Ô
×
m,K

the reciprocity map of class field theory, normalized so that uniformizers correspond to geometric Frobenius
elements.

Proposition 4.7.5. (1) Via the reciprocity map, the action of Gal(K[m]/K) on CMN+,N−(m) agrees

with the action of K×\A×f,K/Ô
×
m,K described above.

(2) CMN+,N−(m) is a torsor under the action of Gal(K[m]/K).

Proof. Part (1) follows from Shimura’s reciprocity law. For (2), see the discussion in [80, p. 55]; it is an
elementary exercise using the complex uniformization of XN+,N− to see that our definition of the positively
oriented CM points of conductor m agrees with the adelic description given in loc. cit. (Recall that any
C-valued point ofXN+,N− admitting extra endomorphisms byOm,K is automatically defined overK[m].) □

4.7.6. Now assume that ν(N−) is odd. In this case, we fix an embedding K ↪→ B.

Definition 4.7.7. Suppose m is coprime to N . Then CMN+,N−(m) is defined as the set of isomorphism
classes of oriented Eichler orders (R,ϕ) of B of level N+ such that:

(1) R ∩K = Om,K .
(2) For all primes ℓ|N+, let R1 ⊃ R ⊗ Zℓ be the maximal order determined by ϕℓ, and choose an

isomorphism R1 ≃ M2(Zℓ). If ℓk||N , then R ⊗ Zℓ ⊂ M2(Zℓ) is the stabilizer of a subgroup C ⊂
(Z/ℓk)2 with C ≃ Z/ℓk, and we require that the multiplication action of Om,K on C is given by the
projection Om,K/ℓk ↠ Om,K/lk.

(3) For all primes ℓ|N−, let mℓ ⊂ R be the unique maximal ideal of residue characteristic ℓ. Then
we require that the isomorphism Om,K/ℓ = R/mℓ ≃ Fℓ2 determined by ϕℓ agrees with the fixed
isomorphism OK/ℓ ≃ Fℓ2 chosen above.

Here the equivalence relation is conjugation by K×. (Properties (1)-(3) are not stable under conjugation by
B×(Q).)

Notice that CMN+,N−(m) comes equipped with a natural projection map

(59) CMN+,N−(m)→ XN+,N− .
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4.7.8. We define an action of Gal(K[m]/K) on CMN+,N−(m) as follows: for σ ∈ Gal(K[m]/K) and (R,ϕ) ∈
CMN+,N−(m), let σ · (R,ϕ) be the Eichler order rec(σ)R̂ rec(σ)−1 ∩ B(Q), with the induced orientation.
(Here rec is as in (58).)

Proposition 4.7.9. Suppose m is coprime to N . Then CMN+,N−(m) is a torsor for Gal(K[m]/K).

Proof. It is clear that Gal(K[m]/K) acts with trivial stabilizers on CMN+,N−(m), so we will show transitivity.
Let (R,ϕ) and (R′, ϕ′) be two elements of CMN+,N−(m). Since the orientations ϕ and ϕ′ are determined by

properties (2) and (3) of the definition of CMN+,N−(m), it suffices to show that there exists k ∈ A×f,K such
that

kR̂′k−1 = R̂.

We do this by working locally at all primes ℓ. To ease notation, abbreviate

Rℓ = R⊗ Zℓ, R′ℓ = R′ ⊗ Zℓ, Bℓ = B ⊗Qℓ, Om,K,ℓ = Om,K ⊗ Zℓ, Kℓ = K ⊗Qℓ.
Suppose first that ℓ ∤ N . Because R∩K = R′∩K = Om,K , [22, Lemma 6.2] implies there exists kℓ ∈ K×ℓ such

that kℓR
′
ℓk
−1
ℓ = Rℓ. For ℓ|N−, the maximal order in Bℓ is unique, so R

′
ℓ = Rℓ. For ℓ|N+, let j = ordℓ(N

+),
and fix an isomorphism Bℓ ∼=M2(Qℓ) that identifies OK,ℓ with(

Zℓ 0
0 Zℓ

)
⊂M2(Qℓ).

Eichler orders of level ℓj in Bℓ are all of the form End(L1)∩End(L2), where L1 ⊂ L2 are lattices in Q2
ℓ with

L2/L1 ≃ Z/ℓjZ. If End(L) contains Om,K,ℓ, then L is of the form Zℓ ⊕ ℓnZℓ (up to homothety), for some
n ∈ Z. The possible Eichler orders of level ℓj containing Om,K,ℓ are therefore(

Zℓ ℓ−nZℓ
ℓn+jZℓ Zℓ

)
, n ∈ Z.

These are evidently all conjugate by diagonal matrices, so we may choose kℓ ∈ K×ℓ such that kℓR
′
ℓk
−1
ℓ = Rℓ.

Setting k =
∏
ℓ∤N− kℓ, we have

kR̂′k−1 ∩B(Q) = R̂.

□

Remark 4.7.10. We will soon be varying N− (keeping K and N+ fixed). The choices made in the definition
of the CM points – i.e. the oriented maximal order OB if ν(N−) is even, and the embedding K ↪→ B if
ν(N−) is odd – will be considered to be fixed, once and for all, for each possible N−.

4.7.11. In the remainder of this section, we recall the geometric ingredients for the explicit reciprocity laws
originally studied in [3].

Proposition 4.7.12. Suppose ν(N−) is even. Let m be coprime to N , and let q ∤ Nm be a prime inert in K,

with q a prime of K[m] above q. Then there is an isomorphism tN+,N−,q : CMN+,N−(m)
∼−→ CMN+,N−q(m)

of Gal(K[m]/K)-torsors fitting into a commutative diagram:

CMN+,N−(m) XN+,N−(K[m])

CMN+,N−q(m) XN+,N−q XN+,N−(Fq2)ss XN+,N−(Fq2).

tN+,N−,q Redq

∼

Proof. Choose any (A, ι, C) ∈ CMN+,N−(m), and let (A0, ι0, C0) denote its reduction modulo q. Since q is
inert in K, A0 is supersingular. Moreover we have a distinguished action Om,K ↪→ End(A0, ι0, C0) coming

from the reduction of the complex multiplication. Choose an isomorphism End0(A0, ι0, C0) ≃ BN−q identi-

fying the corresponding embedding K ↪→ End0(A0, ι0, C0) with our fixed inclusion K ↪→ BN−q. The choice
of this isomorphism is unique up to K×-conjugacy. Therefore End(A0, ι0, C0) yields a well-defined point of
CMN+,N−q(m) – note that conditions (2) and (3) of Definition 4.7.7 are satisfied by conditions (2) and (3) of
Definition 4.7.3, where the orientation on End(A0, ι0, C0) is defined in the proof of Proposition 4.5.2. This de-
fines the map tN+,N−,q, and it is Galois-equivariant by Proposition 4.7.5(1). Since the Gal(K[m]/K)-action
is simply transitive on both CMN+,N−(m) and CMN+,N−q(m), tN+,N−q is automatically an isomorphism.
The commutativity of the diagram follows from the construction in the proof of Proposition 4.5.2. □
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Proposition 4.7.13. Suppose ν(N−) is odd. Let m be coprime to N , and let q ∤ 2Nm be a prime inert in K,
with q a prime of K[m] above q. Then every point of CMN+,N−q(m) lies in XN+,N−q(K[m])sm, the subset
of points which reduce modulo q to smooth points of the special fiber. Moreover, there is an isomorphism
sN+,N−,q : CMN+,N−q(m)

∼−→ CMN+,N− of Gal(K[m]/K)-torsors fitting into a commutative diagram:

CMN+,N−q(m) XN+,N−q(K[m])sm

CMN+,N−(m) X±N+,N− .

sN+,N−,q Spq

(59)×{+}

Proof. That each point of CMN+,N−q(m) has smooth reduction modulo q follows from [3, p. 55]. For the
rest, let (A, ι, C) be a point of CMN+,N−q(m), and (A0, ι0, C0) its reduction modulo q. Since (A0, ι0, C0) is a
nonsingular OK[m]/q-valued point of the special fiber, by [62, Proposition 4.4, Theorem 5.3], there is a unique
OBN−q

-stable subgroup scheme H ⊂ A0 which is isomorphic to αq; since H is unique, it is automatically

Om,K-stable as well. Let ι0 and C0 denote the induced OBN−q
-action and Γ0(N

+)-structure on A0/H.

Then (A0/H, ι0, C0) is a pure triple over OK[m]/q ≃ Fq2 in the notation of the proof of Proposition 4.5.4,
and the irreducible component of the special fiber of XN+,N−q containing (A0, ι0, C0) is parameterized by

the q-Frobenius twist (A0/H, ι0, C0)
(q). As in the proof of Proposition 4.7.12, the induced Om,K-action

on (A0/H)(q) allows us to view End(A0/H, ι0, C0) as a point of CMN+,N−(m), and the resulting map
CMN+,N−q(m)→ CMN+,N−(m) is then an isomorphism of Gal(K[m]/K)-torsors.

To finish the proof, we must show that (A0/H, ι0, C0)
(q) is pure of type +, or equivalently that (A0/H, ι0, C0)

is pure of type−. By [62, Proposition 4.7], it suffices to show thatH is of type + in the following sense: ifM is
the Dieudonné module of A0[q

∞], then H corresponds to a submodule N ⊂M containing (F, V )M; we wish
to show that OBN−q

acts on the one-dimensional Fq2-vector space M/N by the map OBN−q
→ Fq2 ⊂ Fq2

determined by the fixed orientation.
Let A denote the Néron model of A over SpecOK[m],q, with special fiber A0. Now, M/FM is dual to

LieA0 = LieA ⊗ OK[m]/q, and Om,K acts on LieA by the canonical embedding Om,K ↪→ OK[m],q (using
the orientation condition of Definition 4.7.3(1)). Hence Om,K acts on M/FM via the reduction map to
Om,K/q ≃ Fq2 . BecauseM/FM surjects ontoM/N , it then suffices to show that the actions of OBN−q

/mq
and Om,K/q on M/N coincide under the fixed composite isomorphism OBN−q

/mq ≃ Fq2 ≃ Om,K/q. For

this, it suffices to show the same compatibility for the actions on the finite flat group scheme A[mq]; these
actions coincide over the generic fiber of SpecOK[m],q by Definition 4.7.3(3), and so the desired compatibility
follows from [60, Corollaire 3.3.6] under the assumption q ̸= 2.

□

5. Construction of bipartite Euler systems

5.1. The CM class construction.

5.1.1. Fix a quadratic imaginary field K ⊂ Q, and let f , N , ℘, O, E, π, Vf , Tf , and Wf be as in §1.5, such
that T f satisfies (TW). We assume that N admits a factorization N = N+N−, where all ℓ|N+ are split in
K, and N− is a squarefree product of primes inert in K. We continue the notation of §4.6 (using N1 = N+

and N2 = N−). Fix an integer m which is coprime to N , and let Gm = Gal(K[m]/K). If q ∤ m is a prime
inert in K, we fix a prime q of K[m] above q; for instance, this can be done by choosing an embedding
K[m] ↪→ Q. If q is j-admissible with sign ϵq and inert in K, we define the ordinary subspace:

(60) H1
ord,ϵq (Kq, Tj) = im

(
H1(Kq,Fil

+
q,ϵq Tj)→ H1(Kq, Tj)

)
.

Using the map obtained from Shapiro’s Lemma (e.g. [71, §3.1.2])

(61) Resq : H1(K[m], Tj)→ HomSet(Gm, H
1(Kq, Tj)),

we also have maps:

∂q,ϵq : H1(K[m], Tj)→ HomSet(Gm, H
1(Iq,Fil

+
q Tj)) ≈ Oj [Gm],

locq,ϵq : H1(K[m]Σ/K[m], Tj)→ HomSet(Gm, H
1
unr(Kq, Tj/Fil

+
q Tj)) ≈ Oj [Gm], Σ ⊂MQ finite, q ̸∈ Σ,
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defined as in (23), (24).
For notational convenience, for this section only we temporarily denote by Nj the collection of weakly

admissible pairs {Q, ϵQ} which are (j + 2C)-level-raising, and such that all primes q|Q are odd and inert in
K. Let Σ be the set of primes of Q dividing Np∞, and for any squarefree integer Q, let ΣQ be the set of
primes of Q dividing NpQ∞.

Construction 5.1.2. For all {Q, ϵQ} ∈ Nj, there exist maps (well-defined to a unit scalar):

κj(·, Q, ϵQ) : CMN+,N−Q(m)→ H1(K[m]ΣQ/K[m], Tj), ν(N−Q) even,

λj(·, Q, ϵQ) : CMN+,N−Q(m)→ HomSet(Gm,Oj) = Oj [Gm], ν(N−Q) odd,

compatible under the natural reduction maps for j′ ≤ j, Gal(K[m]/K)-equivariant, and such that the follow-
ing properties hold.

(1) If {Q, ϵQ} ∈ Nj where ν(N−Q) is even, then for all q|Q and all y ∈ CMN+,N−Q(m),

Resq(κj(y,Q, ϵQ)) ∈ H1
ord,ϵQ(q)(Kq, Tj).

(2) If {Qq, ϵQq} , {Q, ϵQ} ∈ Nj where ϵQ = ϵQq|Q and ν(N−Qq) is even, then there is an isomorphism

i : H1(Iq,Fil
+
q,ϵQq(q)

Tj) ≃ Oj such that, for all y ∈ CMN+,N−Qq(m),

i
(
∂q,ϵQq(q)κj(y,Qq, ϵQq)

)
= λj(sN+,N−Q,q(y), Q, ϵQ).

Here sN+,N−Q,q : CMN+,N−Qq(m)
∼−→ CMN+,N−Q(m) is the map of Proposition 4.7.13.

(3) If {Qq, ϵQq} , {Q, ϵQ} ∈ Nj where ϵQ = ϵQq|Q and ν(N−Qq) is odd, then there is an isomorphism

i : H1
unr(Kq, Tj/Fil

+
q,ϵQq(q)

Tj) ≃ Oj such that, for all y ∈ CMN+,N−Q(m),

i
(
locq,ϵQq(q)(κj(y,Q, ϵQ)

)
= λj(tN+,N−Q,q(y), Q, ϵQ).

Here tN+,N−Q,q : CMN+,N−Q(m)
∼−→ CMN+,N−Qq(m) is the map of Proposition 4.7.12.

Proof. The specifications ϵQ will be dropped to ease notation. We fix throughout a prime ℓ0 ∤ Nmp such
that aℓ0(f)− ℓ0 − 1 is a unit in O.

Suppose first that ν(N−Q) is odd. By Lemma 4.6.5, there is a unique map (up to scalars) MQ → Oj of
TQ-modules that factors through Oj+C and is surjective after O-linearization. For y ∈ CMN+,N−Q(m) and
g ∈ Gm, we define λj(y,Q)(g) to be the image of gy by the composite map

CMN+,N−Q(m)→ XN+,N−Q

Tℓ0
−ℓ0−1−−−−−−→MQ → Oj .

(The notation MQ was defined in (55).)
Now suppose that ν(N−Q) is even. For each y ∈ CMN+,N−Q(m), (Tℓ0 − ℓ0 − 1)y is a degree zero divisor

on XN+,N−Q, and its image in the Jacobian JQ is defined over K[m]. Let

d(y,Q) ∈ H1(K[m]ΣQ/K[m], TmQ
JQ)

be the Kummer image. We define κj(y,Q) to be the image of d(y,Q) under the map

H1(K[m]ΣQ/K[m], TmQ
JQ)→ H1(K[m]ΣQ/K[m], Tj)

induced by Corollary 4.6.6.
We now establish properties (1)-(3).

(1) Let X = Xq(JQ) be the character group as in (4.1.1), and let X∨ := Hom(X ,Z). Because JQ is

Hecke-equivariantly isogenous to JN
+,N−Q

min over Q by [35, Corollary 2.4], X ⊗ Q is isomorphic to

Xq(JN+,N−Q
min )⊗Q as a TQ[Frobq]-module; in particular, Frobq acts on X as Uq by [63, Proposition

3.8]. Since X∨ ⊗ Q×q is p-divisible and Frob2q = 1 on X , the exact sequence in Proposition 4.1.2(1)
induces a Gal(Kq/Qq)-equivariant commutative diagram of Kummer maps

lim←−
(
X∨ ⊗K×q

)
/pn H1(Kq,X∨ ⊗ Zp(1))

lim←−
(
JQ(Kq)

)
/pn H1(Kq, TpJ

Q),

∼
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where the right vertical map is induced by the injection of TQ[GQq ]-modules X∨ ⊗ Zp(1) ↪→ TpJ
Q

from Proposition 4.1.2(3). Completing at mQ, we conclude that the image of the Kummer map
JQ(Kq)mQ

→ H1(Kq, TmQ
JQ) coincides with the image of the mapH1(Kq,X∨mQ

(1))→ H1(Kq, TmQ
JQ)

coming from the short exact sequence of TQ,mQ
[GQq

]-modules

0→ X∨mQ
(1)→ TmQ

JQ → XmQ
→ 0.

On the other hand, X∨mQ
(1) and XmQ

have Frobq-action through the scalars qϵq and ϵq, respectively,

where ϵq = ϵQ(q). Hence the O-span of the image of X∨mQ
(1) under the map of TQmQ [GQ]-modules

TmQ
JQ → Tj is Fil

+
q Tj , and the claim follows.

(2) By the reasoning of (1), we have a map

α : JQq(Kq)mQq
→ H1

ord(Kq, Tj)→ H1(Iq,Fil
+
q Tj)

such that ∂q(κj(y,Qq))(g) = α((Tℓ0 − ℓ0 − 1)gy) for y ∈ CMN+,N−Qq; also, α factors through

H1(Iq,Fil
+
q Tj+C) and is surjective after O-linearization.

Let Φ be the component group of the special fiber of the Néron model of JQq over Zq. Applying
the snake lemma to the diagram in Proposition 4.1.2(2), we see that the specialization map Spq :

JQq(Kq) → Φ is surjective, and the pro-p part of its kernel has Frobq-action through −Uq since

p ∤ q − 1. Meanwhile, H1(Iq,Fil
+
q Tj+C) has Frobq-action through ϵq = ϵQq(q); hence α factors as

α ◦ Spq, for a map α : ΦmQq
→ H1(Iq,Fil

+
q Tj) ≈ Oj that factors through Oj+C and is surjective

after O-linearization.
By Proposition 4.5.6 and the formula for the Uq-action in Proposition 4.5.4, restricting the map

(54) to the “+” components defines a surjection β : MQq,mQq
↠ ΦmQq

. Applying Propositions 4.5.6
and 4.7.13, we also have

β
(
(Tℓ0 − ℓ0 − 1)sN+,N−Q,q(y)

)
= Spq ((Tℓ0 − ℓ0 − 1)y)

for all y ∈ CMN+,N−Qq. Since Lemma 4.6.5 shows that α ◦ β coincides up to a unit scalar with the
map MQq,mQq

→ Oj used to construct λj(y,Qq), (2) follows.
(3) By Proposition 4.7.12 and the local-global compatibility of the Abel-Jacobi map,

locq κj(y,Q)(g) ∈ H1
unr(Qq2 , Tj/Fil

+
q Tj) = H1(Fq2 , Tj/Fil+q Tj)

is the image of tN+,N−Q,q(gy) under the composite map

CMN+,N−Qq(m)→ XN+,N−Qq

Tℓ0
−ℓ0−1−−−−−−→MQq

(53)−−→→ H1(Fq2 , TmQ
JQ)→

H1(Fq2 , Tj+C) ↠ H1(Fq2 , Tj) ↠ H1(Fq2 , Tj/Fil+q Tj).
(62)

We claim it suffices to show the composite

ψ :MQq → H1(Fq2 , Tj+C/Fil+q Tj+C) ≈ Oj+C

is equivariant for the full Hecke algebra TqQ,mQq
; indeed, by Lemma 4.6.5, the composition of ψ with

the reduction map Oj+C → Oj will therefore coincide (up to a unit scalar) with the map used to
construct λj(y,Qq), which will give (3). The equivariance for all Hecke operators prime to q is clear,
so we wish to show

(63) ψ ◦ Uq = ϵqψ,

where again ϵq = ϵQq(q). Now, the map φ :MQq ↠ H1(Fq2 , TmQ
JQ) satisfies φ ◦ Uq = Frobq ◦φ by

Proposition 4.5.2(2). Also, the maps

H1(Fq2 , TmQ
JQ)→ H1(Fq2 , Tj+C) ↠ H1(Fq2 , Tj+C/Fil+q Tj+C)

are maps of Gal(Fq2/Fq)-modules, and the latter map projects onto the ϵq eigenspace for Frobq.
Hence (63) holds, as desired.

□
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Remark 5.1.3. In the special case Q = 1, Construction 5.1.2 can be described more simply. First, let Af be
a representative of the isogeny class of abelian varieties of GL2-type associated to f ; we can and do assume
EndQ(Af ) = Of . Then Tf is realized as TpAf ⊗Of⊗Zp

O.
When ν(N−) is even, there is a modular parametrization φ : JN

+,N− → Af ; we may assume without

loss of generality that the induced map φ∗ : TmJ
N+,N− → Tf is surjective after O-linearization, and that

the map TmJ
N+,N− → Tj used in the construction of κj(·, 1) is the reduction of φ∗ modulo πj . Then for

all y ∈ CMN+,N−(m), κj(y, 1) is the image of φ ((Tℓ0 − ℓ0 − 1)y) under the Kummer map Af (K[m]) →
H1(K[m], Af [℘

j ]) = H1(K[m], Tj).
Similarly, when ν(N−) is odd, there is a Hecke-equivariant map φ : Z[XN+,N− ]0 → O corresponding to

the realization of f as a quaternionic modular form on B×N− . Without loss of generality, φ is surjective

after O-linearization, and λj(y, 1)(g) = φ ((Tℓ0 − ℓ0 − 1)gy) (mod πj) for all y ∈ CMN+,N−(m) and g ∈
Gal(K[m]/K).

5.2. p-adic interpolation.

5.2.1. Suppose for this subsection that:

(spl) p splits in K

and

(ord) ap(f) ̸∈ ℘.
We denote by Km ⊂ K[pm] the mth layer of the anticyclotomic Zp-extension K∞/K.

Proposition 5.2.2. Suppose Q is a squarefree product of primes inert in K. Then there exists a sequence
y(m) ∈ CMN+,N−Q(p

m) such that

Tpy(m) = trK[pm+1]/K[pm] y(m+ 1) + y(m− 1), ∀m ≥ 1,

as formal sums of points on XN+,N−Q.

Proof. This is a standard calculation, but we give a sketch of the proof for lack of a precise reference. The
set

CMN+,N−Q(p
∞) := ∪m≥0 CMN+,N−Q(p

m)

carries a natural Hecke correspondence Tp, compatible with the action of Gal(K[p∞]/K) and with the map
CMN+,N−Q(p

∞) → XN+,N−Q. If y is a CM point of conductor pm with m ≥ 1, then (since p is split in
K) Tpy contains a CM point of conductor pm−1, and another of conductor pm+1. Since Tpy is fixed by
Gal(K[pm+1]/K[pm]), the proposition follows formally. □

5.2.3. Suppose given any {Q, ϵQ} ∈ N, and let {Qn, ϵQn} be a representative sequence of weakly admissible
pairs as in Remark 4.6.8, with each Qn a squarefree product of primes inert in K. For each n, let y(m)n ∈
CMN+,N−Qn

(pm) be a sequence of CM points which are compatible in the sense of Proposition 5.2.2.

Since Tp ̸∈ m, Hensel’s Lemma implies that the Hecke algebras TQn
mQn

contain a (unique) element u ̸∈ mQn

such that u2 − uTp + p = 0. Let αp ∈ O× be the image of u.

5.2.4. We now suppose that |Q| + ν(N−) is even. Adopting the notation of Construction 5.1.2, it follows
from the compatibility relation of the y(m)n that the classes

d(m,Qn) := CoresK[pm]/Km

(
u−m+1d(y(m)n, Qn)− u−mResK[pm]/K[pm−1] d(y(m− 1)n, Qn)

)
are compatible under the corestriction maps

H1(Km, TmQn
JQn)→ H1(Km−1, TmQn

JQn).

Let κj(m,Qn) be the image of d(m,Qn) under the map of Corollary 4.6.6; this is well-defined for F-many
n depending on j, and the classes κj(m,Qn) are compatible under corestriction. Let S ⊂ MK be the set of
constant ultraprimes v such that v|Np∞, and, for each m, let (S ∪ Q)m ⊂ MKm

be the preimage of S ∪ Q
under the projection MKm ↠ MK . We let

κ(Q) ∈ lim←−
m,j

H1(K(S∪Q)m
m /Km, Tj) ≃ H1(KS∪Q, Tf ⊗ Λ(Ψ))

be the class represented by the family κj(m,Qn), where the isomorphism follows from Shapiro’s Lemma.
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5.2.5. Similarly, if |Q|+ ν(N−) is odd, the elements

λj(m,Qn) := α−m+1
p λj(y(m)n, Qn)− α−mp λj(y(m− 1)n, Qn) ∈ Oj [Gal(K[pm]/K)]

are compatible under the natural projection maps

Oj [Gal(K[pm]/K)]→ Oj [Gal(K[pm−1]/K)].

Applying the projection Gal(K[pm]/K) ↠ Gal(Km/K) for each m, we then obtain an element

λ(Q) ∈ lim←
m,j

U
(
{Oj [Gal(Km/K)]}n∈N

)
≃ OJGal(K∞/K)K ≃ Λ.

Remark 5.2.6. If ν(N−) is even, then κ(1) is the usual interpolated Heegner class, which appears in
slightly more restricted contexts in [8, 37, 57]. If ν(N−) is odd, then λ(1) is the usual anticyclotomic p-adic
L-function, e.g. the one denoted Θ∞ in [19].

5.2.7. Recall the Selmer structure (FΛ,S) for Tf := Tf ⊗ Λ defined in (3.4.2).

Proposition 5.2.8. The pair (κ,λ) is a bipartite Euler system with parity ν(N−) for the triple (Tf ,FΛ,S).
Moreover, either κ(1) or λ(1) is nontrivial, depending on the parity of ν(N−).

Proof. We first show that κ(Q) lies in SelFΛ(Q)(Tf ) for all {Q, ϵQ} ∈ Nν(N
−), or equivalently that κ(Q) lies

in H1
FΛ(Q)(Kv,Tf ) for all v. If v ̸∈ S ∪ Q, this is clear; if v = q ∈ Q, it follows from Construction 5.1.2(1);

and if v = v with v|N , it is automatic because H1
FΛ(Q)(Kv,Tf ) = H1(Kv,Tf ) (by definition if v|N−, and by

[65, Corollary B.3.4] if v|N+).
So we verify the local condition for v = v with v|p. If Q is represented by the sequence (Qn)n∈N, let

Fil+v TmQn
JQn ⊂ TmQn

JQn be the maximal TQn,mQn
-stable subspace on which Iv acts by the cyclotomic

character (adopting the notation of Construction 5.1.2 and if necessary restricting our attention to F-many
n). As in [18, Proposition 4.7], it suffices to show that, for all m and n and a fixed extension of v to K∞,
the image dn,m of the class d(m,Qn) under the composite

H1(Km, TmQn
JQn)→ H1(Km,v, TmQn

JQn/Fil+v TmQn
JQn)

is trivial. Since d(m,Qn) is a TQn,mQn
-linear combination of Kummer images over Km, by [4, Example 3.11]

and [52, Proposition 12.5.8] dn,m lies in the kernel of

H1(Km,v, TmQn
JQn/Fil+v TmQn

JQn)→ H1(Km,v,Qp ⊗ TmQn
JQn/Fil+v TmQn

JQn).

Since the classes dn,m are corestriction-compatible as m varies, the argument of [39, Proposition 2.4.5] shows
that indeed dn,m = 0 for all n,m.

The explicit reciprocity laws are a consequence of Construction 5.1.2(2,3), and the nonvanishing of either
κ(1) or λ(1) (according to the parity of ν(N−)) is due to the work of Cornut and Vatsal [22, Theorem 1.10]
and Vatsal [76, Theorem 1.1]; see [76, §2.3] for the relation of the cited theorem to λ(1). □

Remark 5.2.9. In fact, Vatsal proves the stronger result that λ(1) ̸≡ 0 (mod π) when ν(N−) is odd.
Indeed, this follows from [76, Proposition 4.7], combined with the independence of the choice of Heegner
points described in Remark 3.7 of op. cit. The constant ν in [76, Proposition 4.7] is trivial because T f is
absolutely irreducible.

5.3. Kolyvagin classes.

5.3.1. Before defining the Kolyvagin classes in patched cohomology, we begin by recalling a calculation
explained in [31, §3]. Throughout this subsection, we assume

(disc) disc(K) ̸= −3,−4,

or equivalently O×K = {±1}.
Let m be a squarefree product of primes ℓ inert in K with (m,Np) = 1. Under the condition (disc), we

have

Gal(K[m]/K[1]) ≃
∏
ℓ|m

Gal(K[ℓ]/K[1]);
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each Gal(K[ℓ]/K[1]) is cyclic of order ℓ+ 1. For a place λ of K[m] over some ℓ|m, extend λ to a place of Q
and let Frobλ ∈ GQ be a lift of Frobenius. Also let σλ ∈ Iλ ⊂ GK[1] be an element whose image generates
Gal(K[ℓ]/K[1]). Recall the Kolyvagin derivative operators [31, p. 239]:

Dℓ =

ℓ∑
i=1

iσiλ ∈ Z[Gal(K[ℓ]/K[1])], Dm =
∏
ℓ|m

Dℓ.

Finally, let Q be a squarefree product of primes inert in K that is coprime to Nmp, and choose a CM point
y(m,Q) ∈ CMN+,N−Q(m). We define

P (m,Q) = Dmy(m,Q),

viewed as a formal sum of points on XN+,N−Q.

Proposition 5.3.2. For any ℓ|m, there exists a CM point y(m/ℓ,Q) ∈ CMN+,N−Q(m/ℓ) such that:

(1) (σλ − 1)P (m,Q) = (ℓ+ 1)Dm/ℓy(m,Q)− TℓP (m/ℓ,Q).

(2) If ν(N−Q) is even, then

Dm/ℓy(m,Q) ≡ Frobλ P (m/ℓ,Q) (mod λ).

Proof. This is proved in [31, p. 240] in the modular curve case; the same reasoning applies to Shimura curves
by [53, Proposition 4.13]. The argument for (1) formally applies to Shimura sets as well, along the lines of
Proposition 5.2.2. □

Fix ℓ0 as in the proof of Construction 5.1.2, and let

P ′(m,Q) = (Tℓ0 − ℓ0 − 1)P (m,Q).

Proposition 5.3.3. Let mQ ⊂ TQ = TN+,N−Q be non-Eisenstein, and let Im ⊂ TQ be the ideal generated
by ℓ+ 1 and Tℓ for all ℓ|m. Then if ν(N−Q) is even:

(1) Restriction induces an isomorphism

Resm : H1(K[1], TmQ
JQ/Im)

∼−→ H1(K[m], TmQ
JQ/Im)Gal(K[m]/K[1]).

(2) The Kummer image d(m,Q) of P ′(m,Q) in H1(K[m], TmQ
JQ/Im) lies in the image of Resm.

(3) If c(m,Q) = CoresK[1]/K Res−1m d(m,Q), then for all ℓ|m and any choices of representatives,

c(m,Q)(σλ) = Frob−1λ c(m/ℓ,Q)(Frob2λ).

(4) The class c(m,Q) is unramified at any place v ∤ NpmQ∞.

Proof. First note that the residual representation ρmQ
associated to mQ has no GK[m]-invariants by the same

argument as Lemma 3.3.4. Hence (1) follows from the inflation-restriction exact sequence as in [31, p. 241].
Also, (2) is immediate from Proposition 5.3.2, and (4) is clear from the construction. For (3), we modify
the argument of [50, Proposition 4.4]. First of all, both σλ and Frob2λ act trivially on TmQ

JQ/Im, so the
assertion is independent of the choice of cocycle representatives for c(m,Q) and c(m/ℓ,Q). Also, it suffices
to check the corresponding statement for c′(m,Q) = Res−1m d(m,Q) and c′(m/ℓ,Q).

Fix division points P ′(m,Q)
ℓ+1 and P ′(m/ℓ,Q)

ℓ+1 in JQ(K). For any g ∈ GK[1], g · d(m,Q) = d(m,Q), so there

exists Ag ∈ TmQ
JQ/Im such that

(64) (h− 1)Ag = (h− 1)(g − 1)
P ′(m,Q)

ℓ+ 1
∈ TmQ

JQ/Im, ∀h ∈ GK[m].

Since GK[m] has no fixed points on TmQ
JQ/Im, (64) uniquely determines Ag, and g 7→ Ag is a cocycle

representing c′(m,Q). We wish to compute Aσλ
. By Proposition 5.3.2(1),

(σλ − 1)
P ′(m,Q)

ℓ+ 1
= (Tℓ0 − ℓ0 − 1)Dm/ℓy(m,Q)− Tℓ

P ′(m/ℓ,Q)

ℓ+ 1
+ T

for a uniquely determined torsion point T ∈ JQ[ℓ + 1], and it follows that Aσλ
is the image of T . Since

the K-points of JQ[ℓ + 1] have distinct reduction modulo λ, Proposition 5.3.2(2) shows that we can also
characterize T as the unique point in JQ[ℓ+ 1] congruent to

(Tℓ − Frobλ(ℓ+ 1))
P ′(m/ℓ,Q)

ℓ+ 1
(mod λ).
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Since Frob2λ−Tℓ Frobλ+ℓ = 0 on JQ(kλ), where kλ ∼= Fℓ is the residue field, T is also the unique point in
JQ[ℓ+ 1] congruent modulo λ to

(Frobλ−Frob−1λ )
P ′(m/ℓ,Q)

ℓ+ 1
= Frob−1λ d(m/ℓ,Q)(Frob2λ) = Frob−1λ c′(m/ℓ,Q)(Frob2λ);

this shows (3). □

Definition 5.3.4. For a squarefree product m of primes inert in K and coprime to N , let Im(f) ⊂ O be the
ideal generated by aℓ(f) and ℓ+1 for all ℓ|m. Suppose given {Q, ϵQ} ∈ Nj (notation as before Construction
5.1.2), with (m,Q) = 1 and v℘(Im(f)) ≥ j. If ν(N−Q) is even, then the Kolyvagin class

(65) cj(m,Q) ∈ H1(KΣQm/K, Tj)

is defined to be the image of c(m,Q) under the map TmQ
JQ/Im → Tj given by Corollary 4.6.6. If ν(N−Q)

is odd, then Construction 5.1.2, extended linearly to formal sums of CM points, defines an element

λj(P (m,Q), Q) ∈ Oj [Gal(K[m]/K)].

Because v℘(Im(f)) ≥ j, λj(P (m,Q), Q) is constant on cosets of Gal(K[m]/K[1]) by Proposition 5.3.2(1)
and therefore descends to

(66) λ′j(m,Q) ∈ Oj [Gal(K[1]/K)].

The Kolyvagin element is then defined as:

(67) λj(m,Q) = trK[1]/K λ
′
j(m,Q) ∈ Oj .

When m = Q = 1, then j can be arbitrarily large, giving a class c∞(1, 1) ∈ H1(K,Tf ) or an element
λ∞(1, 1) ∈ O.

Remark 5.3.5. When Q = N− = 1 and Of = Z, this agrees with Kolyvagin’s original construction
described in [45, §1].

5.3.6. We now consider the local properties of the classes cj(m,Q) at places v|p of K. Recall from Remark
5.1.3 the abelian variety Af such that Tf = TpAf ⊗Of⊗Zp

O. For any finite extension L of Qp, define

(68) H1
f (L, Tf ) := im

(
Af (L)⊗Of

O → H1(L, Tf )
)
.

Also, for any j ≥ 1, let

H1
f (L, Tj) := im

(
H1
f (L, Tf )→ H1(L, Tj)

)
= im

(
Af (L)⊗O/℘j → H1(L, Tj)

)
,

which is also the kernel of the composite

H1(L, Tj) = H1(L,Af [℘
j ])→ H1(L,Af (L)).

Proposition 5.3.7. Let v|p be a place of K. For m, Q, and j as in Definition 5.3.4, cj(m,Q)v lies in
H1
f (Kv, Tj).

Proof. Extend v to a place of K[m]. By [51, Proposition 3.8] and inflation-restriction (cf. the proof of [31,
Proposition 6.2(1)]), the natural map H1(Kv, Af (K)) → H1(K[m]v, Af (K)) is injective, so it is enough to
show that

ResK[m]v cj(m,Q) ∈ H1
f (K[m]v, Tj).

Since ResK[m] c(m,Q) = [K[1] : K]d(m,Q), and d(m,Q) is defined as the Kummer image of P ′(m,Q), it
suffices to show:

Claim. The image of the composite map

(69) JQ(K[m]v)→ H1(K[m]v, J
Q[pj ])

β−→ H1(K[m]v, Tj)

lies in H1
f (K[m]v, Tj).
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Here β is induced by the map of GQ-modules

(70) JQ[pj ] = TpJ
Q/pj ↠ TmQ

JQ/pj
(56)−−→ Tj .

Let JQ and Af be the Néron models of JQ and Af , respectively, over SpecOK[m]v . By [60, Corollaire 3.3.6],

the map (70) of GK[m]v -modules JQ[pj ]→ Tj extends to a map of finite flat group schemes JQ[pj ]→ Af [℘j ]
over SpecOK[m]v ; moreover (69) fits into a commutative diagram

JQ(OK[m]v ) H1
fppf(SpecOK[m]v ,JQ[pj ]) H1

fppf(SpecOK[m]v ,Af [℘j ])

JQ(K[m]v) H1(K[m]v, J
Q[pj ]) H1(K[m]v, Tj).

Here H1
fppf refers to sheaf cohomology computed in the fppf topology. By [32, Lemma 7], the image of the

right vertical arrow is H1
f (K[m]v, Tj), and the claim follows. □

5.3.8. Recall that ϵf is the global root number of f . For applications to the parity conjecture, we will require
the following:

Proposition 5.3.9. Letm be a squarefree product of primes inert in K and suppose j ≤ v℘(Im(f)). If ν(N−)

is even, then cj(m, 1) lies in the ϵf · (−1)ν(m)+1-eigenspace for the action of the generator τ ∈ Gal(K/Q).

If ν(N−) is odd and λj(m, 1) ̸= 0, then ϵf = (−1)ν(m).

Proof. Since f is a newform of level N , the maps φ : JN
+,N− → Af or φ : Z[XN+,N− ]0 → O from Remark

5.1.3 satisfy

(71) φ ◦ wN = ϵf · (−1)ν(N
−)+1 · φ,

where wN =
∏
ℓ|N+ wℓ

∏
ℓ|N− Uℓ is the Atkin-Lehner involution; the minus signs appear because the local

root number of f at ℓ|N− is the negative of the Uℓ eigenvalue for the quaternionic modular form on B×N−

corresponding to f .
Now suppose ν(N−) is even. Choose a lift τ ∈ Gal(K[m]/Q); then, for all y(m) ∈ CMN+,N−(m), we claim

that wNτy(m) lies in CMN+,N−(m) as well. Indeed, this is clear from Definition 4.7.3: applying wNτ reverses
all the orientation conditions (1)-(3), but then we can replace the action of Om,K with its complex conjugate
so the conditions are again satisfied. Since cj(m, 1) is independent of the choice of y(m) by Proposition
5.3.3(2) and the transitivity of the GK-action on CMN+,N−(m), the calculation in [31, Proposition 5.4]

applies to show (using (71) and Remark 5.1.3) that τcj(m, 1) = −ϵf · (−1)ν(m)cj(m, 1), as desired.
The case when ν(N−) is odd is similar: if y(m) ∈ CMN+,N−(m) is represented by a pair (R,ϕ) satisfying

Definition 4.7.7 for the fixed embedding K ↪→ B, then wNy(m) is represented by the pair (R,ϕop), with

all orientations reversed. But (R,ϕop) satisfies Definition 4.7.7 for the embedding K
τ−→ K ↪→ B, which is

conjugate to K ↪→ B by an element of B×(Q), so wNy(m) lies in the image of CMN+,N−(m) → XN+,N− .
Applying formally the calculations in [31, Proposition 5.4], it follows from (71) and Remark 5.1.3 that
λj(m, 1) = ϵf · (−1)ν(m)λj(m, 1), which gives the claim. □

Definition 5.3.10. An ultraprime l ∈ MQ is called Kolyvagin-admissible if

Frobl ∈ Gal(K(Tf )/Q)

is a complex conjugation. We will also abusively write l for the unique corresponding ultraprime in MK .
A Kolyvagin-admissible set is a finite set of Kolyvagin-admissible ultraprimes, and the collection of all
Kolyvagin-admissible sets is denoted K. We will use multiplicative notation for the Kolyvagin-admissible
sets, i.e. ifm, n ∈ K withm∩n = ∅, we writemn for the unionm∪n. Similarly, if l ̸∈ m is Kolyvagin-admissible,
we write ml for m ∪ {l}. We write 1 for ∅ ∈ K.
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5.3.11. If l is Kolyvagin-admissible, then the local cohomology

H1(Kl, Tf )

is free of rank four over O, and carries a natural action of the complex conjugation τ ∈ Gal(K/Q). It has a
canonical splitting of the finite-singular exact sequence:

H1(Kl, Tf ) = H1
unr(Kl, Tf )⊕ H1

tr(Kl, Tf ),

defined as follows. If the sequence (ℓn)n∈N represents l, then for any j and for F-many n, Frobℓn acts as
complex conjugation on Tj , and

H1
tr(Kℓn , Tj) = ker

(
H1(Kℓn , Tf/π

j)→ H1(K[ℓn]λn
, Tf/π

j)
)

is isomorphic to H1(Iℓn , Tj)
Frob2

ℓn
=1, where λn is a prime of K[ℓn] over ℓn. Then

H1
tr(Kl, Tf ) = lim

←
U
({
H1

tr(Kℓn , Tj)
}
n∈N

)
⊂ H1(Kl, Tf )

is our transverse subspace. We denote by loc±l and ∂±l the composites H1(K,Tf ) → H1
unr(Kl, Tf )

± and
H1(K,Tf ) → H1

tr(Kl, Tf )
±, respectively, where the superscript ± refers to the Frobenius eigenspace with

eigenvalue ±1. The codomain of each is free of rank one over O.
Let S ⊂ MK be the set of constant ultraprimes v such that v|Np∞. We will consider the Kolyvagin-

transverse Selmer structure (F(m),S ∪m) on Tf , for any m ∈ K:

(72) H1
F(m)(Kv, Tf ) =


ker
(
H1(Kv, Tf )→ H1(Kv,Vf )

H1
f (Kv,Vf )

)
, v = v ∈ S,

H1
tr(Kl, Tf ), v = l ∈ m,

H1
unr(Kv, Tf ), otherwise.

Here H1
f (Kv, Vf ) is the Bloch-Kato local condition on Vf = Tf ⊗ Qp; when v|p, the notation is consistent

with (68) by [4, Examples 3.10.1, 3.11]. Note that (F(m),S ∪ m) is a self-dual Selmer structure by the
self-duality of H1

f (Kv, Vf ) – the transverse local conditions at m are self-dual by [49, Proposition 1.3.2]. If

{Q, ϵQ} ∈ NS∪m, then we denote by (F(m,Q),S ∪m ∪ Q) the modified Selmer structure of (3.2.2).

5.3.12. Let {Q, ϵQ} ∈ N
ν(N−)
S∪m , and fix representatives (Qn)n∈N and (mn)n∈N; for F-many n, Qnmn is a

squarefree product of primes inert in K. Our patched Kolyvagin class is the element

κ(m,Q) ∈ H1(KS∪m∪Q/K, Tf )

whose image in H1(KS∪m∪Q/K, Tj) is represented by the sequence of images of the classes cj(mn, Qn),
well-defined for F-many n.

If {Q, ϵQ} ∈ N
ν(N−)+1
S∪m , then we similarly set

λ(m,Q) ∈ O ≃ lim
←−
U
({
O/πj

})
to be the element whose image in O/πj is represented by the sequence λj(mn, Qn).

Proposition 5.3.13. For any m ∈ K and {Q, ϵQ} ∈ N
ν(N−)
S∪m ,

(κ(m,Q)) ⊂ SelF(m,Q)(Tf ).

Moreover:

(1) For all m ∈ K and all Kolyvagin-admissible l ̸∈ m, and all {Q, ϵQ} ∈ N
ν(N−)
S∪ml ,

(loc±l (κ(m,Q))) = (∂∓l (κ(ml,Q)))

as submodules of O.
(2) For all m ∈ K and all {Qq, ϵQq} ∈ N

ν(N−)
S∪m ,

(∂q(κ(m,Qq))) = (λ(m,Q))

as submodules of O.
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(3) For all m ∈ K and all {Qq, ϵQq} ∈ N
ν(N−)−1
S∪m ,

(locq(κ(m,Q))) = (λ(m,Qq))

as submodules of O.
In particular, for any fixed m, (κ(m, ·), λ(m, ·)) forms a bipartite Euler system with parity ν(N−) for the
triple (Tf ,F(m),S ∪m).

Proof. To prove the first claim, we verify the local conditions for each v ∈ S ∪ m ∪ Q. If v = v for a prime
v|N∞, then the local condition is all of H1(Kv, Tf ), so there is nothing to show. (Indeed, H1(Kv, Tf ) is
torsion for any v|N∞.) If v = v for a prime v|p, then we have

Resv κ(m,Q) ∈ H1
f (Kv, Tf ) = lim←−

j

H1
f (Kv, Tj)

by Proposition 5.3.7.
If v = l ∈ m, then, adopting as well the notation of (5.3.1), the class c(mn, Qn) is zero when restricted to

K[mn]λn
because Dℓn = ℓn(ℓn+1)/2 on Fλn

; it follows that Resv κ(m,Q) ∈ H1
tr(Kl, Tf ). The local conditions

at q ∈ Q are satisfied by Construction 5.1.2(1) because every factor of Qn splits completely in K[mn]; for the
same reason, (2, 3) follow from Construction 5.1.2(2, 3). Moreover (1) is clear from Proposition 5.3.3(3). □

Remark 5.3.14. (1) The condition (disc) is only used to control the structure of the Galois group
Gal(K[m]/K[1]) in (5.3.1) above. In particular, one sees from the construction that the bipartite
Euler system (κ(1, ·), λ(1, ·)) makes sense in the generality of (5.1.1). We will use this observation
to prove the p-converse theorem (Corollary 8.1.3 below) without the assumption (disc).

(2) Note as well that, under (spl) and (ord), (κ(1, ·), λ(1, ·)) may be viewed as a specialization of (κ,λ).
Indeed, let 1 : Λ → O be the specialization at the trivial character. Then by the usual Heegner
point norm relations [23, Proposition 3.10] (adapted to our context as in the proof of Proposition

5.2.2), 1(λ(Q)) = (αp − 1)2(λ(1,Q)) and 1(κ(Q)) = (αp − 1)2(κ(1,Q)) when {Q, ϵQ} ∈ Nν(N
−)+1

and {Q, ϵQ} ∈ Nν(N
−), respectively.

6. Deformation theory

In §4, we used geometric methods to produce level-raising congruences on the level of so-called “weak
eigenforms” (i.e. ring maps from a Hecke algebra to O/πj), which typically do not lift to characteristic
zero. To prove the main results, we also need to be able to π-adically approximate our fixed modular form
f by genuine level-raised eigen-newforms. In this section, we provide this input via the relative deformation
theory of Fakhruddin-Khare-Patrikis [28].

6.1. Review of relative deformation theory.

6.1.1. Let f , N , ℘, O, E, π, Vf , Tf , and Wf be as in §1.5. However, for this section only we allow p|N (since
it does not change any of the statements of our results).

We will also consider the hypothesis:

(TW) If p = 3, then T f is absolutely irreducible when restricted to GQ(
√
−3).

Consider the adjoint representation

L = ad0 Tf

and its O-dual, L† ≃ L(1), and let L and L
∗ ≃ L†/π be the associated residual representations. Although

we continue to assume T f is absolutely irreducible, we do not assume L is absolutely irreducible.

6.1.2. We now recall the construction in [28, Proposition 4.7] of certain local conditions for the Galois
cohomology of L. Let CO be the category of complete local Noetherian algebras R with a map O → R
inducing an isomorphism on residue fields. Fix a basis for Tf over O, which identifies the Galois action on
Tf with a homomorphism ρf : GQ → GL2(O), and let ρf be the reduction of ρf modulo π. For all primes

ℓ ̸= p, let R̃ℓ ∈ CO denote the framed universal deformation ring of ρf |GQℓ
, of fixed determinant χ; that is,

HomCO (R̃ℓ, A) =
{
ρA : GQℓ

→ GL2(A) : ρA ⊗A A/mA = ρf |GQℓ
, det ρA = χ

}
, A ∈ CO.
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Similarly, for ℓ = p, let R̃p ∈ CO denote the framed potentially semistable deformation ring of T f |GQp

(constructed in [44]), with fixed Hodge-Tate weights 0 and 1, fixed determinant χ, and fixed Galois type

agreeing with that of ρf |GQp
. For any ℓ, the generic fiber R̃ℓ[1/π] is generically formally smooth of pure

dimension 3 + δℓ=p. The representation ρf |GQℓ
defines a formally smooth point yℓ of Spec R̃ℓ[1/π] by [1,

Theorem D, Proposition 1.2.2]; let SpecRℓ ⊂ Spec R̃ℓ be the Zariski closure of the irreducible component of

Spec R̃ℓ[1/π] containing yℓ.

Proposition 6.1.3. There exists an open set Yℓ ⊂ SpecRℓ(O) containing yℓ, and a collection of submodules
Zj = Zj(yℓ) ⊂ Z1(GQℓ

, L/πj) which are free of rank 3+δℓ=p over O/πj for all j ≥ 0, satisfying the following
properties.

(1) Let Y ℓn be the image of Yℓ in SpecRℓ(O/πn) and denote by πYℓ
n,j : Y

ℓ
n+j → Y ℓn the reduction maps for

n, j ≥ 0. Then given j0 > 0, there exists n0 > 0 such that, for all n ≥ n0 and all 0 ≤ j ≤ j0, the
fibers of πYℓ

n,j are nonempty principal homogeneous spaces for Zj.

(2) The natural O-module maps O/πj → O/πj−1 and O/πj−1 → O/πj induce surjections Zj ↠ Zj−1
and inclusions Zj−1 ↪→ Zj.

(3) If ρf |GQℓ
is unramified, then Zj is the subspace of unramified cocycles, and Yℓ can be chosen so that

(1) holds with n0 = 1 for all j0.

Remark 6.1.4. We note that, although the open subset Yℓ ⊂ SpecRℓ(O) is not uniquely determined by the
property (1) in Proposition 6.1.3, the submodules Zj(yℓ) depend only on yℓ. Indeed, if j is fixed, then for n
sufficiently large the fiber of Y ℓn+j → Y ℓn over yℓ (mod πn) is the fiber of SpecRℓ(O/πn+j)→ SpecRℓ(O/πn)
over yℓ (mod πn), which depends only on yℓ, and this fiber determines Zj(yℓ).

Proof. The existence of Yℓ and Zj satisfying (1) and (2) is proved in [28, Proposition 4.7], so we consider

(3). Note ℓ ̸= p by the hypothesis that ρf |GQℓ
is unramified. Let R̃ℓ ↠ Runr

ℓ be the quotient parametrizing
unramified deformations; then Runr

ℓ is formally smooth over O of dimension 3, and it follows that Rℓ = Runr
ℓ .

The formal smoothness of Runr
ℓ then immediately implies that properties (1) and (2) are satisfied with

Zj = Z1
unr(GQℓ

, L/πj) the space of unramified cocycles, Yℓ = SpecRℓ(O), and n0 = 1 for all j0. □

6.1.5. For all primes ℓ and all j ≥ 0, let H1
S(Qℓ, L/πj) be the image of the subset Zj(yℓ) ⊂ Z1(Qℓ, L/πj) of

Proposition 6.1.3. Also let

H1
S(Qℓ, L) = lim←−

j

H1
S(Qℓ, L/πj).

Proposition 6.1.6. For all primes ℓ, the quotient

H1(Qℓ, L)
H1
S(Qℓ, L)

is π-torsion-free.

Proof. The π-torsion of H1(Qℓ, L)/H1
S(Qℓ, L) is identified with the inverse limit of the kernels

Kj := ker

(
H1(Qℓ, L/πj)
H1
S(Qℓ, L/πj)

π∗−→ H1(Qℓ, L/πj+1)

H1
S(Qℓ, L/πj+1)

)
,

where π∗ is the map induced by π : L/πj → L/πj+1. Since Zj(yℓ) contains all coboundaries,

Kj = ker

(
Z1(Qℓ, L/πj)

Zj(yℓ)

π∗−→ Z1(Qℓ, L/πj+1)

Zj+1(yℓ)

)
.

So it suffices to show

(73) π∗Z
1(Qℓ, L/πj) ∩ Zj+1(yℓ) = Zj(yℓ).

Now π∗Z
1(Qℓ, L/πj) ∩ Zj+1(yℓ) is contained in Zj+1(yℓ)[π

j ] ≈ (O/πj)3+δℓ=p , and also contains Zj(yℓ) by
Proposition 6.1.3(2). By counting ranks, we see that (73) holds, as desired. □
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6.1.7. Now suppose q is a j-admissible prime with sign ϵq, and let ϵq denote the unramified character of GQq

sending Frobq to ϵq.

Recall from Definition 4.6.2 the uniquely determined subspace Fil+q,ϵq Tj ⊂ Tj free of rank one over O/πj ,
on which GQq acts by χϵq. We define

Fil+q,ϵq L/π
j = Hom

(
Tj/Fil

+
q,ϵq Tj ,Fil

+
q,ϵq Tj

)
⊂ L/πj ,

a free O/πj-submodule of rank one, and

H1
ord,ϵq (Qq, L/π

j) = im
(
H1(Qq,Fil+q,ϵq L/π

j)→ H1(Qq, L/πj)
)
.

As always the subscripts ϵq will usually be omitted when they are clear from context.
A representation ρ : GQq

→ GL2(A), for any Zp-algebra A, will be called Steinberg if it is conjugate to a

representation of the form

(
χ ∗
0 1

)
with ∗ a ramified cocycle in H1(Qq, A(1)). We denote by SpecRord

q,ϵq ⊂

Spec R̃q the Zariski closure of the union of the irreducible components of Spec R̃q[1/π] that contain a point
corresponding to a Steinberg representation twisted by ϵq.

Proposition 6.1.8. Suppose q is j-admissible with sign ϵq and ρn ∈ SpecRord
q,ϵq (O/π

n) is a lift of Tj |GQq

(with any framing), for some n ≥ j. Then for all r ≤ j, the fiber of the reduction map

SpecRord
q,ϵq (O/π

n+r)→ SpecRord
q,ϵq (O/π

n)

over ρn is a nonempty principal homogeneous space under

Z1
ord,ϵq (Qq, L/π

r) := ker

(
Z1(Qq, L/πr)→

H1(Qq, L/πr)
H1

ord,ϵq
(Qq, L/πr)

)
,

which is free of rank 3 over O/πr.

Proof. Without loss of generality, we may assume that Frobq acts on Tj via the diagonal matrix

(
qϵq 0
0 ϵq

)
.

By the explicit calculations in [68, Propositions 5.5, 5.6], Rord
q,ϵq is a power series ring OJX,Y,BK with

universal deformation

ρordq (σ) =

(
1 X
Y 1

)−1(
1 B
0 1

)(
1 X
Y 1

)
ρordq (ϕ) =

(
1 X
Y 1

)−1(
qϵq 0
0 ϵq

)(
1 X
Y 1

)
,

where σ is a generator of tame inertia and ϕ is a lift of arithmetic Frobenius. (We note this calculation
crucially uses q ̸≡ 1 (mod p).) In particular, SpecRord

q,ϵq is formally smooth, and by the discussion in [28,

§4.1, Lemma 4.5], the fiber of the reduction map in the proposition over ρn is a principal homogeneous
space under a certain submodule Z ′r of Z1(Qq, L/πr) which is free of rank three over O/πr and contains all

coboundaries. It is also clear that the cocycles of the form ϕ 7→ 0, σ 7→
(
0 ∗
0 0

)
are contained in Z ′r, and

these generate H1
ord(Qq, L/πr). By comparing ranks, we find Z ′r = Z1

ord,ϵq
(Qq, L/πr). □

6.1.9. Let Nj denote the set of weakly admissible pairs {Q, ϵQ} such that each q|Q is j-admissible with sign
ϵQ(q) (notation slightly different from (5.1.1)). If {Q, ϵQ} ∈ Nj is a weakly admissible pair, we will consider
the (non-patched) Selmer groups

SelQ(Q, L/πj) := ker

H1(QS∪Q/Q, L/πj)→
∏
ℓ|Np

H1(Qℓ, L/πj)
H1
S(Qℓ, L/πj)

×
∏
q|Q

H1(Qq, L/πj)
H1

ord,ϵQ(q)(Qq, L/πj)

 ,

where S is the set of places dividing Np∞. We also have the dual Selmer group SelQ(Q, L∗[πj ]) defined
using orthogonal complement local conditions.
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Finally, define, for any finite set of places Σ containing all v|Np∞:

(74) X1
Σ = ker

(
H1(QΣ/Q, L∗)→

∏
v∈Σ

H1(Qv, L
∗
)

)
.

Proposition 6.1.10. There exists a finite set of places Σ, containing all v|Np∞, such that

X1
Σ = 0.

Proof. We claim it suffices to show that

(75) H1(Q(T f )/Q, L
∗
) = 0,

where this cohomology group makes sense because GQ(T f )
acts trivially on L

∗
as det ρf = χ. Indeed, suppose

Σ is a finite set of places containing all v|Np∞, and c ∈X1
Σ is nonzero. Then by (75), the restriction map

H1(Q, L∗)→ H1(Q(T f ), L
∗
)

is injective, so c restricts to a nonzero homomorphism c′ : GQ(T f )
→ L

∗
. Let ℓ ̸∈ Σ be a prime which is

totally split in Q(T f ) but not in the extension cut out by c′ (which is possible by the Chebotarev Density
Theorem). Then Resℓ c ̸= 0, hence the inclusion X1

Σ∪{ℓ} ⊂X1
Σ is strict. Since X1

Σ is finite, iterating this

process produces a set Σ such that X1
Σ = 0.

We now show (75). If µp ̸⊂ Q(L), then the center of Gal(Q(T f )/Q) contains elements that act by nontrivial

scalars on L
∗
, and (75) follows from inflation-restriction. So suppose that µp ⊂ Q(L). In particular, the

projective image G = Gal(Q(L)/Q) of ρf has a cyclic quotient of order p− 1.

Since T f is absolutely irreducible, and since every subgroup of PGL2(O/π) is naturally a subgroup of

PSL2(Fp), a classical result of Dickson [73, Chapter 3, Theorem 6.25] implies that G is isomorphic to a
dihedral group, or A4, S4, or A5, or either PSL2(Fpn) or PGL2(Fpn) for some n. Because PSL2(Fq) is

simple for q > 3, for G to have a cyclic quotient of order p − 1 requires that p = 3 and G is isomorphic to
either a dihedral group, or PGL2(Fpn) for some n. (Recall here that S4 is isomorphic to PGL2(F3).) If the

order of G is prime to p, then (75) will hold automatically, so we may assume without loss of generality that
G is isomorphic to PGL2(Fpn) for some n.

Let G(1) = Gal(Q(T f )/Q(µp)) ⊂ SL2(O/π). The natural map G(1) → G has kernel and cokernel of
cardinality at most 2, so, comparing with the classification in [73, Chapter 3, Theorem 6.17, Case II], we
conclude that G(1) contains a subgroup H isomorphic to SL2(Fpn) with index at most 2. Moreover, Fpn is
a subfield of O/π and the embedding H ↪→ SL2(O/π) is GL2(O/π)-conjugate to the standard one by [73,

Chapter 3, Lemma 6.18]. In particular, H1(H,L
∗
) = H1(H,L) = 0 by [24, Lemma 2.48], and because H

contains a p-Sylow subgroup of G(1), H1(G(1), L
∗
) = 0 as well. This shows (75) because of the inflation-

restriction exact sequence:

0 = H1(Q(µp)/Q, (L
∗
)GQ(µp))→ H1(Q(T f )/Q, L

∗
)→ H1(Q(T f )/Q(µp), L

∗
) = H1(G(1), L

∗
).

□

Theorem 6.1.11. Let f be as above, satisfying (TW). Suppose given a weakly admissible pair {Q, ϵQ} ∈ Nj
and an integer k ≤ j satisfying the following conditions:

(1) The map

SelQ(L
∗[πk])→ SelQ(L

∗
)

is identically zero.
(2) For each ℓ|Np, let n0(ℓ, k) be a number satisfying the conclusion of Proposition 6.1.3(1) for j0 = k,

and let N0(k) = maxℓ|Np {n0(ℓ, k)}. Then j − k + 1 ≥ N0(k).

Then there is an eigen-newform g of weight 2, level NQ, and trivial character, with a prime ℘g of the ring
of integers of its coefficient field Og, such that:

• The completion Og,℘g
is a subring of O.

• There is a congruence of Galois representations (in some basis)

ρf ≡ ρg,℘g (mod πj−k+1).

• The inertial types of ρg,℘g |GQℓ
and ρf |GQℓ

agree for all ℓ|N with ℓ ̸= p.
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• ρg,℘g |GQp
has the same Galois type as ρf |GQp

and is potentially crystalline if and only if ρf |GQp
is.

• For all q|Q, ρg,℘g |GQq
is a Steinberg representation twisted by the unramified character Frobq 7→

ϵQ(q).

Proof. We will construct a Galois representation

τ : GQ → GL2(O)

satisfying the following properties:

• τ ≡ ρf (mod πj−k+1).
• det τ = χ.
• For all ℓ ∤ Q, τ |GQℓ

defines a point of SpecRℓ.

• For all q|Q, τ |GQq
defines a point of SpecRord

q,ϵQ(q).

Let us first show that the existence of the representation τ is sufficient for the theorem. Since τ is odd
and potentially semistable with distinct Hodge-Tate weights 0 and 1, we may apply the modularity lifting
theorem of [56, Theorem 1.0.4] (and see the main result of [75] for the case p = 3, using (TW)) to conclude
that τ arises from a modular newform g, which is automatically of weight two and trivial character. Now
by modularity and [1, Theorem D, Proposition 1.2.2], τ |GQℓ

defines not only a point of SpecRℓ but a

smooth point of Spec R̃ℓ for all ℓ. Since the potentially crystalline locus of Spec R̃p is a union of irreducible
components (cf. [44, Theorems 3.3.4, 3.3.8]), τ is potentially crystalline if and only if ρf is. By construction,
τ |GQp

has the same Galois type as ρf |GQp
. Hence g and f have the same conductor at p by [66, Theorem 2.2].

For ℓ ̸= p, the inertial type is constant on components of Spec R̃ℓ[1/π], except possibly at the nonsmooth
points (count dimensions using [2, Theorems 3.3.2, 3.3.7], or see the calculations in [68, §5]); it follows that
τ has the same inertial type as ρf at all ℓ ∤ Q, and is Steinberg twisted by Frobq 7→ ϵQ(q) for all q|Q. Since
for all ℓ ̸= p, the ℓ-part of the conductor of g is the conductor of the Weil-Deligne representation associated
to τ |GQℓ

by [13, Théorème A], we see that g has level NQ.

We now turn to the construction of τ . For each ℓ ∤ Q, let Yℓ be a set satisfying Proposition 6.1.3 for j0 = k
with n0 = N0(k) for ℓ|Np, and with n0 = 1 if ℓ ∤ Np. Also let Y ℓm be as in Proposition 6.1.3 for all m ≥ 1.
We will construct τ as the inverse limit of representations

τm : GQ → GL2(O/πm),

compatible under reduction maps, with the following key property: for all m, τm|GQℓ
lies in Y ℓm if ℓ ∤ Q,

and τm|GQq
defines a point of SpecRord

q (O/πm) if q|Q. The representations τm are constructed inductively,

but when constructing τm+1, we will allow ourselves to modify the representations τm−k+2, . . . , τm. (This
is the “relative” aspect of the construction.) Before we begin the construction, let us fix once and for all a
set Σ of places containing all v|NpQ∞ such that X1

Σ = 0 (possible by Proposition 6.1.10). Our base case
is τj = ρf (mod πj). Suppose we have defined τm for some m ≥ j. For each ℓ ∈ Σ, we may fix a local lift
ρm+1,ℓ of τm|GQℓ

with the following property: if ℓ ∤ Q, then ρm+1,ℓ lies in Y
ℓ
m+1, and if ℓ = q|Q, then ρm+1,q

lies in SpecRord
q (O/πm+1). This is possible by Propositions 6.1.3 and 6.1.8 and by the key property of τm

(using m ≥ j ≥ N0(k)). In particular, the obstruction to lifting τm modulo πm+1 vanishes locally. By global
Poitou-Tate duality, the vanishing of X1

Σ implies the vanishing of

ker

(
H2(QΣ/Q, L)→

∏
v∈Σ

H2(QΣ/Q, L)

)
,

so there exists a representation ρm+1 : GQ → GL2(O/πm+1) which is unramified outside Σ and lifts τm.
Comparing ρm+1,ℓ to ρm+1 as lifts of τm−k+1|GQℓ

for all ℓ ∈ Σ, their difference defines a collection of local
cocycles

(cℓ) ∈
⊕
ℓ∈Σ

H1(Qℓ, L/πk)
H1
S(Qℓ, L/πk)

.

Now, since ρm+1 lifts τm, Propositions 6.1.3 and 6.1.8 imply that (cℓ) has trivial image in⊕
ℓ∈Σ

H1(Qℓ, L/πk−1)
H1
S(Qℓ, L/πk−1)

.
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By the argument in [28, p. 3578], it then follows from the hypothesis (1) of the theorem that there is
a global cocycle c ∈ H1(Q, L/πk) whose localizations at ℓ ∈ Σ agree with (cℓ). Adjusting ρm+1 by the
cocycle c, we obtain a representation τm+1 with the desired key property. (Note that we are repeatedly
using m+1− k ≥ j+1− k ≥ N0(k) to apply Proposition 6.1.3.) We now redefine τm−k+2, . . . , τm to be the
reductions of τm+1; since τm+1 is a lift of τm−k+1 by construction, the representations τi with j ≤ i ≤ m−k+1
do not need to be redefined. This completes the inductive step of the construction, hence the proof of the
theorem. □

6.2. Patching adjoint Selmer groups.

6.2.1. Patched Selmer groups provide a convenient framework to produce weakly admissible pairs {Q, ϵQ}
satisfying the conditions of Theorem 6.1.11. For this subsection only, we drop the condition from Defini-
tion 3.1.2 that Frobq has nontrivial image in Gal(K/Q), as no quadratic imaginary field is needed for the
discussion.

Suppose that q is an admissible ultraprime with sign ϵq (in this modified sense). In the notation of (3.1.3),
we have the exact sequence of O[Frobq]-modules

0→ Fil+q,ϵq Tf → Tf → Tf/Fil
+
q,ϵq Tf → 0,

and we define

Fil+q,ϵq L = Hom(Tf/Fil
+
q,ϵq Tf ,Fil

+
q,ϵq Tf ) ⊂ L

and

H1
ord,ϵq(Qq, L) = im

(
H1(Qq,Fil

+
q,ϵq L)→ H1(Qq, L)

)
.

It is clear that, if q is represented by a sequence (qn)n∈N, then

H1
ord,ϵq(Qq, L) = lim←−

j

U
({

H1
ord,ϵq(Qqn , L/π

j)
}
n∈N

)
,

where H1
ord,ϵq

(Qqn , L/πj) is well-defined for all n such that qn is j-admissible with sign ϵq. We also define

H1
ord,ϵq

(Qq, L
†) as the orthogonal complement of H1

ord,ϵq
(Qq, L) under the local Tate pairing. Note that, since

H1(Qq, L) is torsion-free by a direct calculation, H1
ord,ϵq

(Qq, L
†) and H1

ord,ϵq
(Qq, L) are exact annihilators.

We will require the restriction maps

locq,ϵq : H
1(Q, L)→ H1(Qq, L)

H1
ord,ϵq

(Qq, L) ∩ H1
unr(Qq, L)

,

loc†q,ϵq : H
1(Q, L†)→ H1(Qq, L

†)

H1
ord,ϵq

(Qq, L†) ∩ H1
unr(Qq, L†)

.

(76)

As usual, we drop the subscript ϵq when it is clear from context.

6.2.2. Let S ⊂ MQ be the set of constant ultraprimes v for v|Np∞. For any {PQR, ϵPQR} ∈ N, we define the
Selmer structure (SPR (Q),S ∪ PQR) for L:

(77) H1
SP
R (Q)(Qv, L) =



H1
S(Qℓ, L), v = ℓ ∈ S,

H1
ord(Qq, L), v = q ∈ Q,

H1
ord(Qq, L) + H1

unr(Qq, L), v = q ∈ P,

H1
ord(Qq, L) ∩ H1

unr(Qq, L), v = q ∈ R,

H1
unr(Qv, L), v ̸∈ S ∪ PQR.

When P, Q, or R is empty, it is omitted from the notation.

Proposition 6.2.3. For all {Q, ϵQ} ∈ N,

dQ := rkO SelS(Q)(L) = rkO SelS(Q)†(L
†).
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Proof. For all primes ℓ, Proposition 6.1.3 implies that

rkOH
1
S(Qℓ, L) = 3 + δℓ=p − rkO

(
lim←−
j

B1(Qℓ, L/πj)

)
,

where B1(Qℓ, L/πj) denotes the coboundaries; because L has rank three over O, we conclude

rkOH
1
S(Qℓ, L) = rkOH

0(Qℓ, L) + δℓ=p.

Since

rkO H1
ord(Qq, L) = rkO H0(Qq, L) = 1

for all q ∈ Q, the claim results from Proposition 2.6.13. □

In the language of patching, we can reformulate Theorem 6.1.11 as follows.

Theorem 6.2.4. Assume f satisfies (TW), and suppose given a pair {Q, ϵQ} ∈ N such that dQ = 0. Fix a
sequence {Qn, ϵQn} of weakly admissible pairs representing {Q, ϵQ}. Then there is a sequence (defined for
F-many n) of eigen-newforms gn of weight 2, level NQn, and trivial character, with a prime ℘gn of the ring
of integers Ogn of the coefficient field, such that:

• The completion Ogn,℘gn
is isomorphic to O.

• The inertial types of ρgn,℘gn
|GQℓ

and ρf |GQℓ
agree for all ℓ|N with ℓ ̸= p.

• ρgn,℘gn
|GQp

has the same Galois type as ρf and is potentially crystalline if and only if ρf is.

• For all qn|Qn, ρgn,℘gn
|GQqn

is a Steinberg representation twisted by the unramified character Frobqn 7→
ϵQn

(qn).
• For any fixed j, there is a congruence of Galois representations (in some basis)

ρf ≡ ρgn,℘gn
(mod πj)

for F-many n.

In particular, for fixed j ≥ 1 the maps

TQn
= TN+,N−Qn

→ O/πj

of Remark 4.6.8 admit O-valued lifts for F-many n.

Proof. First observe that it suffices to construct such a sequence with Ogn,℘gn
a subring of O, since both

Ogn,℘gn
and O are integrally closed and E is generated over Qp by tr ρ(g) for g ∈ GQ.

Since dQ = 0, there exists some k ≥ 0 such that the natural map

(78) SelS(Q)†(L
†/πk)→ SelS(Q)†(L

∗
)

is identically zero. (To see this, use Proposition 2.5.6 to conclude that the inverse limit over k of the
image of the map in (78) vanishes.) Also, Proposition 6.1.6 implies S is saturated as a Selmer structure
for L, and S(Q) is as well by a direct local calculation for q ∈ Q. Proposition 2.6.12 therefore shows that
SelS(Q)†(L

†/πk) = SelS(Q)∗(L
∗[πk]). Hence for F-many n, the maps

SelQn(L
∗[πk])→ SelQn(L

∗
)

are also identically zero. Since k is fixed independently of n, the theorem is now immediate from Theorem
6.1.11. □

6.3. Annihilating two Selmer groups.

6.3.1. Now fix an imaginary quadratic field K of discriminant prime to Np and a self-dual Selmer structure
(F ,SK) for the GK-module Tf over O, where SK contains all constant ultraprimes s with s|Np∞. For
our application of Theorem 6.2.4, we will want to choose {Q, ϵQ} ∈ NSK

such that dQ = 0, and rQ =
rkO SelF(Q)(Tf ) = 0. In this subsection, we show that such a choice is possible (Proposition 6.3.6 below).
The proof is inspired by [15, §3.3], and begins with a series of lemmas. We note that the results of this
subsection crucially require the assumption from §1.5 that f not have CM.

Lemma 6.3.2. There exists an integer j that, for all n ≥ 0,

πjH1(K(Tf )/Q, L/πn) = πjH1(K(Tf )/Q, L†/πn) = 0.
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Proof. Let F = Q(µp∞) ⊂ K(Tf ), and note that L and L† are isomorphic GF -modules. Since f is non-CM,
(L ⊗ Qp)GF = 0 by [61, Theorem 5.5] or [54, Theorem B.5.2], and so (L/πn)GF = (L†/πn)GF is uniformly
bounded in n.

The pro-p-Sylow subgroup of Gal(K(Tf )/F ) is a compact p-adic Lie group with semisimple Lie alge-
bra; hence, by [28, Lemma B.1], the cohomology H1(K(Tf )/F, L/π

n) = H1(K(Tf )/F, L
†/πn) is uniformly

bounded in n.
Now, by inflation-restriction, we have exact sequences

0→ H1(F/Q, (L/πn)GF )→ H1(K(Tf )/Q, L/πn)→ H1(K(Tf )/F, L/π
n),

0→ H1(F/Q, (L†/πn)GF )→ H1(K(Tf )/Q, L†/πn)→ H1(K(Tf )/F, L
†/πn),

(79)

where the outer terms are uniformly bounded in n; the lemma follows. □

For the next lemma, we abbreviate Lm := L/πm, L†m := L†/πm, and (as usual) Tm := Tf/π
m. Also, for

any torsion O-module M and element y ∈M , let ord(y) be the smallest integer t ≥ 0 such that πty = 0.

Lemma 6.3.3. There is a constant C, depending only on Tf , with the following property. Given cocycles
ϕ ∈ H1(Q, Lm), ψ ∈ H1(Q, L†m), and c1, c2 ∈ H1(K,Tm)δ for some δ ∈ {±1} , and given an integer n ≥ m,
there exist infinitely many primes q ∤ Np such that all the cocycles are unramified at q and:

• q is n-admissible with sign δ.
• ord locq,δ ϕ ≥ ordϕ− C.
• ord loc†q,δ ψ ≥ ordψ − C.
• ord locq,δ ci ≥ ord ci − C for i = 1, 2.

In the second and third bullet points, locq,δ and loc†q,δ are defined analogously to (76). Also H1(K,Tm)δ

refers to the δ-eigenspace for complex conjugation.

Proof. Let us first fix a complex conjugation c ∈ GQ and choose a basis for Tf in which c acts as

(
−δ 0
0 δ

)
.

The restriction of the cocycles ϕ, ψ, ci to GK(Tn) may be considered as a homomorphism

h : GK(Tn) → Lm ⊕ L†m ⊕ (Tm)2

compatible with the action of GK ; let H be the image of this homomorphism. Let gz ∈ GK be an element
that acts by a scalar z ̸= ±1 on Tf , which exists by [61, Theorem 5.5] or [54, Theoerem B.5.2]; then we have:

H ⊃(gz − z)(gz − z2)H + (gz − z)(gz − 1)H + (gz − z2)(gz − 1)H

⊃ (z − 1)(z2 − 1)(z2 − z)
(
πLm

(H)⊕ πL†
m
(H)⊕ πT 2

m
(H)

)
,

where π• are the projection operators. Now, since L ⊗ Qp and L† ⊗ Qp are absolutely irreducible by loc.
cit., the natural maps E[GK ] → EndE(L ⊗ Qp) and E[GK ] → EndE(L

† ⊗ Qp) are surjective. Combining
these observations with Lemma 6.3.2 and inflation-restriction, we see that, for some constant C depending
only on Tf , there exists γ ∈ GK(Tf ) ⊂ GK(Tn) satisfying:

• The

(
1 0
0 −1

)
component of ϕ(γ) has order at least ordϕ− C.

• The

(
0 0
1 0

)
component of ψ(γ) has order at least ordψ − C.

• The component of ci(γ) in the δ eigenspace has order at least ord ci − C, where i = 1, 2.

For the final item, we are using the elementary fact that a group cannot be the union of two nontrivial
subgroups, as well as the irreducibility of Tf .

Since ϕ(c2) = cϕ(c)+ϕ(c) = 0, ϕ(c) lies in the −1 eigenspace for complex conjugation, whereas

(
1 0
0 −1

)
has eigenvalue 1; hence the

(
1 0
0 −1

)
component of ϕ(cγ) has order at least ordϕ− C. Similarly, the

(
0 0
1 0

)
component of ψ(cγ) has order at least ordψ − C.

Let F ⊃ K(Tn) be the fixed field of the kernel of h. Then any prime with Frobenius cγ in Gal(F/Q)
satisfies the conclusion of the lemma; cf. the proof of Lemma 3.3.11 for the assertions about ci. □
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Corollary 6.3.4. Suppose given a finite set of ultraprimes S′ ⊂ MQ containing the image of SK , and
non-torsion cocycles:

• ϕ ∈ H1(QS′
/Q, L);

• ψ ∈ H1(QS′
/Q, L†);

• c1, c2 ∈ H1(KSK/K, Tf )
δ for some δ ∈ {±1}.

Then there exist infinitely many admissible ultraprimes q ̸∈ S′ with sign δ such that:

• locq,δ ϕ ̸= 0.

• loc†q,δ ψ ̸= 0.
• locq,δ ci ̸= 0 for i = 1, 2.

Proof. Fix an integer C satisfying the conclusion of Lemma 6.3.3. Since ϕ, ψ, c1, and c2 are all non-torsion,
we may choose an integer m ≥ 1 such that ϕ, ψ, c1, and c2 have non-πC-torsion images in H1(QS′

/Q, L/πm),

H1(QS′
/Q, L†/πm), and H1(KSK/K, Tm), respectively. The rest of the proof is the same as that of Theorem

3.3.9, replacing Lemma 3.3.11 with Lemma 6.3.3. □

We also require the following variant.

Lemma 6.3.5. Let ϕ ∈ H1(QS′
/Q, L) and c ∈ H1(KSK/K, Tf )

δ be non-torsion, where S′ ⊂ MQ is a finite set

containing the image of SK . Then for any cocycle ψ ∈ H1(QS′
/Q, L†), there exist infinitely many admissible

ultraprimes q ̸∈ S′ with sign δ such that locq,δ ϕ ̸= 0, locq,δ c ̸= 0, and loc†q,δ ψ = 0.

Proof. The proof of Lemma 6.3.3 also shows the following:

Claim. There is a constant C, depending only on Tf , with the following property. Given integers n ≥ m and
cocycles ϕ ∈ H1(Q, L/πm), c ∈ H1(K,Tm)δ, and ψj ∈ H1(Q, L†/πj) for j = 1, . . . , n, there exist infinitely
many n-admissible primes q with sign δ such that all the cocycles are unramified at q and:

• ord locq,δ ϕ ≥ ordϕ− C.
• loc†q,δ ψj = 0 for all j.
• ord locq,δ c ≥ ord c− C.

Fix a prime C satisfying the conclusion of the claim. Since ϕ and c are non-torsion, we may choose an inte-
ger m ≥ 1 such that ϕ and c have non-πC-torsion images ϕ and c in H1(QS′

/Q, L/πm) and H1(KSK/K, Tm),
respectively. Recall that ϕ and c are the equivalence classes of sequences (ϕn)n∈N, (cn)n∈N with ϕn ∈
H1(Q, L/πm) and cn ∈ H1(K,Tm), while ψ is an equivalence class of sequences

(ψn,j)n,j∈N ∈ lim←−
j

U
({
H1(QSn/Q, L†/πj)

}
n∈N

)
,

where (Sn)n∈N represents S′. For each n, choose qn ̸∈ Sn as in the claim with ϕ = ϕn, ψj = ψn,j for
j = 1, · · · , n, and c = cn. Let q ∈ MQ be the ultraprime represented by (qn)n∈N, which is admissible with
sign δ. For fixed j, locqn,δ ψn,j = 0 for all n ≥ j, i.e. for F-many n, so locq ψ ≡ 0 (mod πj). Since this holds
for all j, we conclude locq ψ = 0. We also have locq ϕ ̸= 0 and locq c ̸= 0 by construction, so q satisfies the
conclusion of the lemma. There are infinitely many choices of each qn, hence of q. □

Proposition 6.3.6. Assume f satisfies (non-CM), and suppose given a self-dual Selmer structure (F ,SK)
for Tf . Then there exists {Q, ϵQ} ∈ NSK

such that

rQ = dQ = 0.

(Recall that rQ = rkO SelF(Q)(Tf ).)

Proof. Without loss of generality, by Corollary 3.3.13 we may assume that r1 = 0; for if not, choose any
{Q, ϵQ} ∈ NSK

with rQ = 0, and then relabel F(Q) as F .
We will show that, if d1 > 0, we may find {Q, ϵQ} such that rQ = 0 and dQ < d1; this clearly suffices

by induction. By Proposition 6.2.3, there exist non-torsion elements ϕ ∈ SelS(L), ψ ∈ SelS†(L†). Using

Corollary 6.3.4, choose any admissible q ̸∈ SK with sign ϵq such that locq ϕ ̸= 0, loc†q ψ ̸= 0. Then by
Proposition 2.6.13,

rkO Sel(Sq)†(L
†) + rkO SelSq(L) = 2 + rkO Sel(Sq)†(L

†) + rkO SelSq(L).
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In particular, the images of the localization maps

locq :
SelSq(L)

SelSq(L)
↪→ H1

ord(Qq, L)

H1
ord(Qq, L) ∩ H1

unr(Qq, L)
⊕ H1

unr(Qq, L)

H1
ord(Qq, L) ∩ H1

unr(Qq, L)

and

loc†q :
Sel(Sq)†(L

†)

Sel(Sq)†(L†)
↪→ H1

ord(Qq, L
†)

H1
ord(Qq, L†) ∩ H1

unr(Qq, L†)
⊕ H1

unr(Qq, L
†)

H1
ord(Qq, L†) ∩ H1

unr(Qq, L†)

have total rank two. Hence the image in the ordinary part is zero for both maps, and dq < d1. Now,
Proposition 3.3.8 shows that rq = 1, and a generator c ∈ SelF(q)(Tf ) has ∂qc ̸= 0. In particular, c has
nonzero component in the ϵq eigenspace for τ , because it is easy to check that ∂qτc = ϵq∂qc.

Now consider the set P of admissible ultraprimes s ̸∈ SK with sign ϵs = ϵq such that locs c ̸= 0, which
is nonempty by Theorem 3.3.9. If, for any s ∈ P, dqs ≤ dq, then we may take Q = qs and complete our
induction step. For example, this will occur provided dq > 0, by Corollary 6.3.4 and the argument above;
so without loss of generality, dq = 0 and dqs = 1 for all s ∈ P. By definition, we therefore have non-torsion
elements ϕ(s) ∈ SelS(qs)(L) and ψ(s) ∈ SelS(qs)†(L

†) such that locs ϕ(s) and locs ψ(s) are nontrivial.
Choose any s1 ∈ P, and then, using Lemma 6.3.5, choose s2 ∈ P such that locs2 ϕ(s1) ̸= 0 but locs2 ψ(s1) =

0. By another application of Proposition 3.3.8, rqs1s2 = 1, and a generator c′ of SelF(qs1s2)(Tf ) again has
nonzero component in the ϵq eigenspace. We now use Corollary 6.3.4 to choose s3 ∈ P such that locs3 c

′ ̸= 0,
locs3 ϕ(s2) ̸= 0, and locs3 ψ(s1) ̸= 0. Note that rkO SelSs1s2s3 (q)(L) = 3 by another application of Proposition
2.6.13; up to torsion, ϕ(si) are generators. So to show that dqs1s2s3 = dq, it suffices to show that the images
of ϕ(si) form a rank-three subspace of

S :=

3⊕
i=1

H1
unr(Qsi , L) + H1

ord(Qsi , L)

H1
ord(Qsi , L)

under the localization

loc :
SelSs1s2s3 (q)(L)

SelSs1s2s3 (q)
(L)

↪→ S.

By pairing ϕ(si) and ψ(sj) for i ̸= j and applying Proposition 2.6.10, we see that locsi ϕ(sj) ̸= 0 if and only
if locsj ψ(si) ̸= 0. Hence, the images of ϕ(si) in S are of the form:

loc(ϕ(s1)) = (0, ∗, ·)
loc(ϕ(s2)) = (0, 0, ∗),
loc(ϕ(s3)) = (∗, ·, 0),

where ∗ is nonzero and · may or may not be zero. This completes the proof since it shows dqs1s2s3 = dq = 0
and we have rqs1s2s3 = 0 by Proposition 3.3.8. □

7. Proof of main results: anticyclotomic main conjectures

7.1. Notation.

7.1.1. Let f , N , ℘, O, E, π, Vf , Tf , and Wf be as in §1.5, and assume ℘ is ordinary. We also fix a quadratic
imaginary field K in which p splits and suppose that N admits a factorization N = N+N− as in (5.1.1).

For the next two sections, we depart from our earlier notation of (3.4.1), (5.2.1) and denote by Kac
∞ the

anticyclotomic Zp-extension of K. Also let Kcyc
∞ = KQ∞, where Q∞/Q is the cyclotomic Zp-extension,

and K∞ = Kcyc
∞ Kac

∞. For ? = ∅, cyc, ac, let Γ?
K = Gal(K?

∞/K), so that ΓK ∼= Γcyc
K × Γac

K . We continue to
reserve the notation Λ for the anticyclotomic Iwasawa algebra OJΓac

K K. Recall from (3.4.2) the free rank-one

direct summand Fil+v Tf for each v|p, and let grv Tf = Tf/Fil
+
v Tf . Also, for a topological O-module M , let

M∨ = HomO(M,E/O). Here and for the remainder of the text, the notation HomO refers to continuous
O-module homomorphisms.

For a finite set Σ of places of K, for ? = ∅, cyc, or ac, and for A the ring of integers of a finite extension
of Qp containing O, we will consider the Selmer group
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SelΣK?
∞,A(f) := ker

(
H1(K,Tf ⊗O AJΓ?

KK∨)→
∏
v ̸∈Σ
v∤p

H1(Iv, Tf ⊗O AJΓ?
KK∨)

×
∏
v|p

H1(Iv, grv Tf ⊗O AJΓ?
KK∨)

)
.

(80)

Note that the canonical isomorphism OJΓ?
KK∨ ⊗O Hom(A,O) ∼−→ AJΓ?

KK∨ induces an isomorphism

(81) SelΣK?
∞,O(f)⊗O Hom(A,O) ∼= SelΣK?

∞,A(f).

If Σ is finite set of places of Q, let ΣK be the set of places ofK lying above an element of Σ; we shall abbreviate
SelΣK?

∞,A(f) := SelΣK

K?
∞,A

(f). In the anticyclotomic case, we also have the Selmer group SelF∗
Λ
(Wf ), where

the Selmer structure is determined by (43) via the duality of (3.4.1). This Selmer group is related to (80)
by the following lemma.

Lemma 7.1.2. There is an exact sequence of Λ-modules:

0→ SelF∗
Λ
(Wf )

ι → Sel∅Kac
∞,O →

∏
ℓ|N−

H1
unr(Kℓ,Wf )⊗O HomO(Λ,O).

Here ι denotes twisting the Λ-action by the canonical involution defined by the inversion map on Γac
K .

Proof. Recall that Wf = (T∗f )
ι. We may therefore identify Wf with (Tf ⊗O Λ∨)ι via (20).

Then by local Poitou-Tate duality, we have

SelF∗
Λ
(Wf )

ι = ker

(
H1(K,Tf ⊗ Λ∨)→

∏
v∤N−p

H1(Iv, Tf ⊗ Λ∨)×
∏
v|N−

H1(Kv, Tf ⊗ Λ∨)

×
∏
v|p

H1(Kv,Fil
+
v Tf ⊗ Λ)∨

)
.

Since the pairing on Tf identifies grv Tf with HomO(Fil
+
v Tf ,O(1)), H1(Kv,Fil

+
v Tf ⊗ Λ)∨ is canonically

identified with H1(Kv, grv Tf ⊗ Λ∨) under local duality, so we conclude

SelF∗
Λ
(Wf )

ι = ker

(
Sel∅Kac

∞,O(f)→
∏
v|N−

H1
unr(Kv, Tf ⊗ Λ∨)×

∏
v|p

H1
unr(Kv, grv Tf ⊗ Λ∨)

)
.

If v|p, then H1
unr(Kv, grv Tf ⊗ Λ∨) = H1

unr(Kv, grv Tf ⊗O O∨) = 0; recall here that grv Tf is unramified
with Frobenius eigenvalue αp ̸= 1 in the notation of (5.2.3). Then the lemma follows from the identity
H1

unr(Kℓ, Tf ⊗Λ∨) = H1
unr(Kℓ,Wf )⊗O HomO(Λ,O) for all ℓ|N−, which holds because GKℓ

acts trivially on
Λ. □

Remark 7.1.3. By [58, Proposition A.2], the sequence in Lemma 7.1.2 is also exact on the right, but this
fact will not be needed for our results.

For the proof of Theorem 7.2.1, we will also need:

Lemma 7.1.4. For ? = ∅, cyc, or ac, T f is absolutely irreducible as a representation of GK?
∞
.

Proof. By Lemma 3.3.4, T f is absolutely irreducible as a representation of GK . In particular, for any finite
field k containing O/π, the pro-p-group Gal(K?

∞/K) acts without fixed points on the set of GK?
∞
-stable

k-lines of T f ⊗O/π k, so this set has cardinality a multiple of p. However, if GK?
∞

stabilizes more than two

lines in T f ⊗O/π k, then it acts by scalars, in which case it stabilizes a prime-to-p number of lines. So there

are no GK?
∞
-stable lines in T f ⊗O/π k for any k, which proves the lemma. □
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7.2. A result of Skinner-Urban. The following result is deduced from the proof the Iwasawa main con-
jecture for modular forms [71].

Theorem 7.2.1 (Skinner-Urban). Let K be an imaginary quadratic field of discriminant prime to Np in
which p splits. Assume that p ∤ 2N , that ℘ is ordinary for f , and that:

• the mod ℘ representation T f is absolutely irreducible as an O[GQ]-module;
• N = N+N−, where every factor of N+ is split in K and N− is the squarefree product of an odd

number of primes inert in K.

Then

charΛ SelF∗
Λ
(Wf )

∨ ⊂ (λ(1))2

as ideals of Λ, where λ(1) ∈ Λ is as in (5.2.5).

Proof. Let A be the ring of integers of a finite extension of Qp containing O, that is large enough to satisfy
the hypotheses of [71, Theorem 12.7]. As in the proof of loc. cit., there exists a Hida family f of ordinary
eigenforms of tame level N and trivial nebentypus χf , parametrized by an integral domain I that is faithfully
flat over A, such that fϕ = f for a certain specialization ϕ : I→ A. Let Σ be the set of rational primes dividing
Np disc(K), and let L Σ

f ,K ∈ IJΓKK be the three-variable p-adic L-function constructed in [71, Theorem 12.6].

(In the notation of loc. cit., we are taking ξ = 1, and (dist)f is satisfied because (T f |Ip)ss = χ⊕ 1, where χ
is the mod p cyclotomic character.)

Let 1cyc : AJΓcyc
K K → A be the specialization at the trivial character, which we also view as a map

AJΓKK → AJΓac
K K. Comparing the interpolation properties of L Σ

f ,K and λ(1) from [71, Theorem 12.6] and

[19, Theorem A], we conclude

(82) 1cyc ◦ ϕ(L Σ
f ,K)

.
= λ(1)2 ·

∏
v∈ΣK

v∤p

det
(
1− Frob−1v |T

Iv
f

)
·

Ωf,N−

Ω+
fαp

Ω−fαp

,

where Ω±fαp
and Ωf,N− are the periods appearing in [71, Theorem 12.7] and [19, Theorem A], respectively,

and
.
= denotes equality up to a unit in AJΓac

K K. (We write Ω±fαp
instead of Ω±f , as in [71], because these

periods are canonically associated to the p-stabilization of f , with Up-eigenvalue the number αp from (5.2.3).)
The ratio Ωf,N−/(Ω+

fαp
Ω−fαp

) is a nonzero element of O, and it is described more explicity in §8.3 below.

Let us expand

(83) L Σ
f ,K = α0 + α1(γ

ac − 1) + α2(γ
ac − 1)2 + · · · , αi ∈ IJΓcyc

K K,

where γac is a topological generator. For all height-one primes P ⊂ IJΓKK which are pullbacks of primes
Pcyc ⊂ IJΓcyc

K K, and for any i ≥ 0, (83) shows

(84) ordP L Σ
f ,K ≤ ordP αi.

Now consider the three-variable Selmer group SelΣK∞,A(f) defined in [71, §3.3.10];3 by the discussion in
[71, §3.3.11], using Lemma 7.1.4 and the fact that p splits in K to verify the hypotheses of [71, Proposition
3.7], we have

(85) charAJΓKK Sel
Σ
K∞,A(f)

∨ ⊂ ϕ
(
charIJΓKK Sel

Σ
K∞,A(f)

∨
)
.

The same argument as [71, Proposition 3.9] (replacing [71, Proposition 3.7] with its analogue for F = Kac
∞)

shows that

charAJΓac
K K Sel

Σ
Kac

∞,A(f)
∨ ⊂ 1cyc

(
charAJΓKK Sel

Σ
K∞,A(f)

∨
)
.

Combining this with (85) shows that

(86) charAJΓac
K K Sel

Σ
Kac

∞,A(f)
∨ ⊂ 1cyc ◦ ϕ

(
charAJΓKK Sel

Σ
K∞,A(f)

∨
)
.

3The subscript A does not appear in loc. cit., because a choice of coefficient ring has already been made implicit. We include

it here to be consistent with (80).
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If P ⊂ IJΓKK is a height-one prime not pulled back from a prime Pcyc ⊂ IJΓcyc
K K, then by [71, Proposition

13.6] and the discussion in §7.4 of op. cit., [71, Theorem 7.7] applies to show

(87) ordP L Σ
f ,K ≤ ordP charIJΓKK Sel

Σ
K,A(f)

∨.

Combining (84) and (87) shows that

(88) (αi) · charIJΓKK Sel
Σ
K∞,A(f)

∨ ⊂
(
L Σ

f ,K

)
for any of the αi in (83). Now we specialize both sides by 1cyc ◦ ϕ, using (86) and (82), to obtain

(89) 1cyc ◦ ϕ(αi) · charAJΓac
K K Sel

Σ
Kac

∞,A(f)
∨ ⊂ λ(1)2 ·

∏
v∈ΣK

v∤p

det
(
1− Frob−1v |T

Iv
f

)
·

Ωf,N−

Ω+
fαp

Ω−fαp

·AJΓac
K K.

Note that SelΣKac
∞,A(f) is already known to be AJΓac

K K-cotorsion by Proposition 5.2.8, Theorem 3.4.9, and

Lemma 7.1.2. Hence by [58, Proposition A.2], we have

charAJΓac
K K Sel

Σ
Kac

∞,A(f)
∨ = charAJΓac

K K Sel
∅
Kac

∞,A(f)
∨ ·

∏
v∈ΣK

v∤p

charAJΓac
K K

(
H1(Kv, Tf ⊗O AJΓac

K K∨)
H1

unr(Kv, Tf ⊗O AJΓac
K K∨)

)∨
.

By local Poitou-Tate duality, the local terms appearing above for v ∈ ΣK agree up to units with the ones in
(82), and it also easy to check that they are not identically zero. Hence from (89), we can cancel the local
factors to deduce

(90) 1cyc ◦ ϕ(αi) · charAJΓac
K K Sel

∅
Kac

∞,A(f)
∨ ⊂ λ(1)2 ·

Ωf,N−

Ω+
fαp

Ω−fαp

·AJΓac
K K

in AJΓac
K K. Finally, note that by (82) and the nonvanishing of λ(1) (see Proposition 5.2.8), we may choose

αi so that 1cyc ◦ ϕ(αi) ̸= 0. Inverting p, descending coefficients to O using (81), and applying Lemma 7.1.2,
we have

(91)
(
charΛ SelF∗

Λ
(Wf )

∨)ι ⊂ (λ(1))2

in Λ ⊗ Qp. The action of ι can be removed by [19, Theorem B]. To upgrade (91) to a divisibility in Λ, it
suffices to note that λ(1) ̸≡ 0 (mod ℘) by Remark 5.2.9.

□

Remark 7.2.2. (1) In §8 below, we will need the more refined observation that αi in (90) can be chosen
so that

ordπ 1cyc ◦ ϕ(αi) =
∑
ℓ|N−

ordπ(1− ℓ2) +
∑

ℓ| disc(K)

ordπ(1 + ℓ− aℓ) + ordπ
Ωf,N−

Ω+
fαp

Ω−fαp

.

(Here we extend ordπ to a valuation on A.) This follows from comparing the µ-invariants in (82):
the µ-invariant of λ(1) vanishes, as noted in Remark 5.2.9; the local Euler factor at v|N+ is nonzero
modulo π by a simple calculation, using that such primes are not infinitely split in Kac

∞; the local
Euler factor at ℓ|N− is (1− ℓ−2) = −ℓ−2(1− ℓ2) because Tf |GKℓ

is a ramified extension of the form(
χ ∗
0 1

)
; and the local Euler factor at ℓ|disc(K) is det(1 − Frob−1ℓ |Tf ) = ℓ−1(1 + ℓ − aℓ) because

Tf is unramified at ℓ and, if λ is the unique prime of K above ℓ, then Frobλ is trivial in Γac
K .

(2) In [71, Theorem 3.26], the divisibility (88) is established without the factor of αi, but under the
additional assumption that T f is ramified at all ℓ|N−. The presence of the extra factor αi means
that, in the generality of Theorem 7.2.1, (88) carries no information about specializations that do
not factor through 1cyc ◦ ϕ.
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7.3. The Heegner point main conjecture. In this subsection, we prove the following main theorem.

Theorem 7.3.1. Let f be a non-CM cuspidal eigenform of weight two and trivial character, new of level N ,
with ring of integers Of of its coefficient field. Let ℘ ⊂ Of be an ordinary prime of residue characteristic p,
and let K be an imaginary quadratic field. Suppose:

• N = N+N−, where every factor of N+ is split in K, and N− is a squarefree product of primes inert
in K.

• p ∤ 2N is split in K.
• The modulo ℘ representation T f associated to f is absolutely irreducible; if p = 3, assume that T f
is not induced from a character of GQ(

√
−3).

Then, for all {Q, ϵQ} ∈ Nν(N
−) such that κ(Q) ̸= 0, we have

rkΛ SelFΛ(Q)(Tf ) = crkΛ SelFΛ(Q)∗(Wf ) = 1

and

charΛ
((
SelFΛ(Q)∗(Wf )

∨)
tors

)
= charΛ

(
SelFΛ(Q)(Tf )

(κ(Q))

)2

in Λ⊗Qp.

For all {Q, ϵQ} ∈ Nν(N
−)+1 such that λ(Q) ̸= 0,

rkΛ SelFΛ(Q)(Tf ) = crkΛ SelFΛ(Q)∗(Wf ) = 0

and

charΛ
(
SelFΛ(Q)∗(Wf )

∨) = (λ(Q))2 in Λ⊗Qp.
Under condition (sclr), the equalities hold in Λ.

Proof. Let (F ,S) be the Selmer structure on Tf defined by (44) for P = (T ).4 Now apply Proposition 6.3.6
to (F ,S) to obtain a pair {Q, ϵQ} ∈ N, represented by a sequence {Qn, ϵQn

} of weakly admissible pairs. Let
gn be the resulting sequence of newforms of level NQn obtained from Theorem 6.2.4; gn may only be defined
for F-many n. Without loss of generality, we assume that all qn|Qn are inert in K.

Step 1. {Q, ϵQ} ∈ Nν(N
−)+1.

Proof. By Proposition 3.4.5 and Nakayama’s Lemma, SelF(Q)(Tf ) = 0 implies SelFΛ(Q)(Tf ) = 0, which by
Theorem 3.4.9 and the nontriviality of (κ,λ) implies the claim. □

Step 2. For any fixed j,

(λ(Q)) ≡ (λgn(1)) (mod πj , T j)

for F-many n.

Proof. We use the notations of §4.6 and §5.2. By definition, the image of λ(Q) modulo (πj , T j) is a map
Gal(Kj/K) → O obtained, for F-many n, by evaluating a map Fn : MQn

→ O(f)/πj of TQn -modules
at certain CM points, where O(f) is defined to be O with TQn -module structure determined by f as in
Definition 4.6.2. Recall that the map Fn is chosen to be surjective after O-linearization and to factor
through O(f)/πj+C for the constant C of Lemma 4.6.5, and that these properties uniquely determine Fn
up to a scalar in O×. When gn has a sufficiently deep congruence to f , O(gn)/πj+C = O(f)/πj+C as
TQn -modules, and the composite Gn : MQn

→ O(gn) → O(gn)/πj therefore induces a unit multiple of Fn,
where Gn : MQn → O(gn) is the quaternionic modular form associated to gn by the Jacquet-Langlands
correspondence. (Here O(gn) is O with TQn -module structure determined by the Hecke eigenvalues of gn.)
But by Remark 5.1.3, Gn is the very map whose evaluation at CM points is used to define λgn(1), and the
claim follows. □

Fix j, and restrict to those F-many n such that all qn|Qn are j-admissible and inert in K. Then
H1(Kqn ,Wf [π

j ]) = H1(Kqn , Tj)⊗O Hom(Λ,O) for all qn|Qn, and we let

H1
ord(Kqn ,Wf [π

j ]) := H1
ord(Kqn , Tj)⊗O Hom(Λ,O)

4It is easy to check that this is the same Selmer structure as defined in (72) with m = 1, but we omit the proof since it is

not needed for the main results.
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in the notation of (60). Define

SelFΛ(Qn)∗(Wf [π
j ]) = ker

(
H1(K,Wf [π

j ])→
∏

v∤NpQn∞

H1(Iv,Wf )×
∏
v|N

H1(Kv,Wf )

×
∏
v|Qn

H1(Kqn ,Wf [π
j ])

H1
ord(Kqn ,Wf [πj ])

×
∏
v|p

H1(Kv, grvWf )

)
.

(92)

Here, for v|p, grvWf = (grv Tf ⊗ Λ∨)ι, which is a direct summand of Wf as a Λ[GKv
]-module. Also, by

[65, Corollary B.3.4], (92) coincides with

ker

(
H1(K,Wf [π

j ])→
∏

v∤N−pQn∞

H1(Iv,Wf )×
∏
v|N−

H1(Kv,Wf )

×
∏
v|Qn

H1(Kqn ,Wf [π
j ])

H1
ord(Kqn ,Wf [πj ])

×
∏
v|p

H1(Kv, grvWf )

)
.

(93)

Step 3. For any fixed j, SelFΛ(Qn)∗(Wf [π
j ]) and SelF∗

gn,Λ
(Wgn [π

j ]) are isomorphic as Λ-modules for F-
many n.

Here Fgn,Λ refers to the Selmer structure for Tgn defined the same way as (43).

Proof. For F-many n, Wf [π
j ] is isomorphic to Wgn [π

j ] as a Λ[GK ]-module, so it suffices to compare the
local conditions at all v|NpQn. For v|N , using the first definition (92), we must compare the kernels

ker
(
H1(Kv,Wf [π

j ])→ H1(Kv,Wf )
)
,

ker
(
H1(Kv,Wgn [π

j ])→ H1(Kv,Wgn)
)
.

(94)

Suppose first that T Ivf ̸= 0; then since Tf and Tgn have the same conductor at v, T Ivgn ̸= 0 as well, so both

Tf |GKv
and Tgn |GKv

are Steinberg representations twisted by the same unramified character. One readily

checks that, for j sufficiently large depending on Tf |GKv
, Tf ≡ Tgn (mod πj) implies Tf |GKv

∼= Tgn |GKv
; then

Wf |GKv
∼= Wgn |GKv

, so the kernels (94) clearly coincide. On the other hand, if T Ivf = 0, then W
GKv

f ⊂WIv
f

is annihilated by πM for some M ≥ 0. The same is then true for W
GKv
gn for F-many n. Since the kernels

in (94) are identified with W
GKv

f /πjW
GKv

f and W
GKv
gn /πjW

GKv
gn , respectively, these kernels will coincide

provided Wf [π
j+M ] ∼= Wgn [π

j+M ], which occurs for F-many n.
For places v|p, it suffices to show that the kernels

ker
(
H1(Kv, grvWf [π

j ])→ H1(Kv, grvWf )
)

(95)

ker
(
H1(Kv, grvWgn [π

j ])→ H1(Kv, grvWgn)
)

(96)

coincide. Note that (95) is identified with (grvWf )
GKv /πj(grvWf )

GKv . If we put grvWf = grvWf [T ] ∼=
(grv Tf )

∨, this is just (grvWf )
GKv /πjW

GKv

f since (grvWf )
Iv = grvWf , and likewise for (96). Since

Frobv acts on grvWf by αp ̸= 1 in the notation of (5.2.3), (grvWf )
GKv is finite and hence identified with

(grvWgn)
GKv for F-many n. So the same reasoning as for v|N shows that (95), (96) coincide for F-many n.

Finally, for qn|Qn, it suffices to compare the local condition

(97) ker
(
H1(Kqn ,Wgn [π

j ])→ H1(Kqn ,Wgn)
)

with H1
ord(Kqn ,Wf [π

j ]) when qn is j-admissible. Let {e1, e2} be a basis for Tgn with respect to which

Tgn |GQqn
has the form

(
ϵχ ∗
0 ϵ

)
, with ∗ ramified and ϵ the unramified local character Frobqn 7→ ϵQn(qn).

Then a direct calculation shows that the kernel (97) is the image of H1(Kqn , e1⊗Λ∨[πj ]), which is the same
as the ordinary local condition for Wf under the isomorphism Wf [π

j ] ∼= Wgn [π
j ]. □

Step 4. For any fixed j,

FittΛ SelFΛ(Q)∗(Wf )
∨ ≡ FittΛ SelF∗

gn,Λ
(Wgn)

∨ (mod πj , T j)

for F-many n.
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Proof. Since Fitting ideals are stable under base change, it suffices to show

(98) FittΛ SelFΛ(Q)∗(Wf )[π
j , T j ]∨ = FittΛ SelF∗

gn,Λ
(Wgn)[π

j , T j ]∨.

Recall that T f has no GK-fixed points by Lemma 3.3.4. Hence Lemma 2.4.12 applied to the short exact

sequences 0→Wf [π
j ]→Wf

πj

−→Wf → 0 and 0→Wf [T
j , πj ]→Wf [π

j ]
T j

−−→Wf [π
j ]→ 0 shows that

SelFΛ(Q)∗(Wf )[π
j , T j ] = SelFΛ(Q)∗(Wf [π

j ])[T j ] = SelFΛ(Q)∗(Wf [π
j , T j ]),

and likewise for gn. So it suffices to show that

(99) FittΛ SelFΛ(Q)∗(Wf [π
j , T j ])∨ = FittΛ SelF∗

gn,Λ
(Wgn [π

j ])[T j ]∨

for F-many n. Unraveling the definition of the patched Selmer group, and again using Lemma 2.4.12, we
find that

SelFΛ(Q)∗(Wf [π
j , T j ]) = U

({
SelFΛ(Qn)∗(Wf [π

j , T j ])
}
n∈N

)
= U

({
SelFΛ(Qn)∗(Wf [π

j ])[T j ])
}
n∈N

)
,

where the Selmer structure FΛ(Qn)∗ for Wf [π
j , T j ] is induced by the local conditions in (93), so Step 3

implies (99).
□

Step 5. Conclusion of the proof.

For F-many n, N−Qn is the squarefree product of an odd number of primes inert in K. By Theorem
7.2.1, for such n we have:

(100) FittΛ SelF∗
gn,Λ

(Wgn)
∨ ⊂ (λgn(1))

2 ⊂ Λ.

By Steps 2 and 4, (100) implies that

(101) FittΛ SelFΛ(Q)∗(Wf )
∨ ⊂ (λ(Q))2 ⊂ Λ.

Since the characteristic ideal of any Λ-module is the smallest divisorial ideal containing the Fitting ideal,
(101) implies

(102) charΛ SelFΛ(Q)∗(Wf )
∨ ⊂ (λ(Q))2 ⊂ Λ.

Combining with Theorem 3.4.9 completes the proof.
□

Corollary 7.3.2. Under the hypotheses of Theorem 7.3.1, if additionally ν(N−) is even, then the Heegner
point main conjecture holds for f in Λ⊗Qp; that is, there is a pseudo-isomorphism of Λ-modules:

SelF∗
Λ
(Wf )

∨ ≈ Λ⊕M ⊕M
for some torsion Λ-module M , and

charΛ

(
SelFΛ

(Tf )

(κ(1))

)
= charΛ(M)

as ideals of Λ⊗Qp. Under condition (sclr), the equality holds in Λ.

Corollary 7.3.3. Under the hypotheses of Theorem 7.3.1, if additionally ν(N−) is odd, then the anticyclo-
tomic main conjecture holds for f in Λ⊗Qp; that is, there is a pseudo-isomorphism of Λ-modules:

SelF∗
Λ
(Wf )

∨ ≈M ⊕M
for some torsion Λ-module M , and

(λ(1)) = charΛ(M)

as ideals of Λ⊗Qp. Under condition (sclr), the equality holds in Λ.

Corollary 7.3.4. Under the hypotheses of Theorem 7.3.1, the bipartite Euler system

(κ(1, ·), λ(1, ·))
of Remark 5.3.14(1) is nontrivial.
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Proof. Keep the notation of the proof of Theorem 7.3.1. By Proposition 3.3.6, SelF(Q)(Wf ) is finite. Since

H1(KQ∪S/K,Wf )[T ] = H1(KQ∪S/K,Wf ) by Lemmas 2.4.12 and 3.3.4, the cokernel of SelF(Q)(Wf ) →
SelFΛ(Q)∗(Wf )[T ] injects into
(103)∏

v∈S∪Q

ker

(
H1(Kv,Wf )

H1
F(Q)(Kv,Wf )

→ H1(Kv,Wf )

H1
FΛ(Q)∗(Kv,Wf )

)
=

∏
v∈S∪Q

ker
(
H1
F(Q)(Kv, Tf )

∨ → H1
FΛ(Q)(Kv,Tf )

∨
)
.

We claim (103) is finite: indeed, the natural map H1
FΛ(Q)(Kv,Tf )→ H1

F(Q)(Kv, Tf ) is surjective for v = q ∈ Q

or for v = v with v|N− by the discussion in the proof of Proposition 3.4.5, and has finite cokernel for all
other v ∈ S by [37, Lemma 2.2.7]. Hence SelFΛ(Q)∗(Wf )[T ] is finite as well, which implies

charΛ SelFΛ(Q)∗(Wf ) ̸⊂ (T ).

Theorem 7.3.1 then shows (λ(Q)) ̸⊂ (T ), hence λ(1,Q) ̸= 0 by Remark 5.3.14(2).
□

8. Proof of main results: Kolyvagin’s conjecture and p-converse theorem

8.1. Nonvanishing of (κ(1, ·), λ(1, ·)) and p-converse theorem. In this section, we shall prove the fol-
lowing theorem:

Theorem 8.1.1. Let f be a non-CM cuspidal eigenform of weight two and trivial character, new of level N ,
with ring of integers Of of its coefficient field. Let ℘ ⊂ Of be a prime, and let K be an imaginary quadratic
field. Assume:

• N = N+N−, where every factor of N+ is split in K, and N− is a squarefree product of an even
number of primes inert in K.

• The residue characteristic p of ℘ does not divide 2N disc(K).
• The modulo ℘ representation T f associated to f is absolutely irreducible; and if p = 3, T f is not

induced from a character of GQ(
√
−3).

• If p is inert in K, then there exists some prime ℓ0||N .
• If ap is not a ℘-adic unit, then there exist primes ℓi||N for i = 1, 2 (possibly with ℓ1 = ℓ2) such that

T f |GQℓi
is ramified for i = 1, 2 and T

GQℓ1

f = (T f ⊗χK)
GQℓ2 = 0, where χK is the quadratic character

of GQ associated to K.

Then (κ(1, ·), λ(1, ·)) is nontrivial.

8.1.2. If p is split in K and ℘ is ordinary, then Theorem 8.1.1 is simply Corollary 7.3.4. In the inert or non-
ordinary cases, the anticyclotomic main conjecture is currently not known in full generality; however, since
all we are interested in is specialization at the trivial character, we are able to nonetheless prove Theorem
8.1.1 by combining cyclotomic main conjectures for quadratic twists of f .

Corollary 8.1.3. Let f , ℘, and K be as in Theorem 8.1.1. Then

rkO SelF (Tf ) = 1 ⇐⇒ L′(f/K, 1) ̸= 0.

Here, (F ,S) is the Selmer structure for the GK-module Tf defined by (72) with m = 1.

Proof. If ν(N−) is odd then rkO SelF (Tf ) is even by Theorem 3.3.14 and Theorem 8.1.1, and L′(f/K, 1) = 0
by root number considerations.

So without loss of generality, we may assume ν(N−) is even. Then by Remark 5.1.3, κ(1, 1) ∈ SelF (Tf ) is
the Kummer image of the classical Heegner point yK ∈ Af (K); in particular, by the Gross-Zagier Theorem
of [79, Theorem 1.2.1], κ(1, 1) ̸= 0 if and only if L′(f/K, 1) ̸= 0. On the other hand, κ(1, 1) ̸= 0 if and only
if rkO SelF (Tf ) = 1 by Theorem 3.3.14 and Theorem 8.1.1, and this gives the corollary. □

Before completing the proof of Theorem 8.1.1 in §8.6 below, we first give another application, to the
nonvanishing of Kolyvagin classes.

8.2. Kolyvagin’s conjecture.



68 NAOMI SWEETING

8.2.1. Assume the condition (disc) from (5.3.1).
For any m ∈ K and any {Q, ϵQ} ∈ NS∪m, define the m-transverse Selmer ranks

(104) r±m(Q) = rkO SelF(m,Q)(Tf )
±,

where ± refers to the τ eigenvalue ±1 for a generator τ ∈ Gal(K/Q); note that this is well-defined because
the local conditions defining F(m,Q) are all τ -stable. When Q = 1, we simply write r±m . When m = 1, the
r±1 are the classical Selmer ranks of f .

Proposition 8.2.2. Fix m ∈ K, and let l ̸∈ m be Kolyvagin-admissible. Then for all {Q, ϵQ} ∈ NS∪ml, and
for each δ ∈ {±}, either:

• rδml(Q) = rδm(Q)− 1, locδl (SelF(m,Q)(Tf ))
δ ̸= 0, and ∂δl (SelF(ml,Q)(Tf ))

δ = 0.

• rδml(Q) = rδm(Q) + 1, locδl (SelF(m,Q)(Tf ))
δ = 0, and ∂δl (SelF(ml,Q)(Tf ))

δ ̸= 0.

Proof. If F l(m,Q) = F(ml,Q) + F(m,Q) and Fl(m,Q) = F(ml,Q) ∩ F(m,Q), then we have a τ -equivariant
exact sequence

0→ SelFl(m,Q)(Tf )→ SelF l(m,Q)(Tf )→ H1(Kl, Tf ),

where the image of the final arrow has O-rank two and is self-annihilating under the local Tate pairing by
Propositions 2.6.10 and 2.6.13. Since the Tate pairing of two classes with opposite τ eigenvalues is necessarily
zero, the proposition follows as in the proof of Proposition 3.3.8. □

Lemma 8.2.3. Suppose given elements c± ∈ H1(K,Tf )
±. Then there exists a Kolyvagin-admissible ultra-

prime l such that
c± ̸= 0 =⇒ loc±l c

± ̸= 0.

If (sclr) holds for Tf , then the same is true for elements c± ∈ H1(K,Tf/π
j).

Proof. The proof of Theorem 3.3.9 applies almost verbatim, except that in the proof of Lemma 3.3.11 we
will have two homomorphisms

ϕ± ∈ HomGK
(GL, T f )

±,

and we must choose g ∈ GL so that ϕϵ(g) has nonzero component in the τ eigenspace of sign ϵ for both
choices ϵ (unless ϕϵ is itself 0); for each ϵ, this condition is satisfied outside a proper subgroup of GL, so
indeed there exists g ∈ GL such that both conditions are satisfied. With this modification, the rest of the
proof applies unchanged. □

Lemma 8.2.4. Suppose that the bipartite Euler system (κ(1, ·), λ(1, ·)) of (5.3.12) is nontrivial. Then, for
all m ∈ K, (κ(m, ·), λ(m, ·)) is nontrivial.

In particular, for all m ∈ K and {Q, ϵQ} ∈ NS∪m:

rkO SelF(m,Q)(Tf ) ≡ ν(N−) + 1 (mod 2);

and

rkO SelF(m,Q)(Tf ) ≤ 1 ⇐⇒

{
κ(m,Q) ̸= 0, ν(N−) + |Q| even
λ(m,Q) ̸= 0, ν(N−) + |Q| odd.

Proof. Recall that, for fixed m, the pair (κ(m, ·), λ(m, ·)) forms a bipartite Euler system with parity ν(N−)
for the self-dual Selmer structure (F(m),S∪m) on Tf . We will prove that, for any ml ∈ K, if (κ(m, ·), λ(m, ·))
is nontrivial then so is (κ(ml, ·), λ(ml, ·)); this suffices by Theorem 3.3.14.

Choose {Q, ϵQ} ∈ N
ν(N−)+1
S∪ml such that SelF(m,Q)(Tf ) = 0; this is possible by Corollary 3.3.13. By Propo-

sition 8.2.2, we may choose a nonzero
d ∈ SelF(ml,Q)(Tf ).

Applying Theorem 3.3.9 to d, let q be admissible with sign ϵq such that q ̸∈ Q ∪ ml and locq d ̸= 0. By
Proposition 3.3.8 for the Selmer structures F(m,Qq) and F(m,Q),
(105) rkO SelF(m,Qq)(Tf ) = 1.

Hence, by hypothesis, κ(m,Qq) generates SelF(m,Qq)(Tf ) up to finite index, and in particular ∂qκ(m,Qq) ̸= 0.
Now, taking the sum of local pairings and using Proposition 2.6.10,

(106) 0 =
∑
v

⟨d, κ(m,Qq)⟩v = ⟨d, κ(m,Qq)⟩l + ⟨d, κ(m,Qq)⟩q.
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Since the latter pairing is nonzero by construction, the former is as well, and so Resl κ(m,Qq) ̸= 0. By
Proposition 5.3.13(1), κ(ml,Qq) ̸= 0 as well, which completes the proof. □

8.2.5. For any m ∈ K, define the vanishing order of the Kolyvagin system at m:

(107) νm =

{
min {|n| : mn ∈ K, λ(mn, 1) ̸= 0} , ν(N−) odd,

min {|n| : mn ∈ K, κ(mn, 1) ̸= 0} , ν(N−) even.

Theorem 8.2.6. Assume (disc). If (κ(1, ·), λ(1, ·)) is nontrivial, and in particular under the hypotheses of
Theorem 8.1.1, we have for all m ∈ K:

• If ν(N−) is odd, then νm = max {r+m , r−m} and ϵf = (−1)r±m +|m|.

• If ν(N−) is even, then νm = max {r+m , r−m}− 1 and ϵf · (−1)|m|+νm+1 is the τ -eigenvalue of the larger
eigenspace.

Proof. For ease of notation, let δ = 0 if ν(N−) is odd, and δ = 1 if ν(N−) is even. Suppose given mn ∈ K
such that λ(mn, 1) or κ(mn, 1) is nontrivial; then

rkO SelF(mn)(Tf ) = δ

by Lemma 8.2.4. In particular, the kernel of the localization map

SelF(m)(Tf )
± →

⊕
l∈n

H1
unr(Kl, Tf )

±

has rank at most δ. It follows that max {r+m , r−m} − δ ≤ νm. We now show that equality holds by induction
on max {r+m , r−m}. If max {r+m , r−m} ≤ δ, then Lemma 8.2.4 implies νm = 0 = max {r+m , r−m} − δ.

Now suppose that max {r+m , r−m} > δ, and let ϵ be the sign of the larger value of r±m (choose either if
they agree). If r−ϵm > 0, then by Lemma 8.2.3 and Proposition 8.2.2, there exists l ∈ K not in m such that
r±ml = r±m − 1. In this case, max

{
r+ml, r

−
ml

}
= max {r−m , r−m} − 1. Hence (by the inductive hypothesis)

νm ≤ νml + 1 = max
{
r+ml, r

−
ml

}
− δ + 1 = max

{
r+m , r

−
m

}
− δ.

Since we have already shown the opposite equality, this completes the inductive step under the assumption
r−ϵm > 0.

If on the other hand r−ϵm = 0, then rϵm ≥ δ + 2, since r+m + r−m ≡ δ (mod 2) and we have assumed rϵm > δ.
Then by Lemma 8.2.3 and Proposition 8.2.2 again, we may choose l ∈ K such that rϵml = rϵm − 1, while
necessarily r−ϵml = 1 ≤ δ + 1 ≤ rϵml. Hence max

{
r+ml, r

−
ml

}
= rϵm − 1, and the same argument as above again

completes the inductive step.
Finally, we consider the parity assertions of the theorem. If ν(N−) is even, i.e. if δ = 1, then the Selmer

ranks r±m are always distinct by Lemma 8.2.4. As we pass from m to ml in the inductive step above, the
sign of the larger eigenspace is preserved, and νm + |m| = νml + |ml|. It therefore suffices to show that
ϵf · (−1)|m|+νm+1 is the eigenvalue of the larger τ eigenspace when νm = 0, i.e. when κ(m, 1) ̸= 0. In this case
it follows from Proposition 5.3.9.

When ν(N−) is odd, then whenever λ(mn) ̸= 0, Proposition 5.3.9 implies that ϵf = (−1)|mn|. Hence

ϵf = (−1)νm+|m| = (−1)max{r+m ,r−m }+|m|,
which proves the claim since r±m have the same parity when ν(N−) is odd.

□

8.2.7. It remains to relate the nonvanishing of the patched Kolyvagin classes to the nonvanishing of their
unpatched analogues. For this, recall the notation of Definition 5.3.4, and let m be a squarefree product of
primes inert in K. If ν(N−) is even, let c(m) ∈ H1(K,Tf/Im) be the class cv℘(Im)(m, 1); if ν(N

−) is odd,
let λ(m) ∈ O/Im be the element λv℘(Im)(m, 1).

The classical vanishing order, generalizing Kolyvagin’s original definition, is defined as:

(108) νclassical :=

{
min {ν(m) : λ(m) ̸= 0} , ν(N−) odd,

min {ν(m) : c(m) ̸= 0} , ν(N−) even.

Corollary 8.2.8. Assume (disc). If (κ(1, ·), λ(1, ·)) is nontrivial, and in particular under the hypotheses of
Theorem 8.1.1, νclassical is finite. If (sclr) holds for f , then νclassical = ν1, and in particular:
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• If ν(N−) is odd, then νclassical = max
{
r+1 , r

−
1

}
and r±1 ≡

ϵf−1
2 (mod 2).

• If ν(N−) is even, then νclassical = max
{
r+1 , r

−
1

}
−1 and ϵf · (−1)1+νclassical is the larger τ eigenspace.

Proof. The finiteness of the classical vanishing order is clear by construction: if a patched Kolyvagin class
or element is nontrivial, then infinitely many of the classical Kolyvagin classes or elements defining it are
nontrivial. This also shows νclassical ≤ ν1. We will check that equality holds under the condition (sclr).
Suppose first ν(N−) is even. Given some nonzero cj(m, 1), one may show as in [50, p. 309] that there
exists a sequence of squarefree products mn of primes inert in K with v℘(Imn

) → ∞, ν(mn) = ν(m), and
cj(mn, 1) ̸= 0. (In [50], additional hypotheses are put on the image of the Galois action, but the argument
goes through under (sclr) by arguing as in Lemma 8.2.3.) In particular, the sequence (mn)n∈N defines a
nonzero κ(m, 1) witnessing ν1 ≤ νclassical.

Now suppose that ν(N−) is odd, and that λj(m, 1) ̸= 0 where ν(m) = νclassical. We choose an auxiliary
ultraprime q ∈ MQ (with either sign ϵq) such that Frobq ∈ GQ is a complex conjugation, represented by a
sequence (qn)n∈N where without loss of generality each qn is inert in K and j-admissible with sign ϵq. By
the non-patched analogue of Proposition 5.3.13(2), we have cj(m, qn) ̸= 0 for F-many n. Then once again,
the argument of [50, p. 309] shows that there exists a sequence of squarefree products mn of primes inert
in K with qn ∤ mn, ν(mn) = ν(m), v℘(Imn) → ∞, and cj(mn, qn) ̸= 0 for F-many n. We therefore obtain
a nonzero patched class κ(m, q) with |m| = νclassical. By Lemma 2.4.13, locq SelF(m,1)(Tf ) = 0. Hence by
Proposition 3.3.8, we have ∂qκ(m, q) ̸= 0, so λ(m, 1) ̸= 0 by Proposition 5.3.13(2). This shows ν1 ≤ νclassical
and completes the proof.

□

The rest of §8 is dedicated to proving Theorem 8.1.1, culminating in §8.6 below.

8.3. Comparing periods.

8.3.1. Let f , ℘, N , O, E, π, Vf , Tf , and Wf be as in §1.5. For any factorization N = N1N2 with N2

squarefree and coprime to N1, let m ⊂ TN1,N2 be the maximal ideal associated to f and ℘; recall from
(4.2.1) that TN1,N2 is the N2-new quotient of the full cuspidal Hecke algebra of level N .

8.3.2. There are two natural periods that appear when studying special values of L-functions for f , cf.
the discussions in [58, §2] and [76, §2]. For any factorization N = N1N2, where N1 and N2 are coprime,
let πf : TN1,N2,m ⊗Zp O → O be the map defined by the Hecke eigenvalues of f . The congruence ideal
ηf (N1, N2) ⊂ O is defined as

(109) πf (AnnTN1,N2,m⊗ZpO(kerπf )).

If ηf (N1, N2)0 ∈ Of,(℘) generates ηf (N1, N2), then Hida’s canonical period, well-defined up to a ℘-adic unit,
is given by:

(110) Ωcanf =
(f, f)

ηf (N, 1)0
,

where (f, f) is the Peterson inner product. Also define Ω±f to be the periods of [71, §3.3.3] for f , and recall

the periods Ω±fαp
from the proof of Theorem 7.2.1 when ℘ is ordinary. Then Ωcanf is related to Ω±fαp

and Ω±f
by the following:

Proposition 8.3.3. We have Ωcanf = Ω+
f Ω
−
f up to ℘-adic units. If ℘ is ordinary, then in addition Ωcanf =

Ω+
fαp

Ω−fαp
up to ℘-adic units.

Proof. The first claim follows from [76, Remark 2.7]5 or [72, Lemma 9.5], whose proof does not need the
assumption in op. cit. that p||N . Now suppose ℘ is ordinary. By [71, Lemma 12.1] combined with [36,
(4.7)], we have

Ω+
fαp

Ω−fαp
= (1− α2

p)
(f, f)

ηf (Np, 1)

up to ℘-adic units, where ηf (Np, 1) is the congruence ideal for fαp viewed as an eigenform of level Γ0(Np).

The argument in [25, p. 388] shows that ηf (Np, 1) = (a2p − (p + 1)2)ηf (N, 1). On the other hand, since

5To check that the two definitions of Ωcan
f in [76, Remark 2.7] coincide, one can argue using [36, Theorem 6.6].
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αp+p/αp = ap, we have a
2
p− (p+1)2 = (α2

p−1)(1−p2/α2
p), where the second factor is a ℘-adic unit. Hence

Ω+
fαp

Ω−fαp
= Ωcanf up to ℘-adic units, which completes the proof. □

8.3.4. If N = N1N2 where N2 is squarefree with an odd number of prime factors, then the f -isotypic part
of the Hecke module Of [XN1,N2 ](℘) is free of rank one over Of,(℘); let φf,N2 be a generator. For each
x ∈ XN1,N2

, recall that x is an isomorphism class of oriented Eichler orders; let Aut(x) be the automorphism
group of any representative (automorphisms in the sense of (4.4.1)) and set e(x) := #Aut(x). Let ⟨·, ·⟩ be
the diagonal pairing on Z[XN1,N2 ] with weights e(x), and extend ⟨·, ·⟩ Of -linearly to a pairing on Of [XN1,N2 ].
Gross’s period is defined (up to ℘-adic units) by:

(111) Ωf,N2
=

(f, f)

⟨φf,N2 , φf,N2⟩
.

This period is the same one from [19, Theorem A] that appeared in the proof of Theorem 7.2.1, and occurs
naturally in anticyclotomic Iwasawa theory due to Gross’s special value formula. In particular, for the central
values, we have:

Proposition 8.3.5. Let K be an imaginary quadratic field of discriminant prime to Np, and suppose that
N = N1N2 where all factors of N1 are split in K, and N2 is a squarefree product of an odd number of primes
inert in K. Then L(f/K, 1) ∈ Frac(Of ) · Ωf,N2

and the element λ(1) ∈ O constructed in (5.3.12) satisfies:

(112)
L(f/K, 1)

Ωf,N2

= λ(1)2

up to ℘-adic units.

Proof. This is well known, but details can be found in [12, Theorems 1.2, 1.8]. □

8.3.6. For any ℓ||N , let cf (ℓ) be the maximal exponent e such that Tf/π
e is unramified as a representation

of GQℓ
.

Theorem 8.3.7. If N = N1N2 where N2 is the squarefree product of an odd number of primes not dividing
N1, and if ℓ0||N is any prime, then∑

ℓ|N2

cf (ℓ)− (ν(N2 + 2)cf (ℓ0)) ≤ ord℘
Ωf,N2

Ωcanf
≤
∑
ℓ|N2

cf (ℓ) + 2cf (ℓ0).

Proof. By definition, we have
Ωf,N2

Ωcanf
=

ηf (N, 1)0
⟨φf,N2

, φf,N2
⟩
,

so the theorem follows from Theorem A.3.6 of the appendix. □

8.4. Ordinary cyclotomic Iwasawa theory.

8.4.1. In this subsection, we assume ℘ is a prime of good ordinary reduction for f . Let Q∞/Q be the
cyclotomic Zp-extension, and let ΓQ∞ = Gal(Q∞/Q). Let Fil+p Tf ⊂ Tf be the unique GQp -stable line on

which Ip acts by the cyclotomic character, and let grp Tf = Tf/Fil
+
p Tf . For the ring of integers A of a finite

extension of Qp containing O and a finite set Σ of finite places of Q, we consider the cyclotomic Selmer
group, analogous to (80):

SelΣQ∞,A(f) := ker

(
H1(Q, Tf ⊗O AJΓQ∞K∨)→

∏
ℓ ̸∈Σ∪{p}

H1(Iℓ, Tf ⊗O AJΓQ∞K∨)

×H1(Ip, grp Tf ⊗O AJΓQ∞K∨)
)
.

(113)

We shall abbreviate ΛQ∞ := OJΓQ∞K. Let LΣ
p (Q∞, f) ∈ ΛQ∞ be the Σ-imprimitive cyclotomic p-adic L-

function denoted LΣ
f,ψ in the notation of [71, §3.4.4], with ψ = 1.

Kato has proven one direction of the main conjecture in this setting [40, Theorem 17.4]:
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Theorem 8.4.2 (Kato). Let f be a modular form of weight two, level N , and trivial character, and ℘ ⊂ Of
a prime of good ordinary reduction with odd residue characteristic. Then Sel∅Q∞,O(f) is ΛQ∞-cotorsion and

Lp(Q∞, f) ⊂ charΛQ∞
Sel∅Q∞,O(f)

∨

in ΛQ∞ ⊗Qp.

Under stronger conditions, Kato additionally proved that the inclusion holds in ΛQ∞ . For the opposite
direction of the main conjecture, we deduce the following result from the work of Skinner-Urban [71]. In
the proof, we shall freely use the notations from the proof of Theorem 7.2.1. In particular, for any A, let
1cyc : AJΓQ∞K→ A be the specialization at the trivial character, which is consistent with our earlier notation
since ΓQ∞ is identified with Γcyc

K for any quadratic imaginary field K.

Theorem 8.4.3. Let K be an imaginary quadratic field of discriminant prime to Np in which p splits.
Assume that ℘ is ordinary for f , that p ∤ 2N , and that:

• the mod ℘ representation T f is absolutely irreducible as an O[GQ]-module;
• N = N1N2, where every factor of N1 is split in K and N2 is the squarefree product of an odd number

of primes inert in K.

Then there exists a finite extension of Qp containing O, with ring of integers A, and an element α ∈ AJΓQ∞K
such that

ordπ 1cyc(α) = ordπ
Ωf,N2

Ωcanf
+
∑
ℓ|N2

ordπ(1− ℓ2) +
∑

ℓ| disc(K)

ordπ(1 + ℓ− aℓ)

and

(α) · charΛQ∞
Sel∅Q∞,O(f)

∨ · charΛQ∞
Sel∅Q∞,O(f ⊗ χK)∨ ⊂ (Lp(Q∞, f))(Lp(Q∞, f ⊗ χK))

in AJΓQ∞K.

Proof. Let Σ be the set of rational primes dividing Npdisc(K), and recall the divisibility established in the
course of the proof of Theorem 7.2.1 for the characteristic ideal of the 3-variable Selmer group:

(114) (αi) · charIJΓKK Sel
Σ
K∞,A(f)

∨ ⊂
(
L Σ

f ,K

)
in IJΓKK, where, by Remark 7.2.2(1) and Proposition 8.3.3, αi ∈ I[Γcyc

K ] may be chosen such that

ordπ 1cyc ◦ ϕ(αi) = ordπ
(
Ωf,N2

/Ωcanf
)
+
∑
ℓ|N2

ordπ(1− ℓ2) +
∑

ℓ| disc(K)

ordπ(1 + ℓ− aℓ).

Let α := ϕ(αi) for such a choice of αi. Combining (114) with (85) we have a divisibility

(α) · charAJΓK∞K Sel
Σ
K∞,A(f)

∨ ⊂ ϕ
(
L Σ

f ,K

)
.

in AJΓKK. Now, by Lemma 3.6, Proposition 3.9, and §3.4.6 of [71] – using Lemma 7.1.4 and that p splits in
K to check the hypotheses of Proposition 3.9 in loc. cit. – the preceding divisibility yields

(115) (α) · charAJΓQ∞K Sel
Σ
Q∞,A(f)

∨ · charAJΓQ∞K Sel
Σ
Q∞,A(f ⊗ χK)∨ ⊂ (LΣ

p (Q∞, f))(LΣ
p (Q∞, f ⊗ χK)).

Then by [71, Lemma 3.13(ii), Proposition 3.14], we obtain the imprimitive divisibility

(116) (α) · charAJΓQ∞K Sel
∅
Q∞,A(f)

∨ · charAJΓQ∞K Sel
∅
Q∞,A(f ⊗ χK)∨ ⊂ (Lp(Q∞, f))(Lp(Q∞, f ⊗ χK)).

By the cyclotomic analogue of (81), we can replace the characteristic ideals on the left hand side with
their analogues over O, which gives the theorem. □

8.4.4. Let Vf = Tf ⊗Qp and let H1
f (Qp,Wf ) ⊂ H1(Qp,Wf ) be the image of the Bloch-Kato local condition

H1
f (Qp, Vf ) under the natural map H1(Qp, Vf )→ H1(Qp,Wf ). Then we consider the Q-Selmer group

(117) Sel(Q,Wf ) := ker

H1(Q,Wf )→
∏
ℓ ̸=p

H1(Qℓ,Wf )×
H1(Qp,Wf )

H1
f (Qp,Wf )

 .

This definition also makes sense without the assumption that ℘ be ordinary. However, in the ordinary case,
we have:
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Proposition 8.4.5. Let αp be as in (5.2.3). Then

ordπ 1cyc

(
charΛQ∞

Sel∅Q∞,O(f)
∨
)
= lgO Sel(Q,Wf ) +

∑
ℓ|N

lgOH
1
unr(Qℓ,Wf ) + 2 ordπ(1− αp).

Proof. By Theorem 8.4.2 combined with [71, Proposition 3.13(i)], SelΣQ∞,O(f) is ΛQ∞ -cotorsion for all finite

sets of primes Σ. Then by [71, Proposition 3.20], SelΣQ∞,O(f)
∨ has no pseudo-null submodules for a sufficiently

large finite set of primes Σ. By the same argument as [30, Proposition 4.14], this implies that Sel∅Q∞,O(f)
∨

contains no pseudo-null submodules as well. Hence

(118) ordπ 1cyc(charΛQ∞
Sel∅Q∞,O(f)

∨) = lgO Sel∅Q∞,O(f)[T ],

where T = γ − 1 ∈ OJΓQ∞K for a topological generator γ ∈ ΓQ∞ .
Now note that, by the same reasoning as in the proof of [40, Lemma 17.9],

(119) H1
f (Qp,Wf ) = im

(
H1
f (Qp,Fil

+
p Tf ⊗Qp)→ H1(Qp,Wf )

)
.

In particular, H1
f (Qp,Wf ) lies in the kernel of the natural map

H1(Qp,Wf )→ H1(Qp, grpWf ),

and hence also in the kernel of the map H1(Qp,Wf )→ H1(Ip, grp Tf ⊗ Λ∨Q∞
.)

Then by the arguments of [30, Lemma 4.3, Lemma 4.6], we have

lgO Sel∅Q∞,O(f)[T ] = lgO Sel(Q,Wf ) +
∑
ℓ ̸=p

lgO ker
(
H1(Qℓ,Wf )→ H1(Qℓ, Tf ⊗ Λ∨Q∞

)
)

+ lgO ker

(
H1(Qp,Wf )

H1
f (Qp,Wf )

→ H1(Ip, grp Tf ⊗ Λ∨Q∞
)

)
.

(120)

For the kernels at ℓ ̸= p, note that the map H1(Iℓ,Wf )→ H1(Iℓ, Tf ⊗ Λ∨Q∞
) is injective. Indeed, its kernel

is identified with
(Tf ⊗ Λ∨Q∞

)Iℓ/T (Tf ⊗ Λ∨Q∞
)Iℓ

by the long exact sequence associated to multiplication by T on Tf ⊗ Λ∨Q∞
, and (Tf ⊗ Λ∨Q∞

)Iℓ is T -divisible
because ℓ is unramified in Q∞.

On the other hand, H1
unr(Qℓ, Tf ⊗Λ∨Q∞

) = 0 by [58, Remark 3.1]. So the terms for ℓ ̸= p in (120) coincide
with

lgOH
1
unr(Qℓ,Wf ),

which vanishes for ℓ ∤ Np.
For the term at p, note first that, if Af is the associated GL2-type abelian variety to f as in Remark

5.1.3, then H1
f (Qp,Wf ) coincides with the image of the local Kummer map Af (Qp) → H1

f (Qp,Wf ) by [4,

Examples 3.10.1, 3.11]. Then the argument of [30, Lemma 3.4], which is readily adapted to the case of
GL2-type abelian varieties, shows that the the term at p is 2 lgOH

0(Qp, grpWf ) = 2 ordπ(1 − αp), which
completes the proof.

□

8.4.6. Denote by µ(f) the µ-invariant

(121) µ(f) := ord(℘)

(
charΛQ∞

Sel∅Q∞,O(f)
∨
)
<∞.

From Theorem 8.4.3, we obtain the following weak form of the BSD formula for f .

Corollary 8.4.7. Let f and K be as in Theorem 8.4.3. Then we have

ordπ
L(f, 1)

Ω+
f

≤ lgO Sel(Q,Wf ) + µ(f ⊗ χK) + ordπ
Ωf,N2

Ωcanf

+
∑
ℓ|N2

ordπ(1− ℓ2) +
∑

ℓ| disc(K)

ordπ(1 + ℓ− aℓ)

+
∑
ℓ|N

lgOH
1
unr(Qℓ,Wf ).
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Proof. The divisibility in ΛQ∞ ⊗Qp from Theorem 8.4.2 applied to the quadratic twist f ⊗ χK can trivially
be upgraded to a divisibility in ΛQ∞ by inserting a µ-invariant:

(122) (℘)µ(f⊗χK) · (Lp(Q∞, f ⊗ χK)) ⊂ charΛQ∞
Sel∅Q∞,O(f ⊗ χK)∨.

By Theorem 8.4.3, we also have

(123) (α) · charΛQ∞
Sel∅Q∞,O(f)

∨ · charΛQ∞
Sel∅Q∞,O(f ⊗ χK)∨ ⊂ (Lp(Q∞, f)) · (Lp(Q∞, f ⊗ χK)).

Combining these two equations, we have

(α) · (℘)µ(f⊗χK) · charΛQ∞
Sel∅Q∞,O(f)

∨ · charΛQ∞
Sel∅Q∞,O(f ⊗ χK)∨

⊂ (Lp(Q∞, f)) · charΛQ∞
Sel∅Q∞,O(f ⊗ χK)∨.

(124)

Since characteristic ideals are divisorial and charΛQ∞
Sel∅Q∞,O(f ⊗ χK)∨ ̸= 0 by Theorem 8.4.2, we obtain

(125) (α) · (℘)µ(f⊗χK) · charΛQ∞
Sel∅Q∞,O(f)

∨ ⊂ (Lp(Q∞, f)).

We now specialize both sides at the cyclotomic character and obtain

(126) ordπ 1cyc(α) + µ(f ⊗ χK) + ordπ 1cyc(charΛQ∞
Sel∅Q∞,O(f)

∨) ≥ ordπ 1cyc(Lp(Q∞, f)).

Combining Proposition 8.4.5 with the interpolation formula for Lp(Q∞, f) in [71, §3.4.4] and the formula
for ordπ 1cyc(α) in Theorem 8.4.3, (126) gives the corollary.

□

The following lemma will be needed to control µ-invariants in our application of Corollary 8.4.7.

Lemma 8.4.8. Continue to fix f as above, and let g be another Hecke eigenform of weight two and trivial
character, new of level M , with Og the ring of integers of the number field generated by the Hecke eigenvalues
of g. Suppose given a good ordinary prime ℘g ⊂ Og such that Og,℘g

is isomorphic to O, and let Tg be the

corresponding O[GQ]-module. If Tg/π
j ∼= Tf/π

j for some integer j > µ(f), then µ(f) = µ(g).

Proof. A direct calculation shows that the µ-invariant of H1(Qℓ, Tf ⊗ Λ∨Q∞
) vanishes for all ℓ. Hence µ(f)

is also the µ-invariant of charΛQ∞
SelΣQ∞,O(f)

∨ for any finite set of primes Σ, and likewise for g.
If Σ contains all primes dividing NM , then it is not difficult to check using Lemma 2.4.12 that

(127) SelΣQ∞,O(f)[π
j ] ≃ SelΣQ∞,O(g)[π

j ]

as ΛQ∞ -modules. Let Mf and Mg be the Pontryagin duals of SelΣQ∞,O(f) and SelΣQ∞,O(g), respectively, and
let P = (℘) ⊂ ΛQ∞ . Then we have an isomorphism of ΛQ∞ -modules

Mf/P
j ≃Mg/P

j .

Since µ(f) = lgMf,(P) < j, where (P) denotes the localization,

(128) Mf,(P)/P
j =Mf,(P)/P

j−1

as ΛQ∞,(P)-modules, which implies the same for g. Therefore Mg,(P)/P
j =Mg,(P), so

lgMg,(P) = lgMg,(P)/P
j = lgMf,(P)/P

j = lgMf,(P),

as desired. □

8.5. Non-ordinary Iwasawa theory. In this section, we continue the notation of (8.3.1), and no longer
assume that ℘ is ordinary for f . However, still let Q∞ and ΛQ∞ be as in (8.4.1).
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8.5.1. For an integer i ≥ 0 and M =Wf or Tf , write

(129) Hi(Z[1/p],M) := ker

Hi(Q,M)→
∏
ℓ̸=p

Hi(Iℓ,M)


and

(130) H1
f (Z[1/p],M) := ker

(
H1(Z[1/p],M)→ H1(Qp,M)

H1
f (Qp,M)

)
,

whereH1
f (Qp,Wf ) is as in (8.4.4), andH1

f (Qp, Tf ) is the kernel of the mapH1(Qp, Tf )→ H1(Qp, Vf )/H1
f (Qp, Vf ).

The next proposition is a corollary to the motivic form of the cyclotomic main conjecture proved in [29].

Proposition 8.5.2. Suppose that ℘ is not an ordinary prime for f , and that there exists ℓ||N such that

ρ|GQℓ
is ramified and T

GQℓ

f = 0. Then

ordπ
L(f, 1)

Ω+
f

= lgOH
1
f (Z[1/p],Wf ).

Proof. Let z(f) ⊂ H1(Z[1/p], Tf ⊗ ΛQ∞) ⊗ Qp be the subspace defined by Kato in [40, Theorem 12.5]. In
fact, z(f) lies in H1(Z[1/p], Tf ⊗ΛQ∞). In [40, Theorem 12.5(4)] this is asserted under a stronger condition,
but the proof only uses that any two GQ-stable O-submodules of Tf ⊗Qp differ by a scalar; this holds under

the assumption that T f is absolutely irreducible, cf. [69, Lemma 2.1.1].
Let z(f) ⊂ H1(Z[1/p], Tf ) be the image of z(f) under the specialization map

H1(Z[1/p], Tf ⊗ ΛQ∞)→ H1(Z[1/p], Tf )

induced by 1cyc. By [29, Theorem 1.7, Proposition 3.20],6 we have

(131) lgO
H1(Z[1/p], Tf )

z(f)
= lgOH

2(Z[1/p], Tf ).

Note that it is to apply [29, Theorem 1.7] that we have assumed the existence of a prime ℓ as in the
proposition.

Now by [40, Proposition 14.21(2)], (131) is equivalent to the desired formula, which completes the proof.
□

Corollary 8.5.3. Under the assumptions of Proposition 8.5.2, we have

ordπ
L(f, 1)

Ω+
f

≤ lgO Sel(Q,Wf ) +
∑
ℓ|N

lgOH
1
unr(Qℓ,Wf ).

Proof. By definition, we have an exact sequence

(132) 0→ Sel(Q,Wf )→ H1
f (Z[1/p],Wf )→

∏
ℓ|N

H1
unr(Qℓ,Wf ),

so the inequality is immediate from Proposition 8.5.2. □

Remark 8.5.4. In fact, the inequality in Corollary 8.5.3 is sharp: without loss of generality, we may assume
Sel(Q,Wf ) is finite, and then [30, Proposition 4.13] implies that (132) is exact on the right as well.

6When consulting the preprint [29], the reader may find it helpful to note that the divisibility

charΛQ∞

H1(Z[1/p], Tf ⊗ ΛQ∞ )

z(f)
⊂ charΛQ∞

H2(Z[1/p], Tf ⊗ ΛQ∞ )

of [40, Theorem 12.5(4)] holds – even without inverting p – under the assumptions of Proposition 8.5.2. The reasons for this

are explained in detail in [69, p. 188]. Although the discussion in [69] is in the ordinary context, the same remarks apply here.
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8.6. Proof of Theorem 8.1.1. By Corollary 7.3.4, we may assume without loss of generality that we are
not in the split ordinary case; so by the assumptions in Theorem 8.1.1 we can fix once and for all a prime
ℓ0||N . In the ordinary case, fix as well an auxiliary quadratic imaginary field F , not contained in K(Tf ),
such that ℓ0 is inert in F and every other factor of Npdisc(K) is split in F . Let (F ,S) be the Selmer
structure of (72) with m = 1.

As in the proof of Theorem 7.3.1, apply Proposition 6.3.6 and Theorem 6.2.4 to obtain some {Q, ϵQ} ∈ N,
represented by a sequence of weakly admissible pairs {Qn, ϵQn} as in Remark 4.6.8, and a resulting sequence
of newforms gn of NQn; in the ordinary case, we make sure to choose each q ∈ Q such that Frobq has
trivial image in Gal(F/Q), which is clearly possible. The choice of {Q, ϵQ} from Proposition 6.3.6 includes
the condition that SelF(Q)(Tf ) = 0. We claim that λ(Q) ̸= 0, for which – by the same reasoning as Step
2 of Theorem 7.3.1 – it suffices to show ordπ λgn(1) is uniformly bounded for F-many n. Combined with
Proposition 8.3.5, we wish to show

(133) ordπ
L(gn/K, 1)

Ωgn,N−Qn

≤ C1

for some constant C1 depending only on f , ℘, ℓ0, F , and K, and for F-many n.
We first claim that, for a constant C2 depending only on f , ℘, ℓ0, and F , we have the inequality

(134) ordπ
L(gn, 1)

Ω+
gn

≤ lgO Sel(Q,Wgn) +
∑
ℓ|NQn

lgOH
1
unr(Qℓ,Wgn) + C2.

In the non-ordinary case, this is immediate from Corollary 8.5.3. In the ordinary case, we have to bound the
extra terms appearing in Corollary 8.4.7 for gn and F , i.e.

(135) µ(gn ⊗ χF ) + ordπ
Ωgn,ℓ0
Ωcangn

+ ordπ(1− ℓ20) +
∑

ℓ| disc(F )

ordπ(1 + ℓ− aℓ(gn)).

The µ-invariant term is equal to µ(f ⊗ χF ) for F-many n by Lemma 8.4.8; the term ordπ
Ωgn,ℓ0

Ωcan
gn

is bounded

by 3cgn(ℓ0) by Theorem 8.3.7, which coincides with 3cf (ℓ0) for F-many n. Finally, for any ℓ|disc(F ),
1 + ℓ − aℓ(f) ̸= 0 by the Weil bound, so for F-many n ordπ(1 + ℓ − aℓ(f)) = ordπ(1 + ℓ − aℓ(gn)). This
proves (134). The exact same reasoning applied to f ⊗ χK and gn ⊗ χK shows there exists a constant C3,
now depending on f , ℘, ℓ0, F , and K, such that

(136) ordπ
L(gn ⊗ χK , 1)

Ω+
gn⊗χK

≤ lgO Sel(Q,Wgn ⊗ χK) +
∑
ℓ|NQn

lgOH
1
unr(Qℓ,Wgn ⊗ χK) + C3

holds for F-many n. By [72, Lemma 9.6] (whose proof does not require the assumption in op. cit. that
p||N), Ω+

gn⊗χK
coincides with Ω−gn up to a ℘-adic unit; in combination with Proposition 8.3.3, we have

(137) Ω+
gn⊗χK

Ω+
gn = Ωcangn .

Let Fgn be the Selmer structure for the GK-module Wgn which is dual to the analogue for gn of (72) with
m = 1. By Shapiro’s lemma (and comparing the definitions (72) and (117)), we also have

(138) SelFgn
(Wgn)

∼= Sel(Q,Wgn)⊕ Sel(Q,Wgn ⊗ χK).

Then combining (134), (136), (137), and (138), we have

(139) ordπ
L(gn/K, 1)

Ωcangn
≤ lgO SelF (Wgn) +

∑
v|NQn

lgOH
1
unr(Kv,Wgn) + C2 + C3

for F-many n. Now note that, for all v|N , lgOH
1
unr(Kv,Wgn) = lgOH

1
unr(Kv,Wf ) < ∞ for F-many n;

on the other hand, using the explicit form of Tgn |GQqn
from the end of Step 3 of Theorem 7.3.1, we have

lgOH
1
unr(Kqn ,Wgn) = cgn(qn) for all qn|Qn. So (139) becomes

(140) ordπ
L(gn/K, 1)

Ωcangn
≤ lgO SelFgn

(Wgn) +
∑
qn|Qn

cqn(gn) + C4

for F-many n and for a constant C4 depending on f , ℘, ℓ0, F , and K.
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Now by Theorem 8.3.7, (140) becomes

(141) ordπ
L(gn/K, 1)

Ωgn,N−
≤ lgO SelFgn

(Wgn)−
∑
ℓ|N−

cgn(ℓ) + (ν(N−Qn) + 2)cgn(ℓ0) + C4.

Again using that cgn(ℓ) = cf (ℓ) for F-many n and for all ℓ||N , (141) becomes

(142) ordπ
L(gn/K, 1)

Ωgn,N−
≤ lgO SelFgn

(Wgn) + C5

for F-many n and for a constant C5 depending on f , ℘, ℓ0, F , and K.
Now arguing as in in Steps 3 and 4 of the proof of Theorem 7.3.1, but replacing the local arguments at

v|p by [32, Lemma 7] combined with [60, Théorème 3.3.3], we find

(143) #SelFgn
(Wgn)[π

j ] = #SelF(Q)(Wf )[π
j ]

for any j and for F-many n. Since SelF(Q)(Wf ) is finite by Proposition 3.3.6(3) and the choice of Q, it follows
from (143) that #SelFgn

(Wgn) = #SelF(Q)(Wf ) for F-many n.
In conjunction with (142), this shows (133) and completes the proof.

Appendix A. Degrees of modular parametrizations and congruence numbers

A.1. Overview. Let f , ℘, N , O, E, π, Vf , Tf , and Wf be as in §1.5, and keep the notation of §8.3. In this
appendix, we extend the results of [41, §3.2] and [64] on the degrees of modular parametrizations associated
to f . There are two directions in which we must generalize their work: first to allow general coefficient rings
O, and second to not require that N be squarefree, at the cost of an error term in the final result.

In [64], it is assumed that Of = Z; in [41], this hypothesis is relaxed to the assumption that O is absolutely
unramified and generated over Zp by the Hecke eigenvalues of f (whereas in general the Hecke eigenvalues
only generate a finite-index subring of O). In [58, §6], the results are stated for general coefficients with N
squarefree, but some of the proofs are incomplete as written.

The ultimate goal of this appendix is Theorem A.3.6 below, which is crucially used in §8. IfN is squarefree,
then there exists a prime ℓ||N such that T f |GQℓ

is ramified, in which case the error terms in Theorem A.3.6

can be chosen to vanish and we recover the statement of [58, Theorem 6.8].

A.2. Constructions and notations.

A.2.1. Recall the abelian variety Af from Remark 5.1.3, and fix an isomorphism End(Af ) ∼= Of . Since the
GQ-module Af [℘] is absolutely irreducible, we can choose a polarization λ : Af → A∨f such that the induced
map on ℘-adic Tate modules is an O-linear isomorphism

λ∗ : T℘Af
∼−→ T℘A

∨
f .

(Note that the Rosati involution associated to λ is trivial since, as f has trivial central character, Of is the
ring of integers of a totally real field.)

For a factorization N = N1N2, where N2 is the squarefree product of an even number of primes not
dividing N1, we choose a Hecke-equivariant map ξN1,N2

: JN1,N2 → Af such that the image of the induced
map TpJ

N1,N2 → TpAf ↠ T℘Af is not contained in ℘T℘Af . (Recall from (4.3.1) that JN1,N2 denotes the
Jacobian of the Shimura curve XN1,N2

.)

A.2.2. For the rest of this subsection, abbreviate J := JN1,N2 and ξ := ξN1,N2
for some factorization N =

N1N2 as above. If m ⊂ TN1,N2 is the maximal ideal associated to f and ℘, let

(144) ξ∗ : TmJ ⊗Zp
O → T℘Af

be the natural map, with TmJ as in (4.2.2). Let d(O) be the different of O/Zp, so that the modified trace
pairing

(145) tr′(x, y) := trO/Zp
(π−d(O)xy)

defines an isomorphism

O ∼−→ HomZp
(O,Zp).
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We then define the O-linear pullback map

ξ∗ : T℘A
∨
f → HomZp(O, TmJ)

∼−−−→
tr′−1

TmJ ⊗Zp O

xA 7→ (α 7→ ξ∗(αxA)).
(146)

The composite

(147) T℘Af
λ∗−→ T℘A

∨
f

ξ∗−→ TmJ ⊗Zp
O ξ∗−→ T℘Af

is O-linear and GQ-equivariant, hence is given by multiplication by some element of O; let
δ(N1, N2) ⊂ O

be the ideal generated by this element. Since tr′, λ, and ξ are all well-defined up to ℘-adic units, δ(N1, N2)
is independent of the choices made to define it.

A.2.3. For any ℓ||N , set Xℓ(Af )O := Xℓ(Af )⊗Of
O, Xℓ(A∨f )O := Xℓ(Af )⊗Of

O, and Xℓ(J)O := Xℓ(J)m⊗Zp
O,

with notation as in (4.1.1) and where m denotes the m-adic completion. Let ⟨·, ·⟩A and ⟨·, ·⟩J be the mon-
odromy pairings on Xℓ(A∨f )×Xℓ(A) and Xℓ(J)×Xℓ(J), respectively, using that J is canonically principally
polarized.

Then we define ⟨·, ·⟩J,O to be the O-valued pairing on Xℓ(J)O linearly extending ⟨·, ·⟩J , and define

⟨·, ·⟩A,O : Xℓ(A∨)O ×Xℓ(A)O → O
by

tr′−1⟨xA, yA⟩A,O(α) = ⟨αxA, yA⟩A = ⟨xA, αyA⟩A.
Repeating the construction of (A.2.2) on the level of character groups, we obtain O-linear maps

ξ∗ : Xℓ(J)O → Xℓ(A∨f )O
and

ξ∗ : Xℓ(Af )O → Xℓ(J)O.
These maps can also be obtained functorially from (144), (146) by identifying the O-modules Xℓ(A∨f )O,
Xℓ(Af )O, and Xℓ(J)O as the maximal O-submodules of T℘Af , T℘A

∨
f , and TmJ⊗ZpO, respectively, on which

the GQℓ
-action is unramified and Frobℓ acts by ℓ times a root of unity, cf. the diagram on [20, p. 318]. In

particular, for each ℓ the composite

(148) Xℓ(A∨f )O
λ∗

−→ Xℓ(Af )O
ξ∗−→ Xℓ(J)O

ξ∗−→ Xℓ(A∨f )O
is multiplication by a generator of δ(N1, N2).

Lemma A.2.4. For any ℓ||N , the map ξ∗ : Xℓ(J)O → Xℓ(A∨f )O is surjective.

Proof. Let B ⊂ J be the image of A∨f under the dual map

ξ∨ : A∨f → J,

so that ξ∨ factors as

A∨f
φ−→ B ↪→ J

with φ an isogeny. By [21, Theorem 8.2], the natural map Xℓ(J) → Xℓ(B) is surjective, so the image of ξ∗
is identified with the ℘-adic completion of

X :=
∑
α∈Of

(φ ◦ α)∗Xℓ(B) ⊂ Xℓ(A∨f ).

View X, Xℓ(A∨f ), and Xℓ(B) as constant group schemes over Fℓ. By the discussion preceding [21, Theorem

8.6], there is a canonical inclusion

(149) ker

(
Hom(Xℓ(A∨f ),Gm)

(φ◦α)∗−−−−→ Hom(Xℓ(B),Gm)

)
⊂ kerφ ◦ α

for all α ̸= 0 in Of . On the other hand, by duality, we have

(150) Hom(Xℓ(A∨f )/X,Gm) = ∩α∈Of
ker

(
Hom(Xℓ(A∨f ),Gm)

(φ◦α)∗−−−−→ Hom(Xℓ(B),Gm)

)
,
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so by (149) it suffices to show (
∩α∈Of

kerφ ◦ α
)
℘
= 0.

This follows from the choice of ξ, so the lemma is proved. □

A.2.5. For any ℓ||N , let Xℓ(J)O[f ] ⊂ Xℓ(J)O denote the maximal f -isotypic subspace for the action of the
Hecke algebra TN1,N2,m ⊗Zp

O. By construction, the map ξ∗ : Xℓ(Af )O → Xℓ(J)O has image contained in
Xℓ(J)O[f ]. Then Lemma A.2.4 has the following corollary.

Corollary A.2.6. There is an isomorphism of O-modules

Xℓ(J)O[f ]
ξ∗Xℓ(Af )O

≃ coker
(
Φℓ(J)m ⊗Zp

O → Φℓ(Af )⊗Of
O
)
.

Proof. Consider the following commutative diagram with exact rows:

(151)

0 Xℓ(J)O HomO (Xℓ(J)O,O) Φℓ(J)m ⊗Zp
O 0

0 Xℓ(A∨f )O HomO(Xℓ(Af )O,O) Φℓ(Af )⊗Of
O 0.

ξ∗

⟨·,·⟩J,O

ξ∗

⟨·,·⟩A,O

Here, the exactness of the rows is immediate from [34, Théorème 11.5], and the commutativity results from
the definitions of ξ∗ and ξ∗ along with the functoriality of the monodromy pairing. By Lemma A.2.4, the
first vertical map is surjective, so the snake lemma induces an isomorphism

coker ξ∗ ≃ coker
(
Φℓ(J)m ⊗Zp O → Φℓ(Af )⊗Of

O
)
.

On the other hand, since Xℓ(J)O/Xℓ(J)O[f ] is O-torsion-free,

coker ξ∗ = coker (Hom(Xℓ(J)O[f ],O)→ HomO(Xℓ(Af )O,O)) ,

which in turn is isomorphic to Xℓ(J)O[f ]/ξ∗Xℓ(Af )O since both Xℓ(J)O[f ] and Xℓ(Af )O are free of rank
one over O. □

A.3. Tamagawa factors and the method of Ribet-Takahashi.

A.3.1. For any ℓ||N , let cf (ℓ) be as in (8.3.6). By the same argument as [41, Proposition 3(1)], Φℓ(Af )⊗Of
O

is isomorphic to O/cf (ℓ) as an O-module.

Proposition A.3.2. Suppose N = N1N2 where N2 is the squarefree product of an even number of primes
not dividing N1. Then:

(1) For all primes ℓ|N1, we have

ord℘⟨φf,N2ℓ, φf,N2ℓ⟩ = ord℘ δ(N1, N2)− cf (ℓ).

(2) There is a constant c(N1, N2) such that 0 ≤ c(N1, N2) ≤ minℓ|N2
cf (ℓ) and, for all primes ℓ|N2,

ord℘⟨φf,N2/ℓ, φf,N2/ℓ⟩ = ord℘ δ(N1, N2) + cf (ℓ)− 2c(N1, N2).

(3) For any pair of distinct primes ℓ1, ℓ2 dividing N2, we have

ord℘
δ(N1ℓ1ℓ2, N2/ℓ1ℓ2)

δ(N1, N2)
= cf (ℓ1) + cf (ℓ2)− 2c(N1, N2).

Proof. For any ℓ||N , we have the identity of ideals of O:
⟨ξ∗N1,N2

Xℓ(Af )O, ξ∗N1,N2
Xℓ(Af )O⟩JN1,N2 ,O = ⟨ξN1,N2,∗ξ

∗
N1,N2

Xℓ(Af )O,Xℓ(Af )O⟩A,O
= δ(N1, N2)⟨Xℓ(A∨f )O,Xℓ(Af )O⟩A,O,

(152)

where the first identity comes from the commutativity of the diagram (151). Write

c(N1, N2, ℓ) := lgO coker
(
Φℓ(J

N1,N2)m ⊗Zp
O → Φℓ(A)⊗Of

O
)
.

Then using Corollary A.2.6 and the exactness of the bottom row of (151), we obtain from (152)

(153) 2c(N1, N2, ℓ) + ord℘⟨Xℓ(JN1,N2)O[f ],Xℓ(JN1,N2)O[f ]⟩J,O = ord℘ δ(N1, N2) + cf (ℓ)
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Now suppose ℓ|N1. By the results of [63, §3] (which are stated for modular curves but apply to Shimura curves
as well with the obvious modifications), Xℓ(JN1,N2)m is Hecke-equivariantly isomorphic to Z[XN1/ℓ,N2ℓ]m,
and this identification is compatible with the natural pairings. Hence

⟨Xℓ(JN1,N2)O[f ],Xℓ(JN1,N2)O[f ]⟩J,O = ⟨φf,N2ℓ, φf,N2ℓ⟩.

On the other hand, since m is non-Eisenstein, Φℓ(J
N1,N2)m = 0 by [63, Theorem 3.12], so c(N1, N2, ℓ) = cf (ℓ).

So in this case (153) becomes (1) of the proposition.
For ℓ|N2, the results of [63, §4] show that Xℓ(JN1,N2)m is Hecke-equivariantly isomorphic to a submodule

of Z[XN1ℓ,N2/ℓ]m containing φf,N2/ℓ, again compatibly with the natural pairings, so we conclude

(154) ord℘⟨φf,N2/ℓ, φf,N2/ℓ⟩ = ord℘ δ(N1, N2) + cf (ℓ)− 2c(N1, N2, ℓ).

We have c(N1, N2, ℓ) ≤ cf (ℓ) by definition, so to prove (2), it suffices to show that c(N1, N2, ℓ) is independent
of ℓ|N2; the common value will be defined to be c(N1, N2). Write ℓ1 = ℓ; since N2 has an even number of
prime factors, we may choose a prime ℓ2|N2/ℓ1.

Applying part (1) of the proposition to N1ℓ1ℓ2, N2/ℓ1ℓ2, and the prime ℓ2, we find

(155) ord℘⟨φf,N2/ℓ1 , φf,N2/ℓ1⟩ = ord℘ δ(N1ℓ1ℓ2, N2/ℓ1ℓ2)− cf (ℓ2).

Then comparing (154) and (155), we have

ord℘ δ(N1ℓ1ℓ2, N2/ℓ1ℓ2)− ord℘ δ(N1, N2) = cf (ℓ1) + cf (ℓ2)− 2c(N1, N2, ℓ1).

This expression is symmetric in ℓ1 and ℓ2, so c(N1, N2, ℓ1) = c(N1, N2, ℓ2) for all primes ℓ1, ℓ2|N2, which
completes the proof of (2) and also shows (3). □

Corollary A.3.3. Suppose N = N1N2 where N2 is the squarefree product of an even number of primes not
dividing N1. Then for any ℓ0|N2,∑

ℓ|N2

cf (ℓ)− ν(N2)cf (ℓ0) ≤ ord℘
δ(N, 1)

δ(N1, N2)
≤
∑
ℓ|N2

cf (ℓ).

Proof. This is immediate from repeatedly applying Proposition A.3.2(3), not choosing ℓ0 as one of the primes
ℓ1, ℓ2 until the last step. □

A.3.4. Proposition A.3.2 and Corollary A.3.3 are two of the three ingredients we need for the final comparison
of periods. The third is below.

Lemma A.3.5. Let ℓ0||N be a prime. Then we have

ord℘ δ(N, 1) ≥ ord℘ ηf (N, 1) ≥ ord℘ δ(N, 1)− cf (ℓ0).

Proof. The composite

(156) TmJ
N,1 ⊗Zp

O ξN,1∗−−−→ T℘Af
λ∗−→ T℘A

∨
f

ξ∗N,1−−−→ TmJ
N,1 ⊗Zp

O w∗
N−−→ TmJ

N,1 ⊗Zp
O

is O-linear and equivariant for the full Hecke algebra (because the Rosati involution on TN,1 ⊂ End(JN,1) is
conjugation by the Atkin-Lehner involution wN , cf. [35, Lemma 5.5]). Since TmJ

N,1 is free of rank two over
TN,1,m by Proposition 4.2.3, and since the residual representation associated to m is absolutely irreducible,
we conclude w∗Nξ

∗
N,1λ∗ξN,1,∗ = y for some y ∈ TN,1,m ⊗Zp

O. Then

ξN,1,∗w
∗
Nξ
∗
N,1λ∗ξN,1,∗ = ξN,1∗y = ±ξN,1,∗ξ∗N,1λ∗ξN,1∗,

so πf (y) generates δ(N, 1), cf. (A.2.2). On the other hand, y lies in the annihilator of kerπf since yz = πf (z)y
for all z ∈ TN,1,m ⊗Zp

O. This shows δ(N, 1) ⊂ ηf (N, 1), so ord℘ δ(N, 1) ≥ ord℘ ηf (N, 1).
For the other inequality, note ord℘ ηf (N, 1) ≥ ord℘ ηf (N/ℓ0, ℓ0) since TN/ℓ0,ℓ0,m ⊗Zp O is a quotient of

TN,1,m ⊗Zp
O. By [24, Lemma 4.17], we also have

ord℘ ηf (N/ℓ0, ℓ0) ≥ ord℘⟨φf,ℓ0 , φf,ℓ0⟩,

which is equal to ord℘ δ(N, 1) − cf (ℓ0) by Proposition A.3.2(1). So indeed ord℘ ηf (N, 1) ≥ ord℘ δ(N, 1) −
cf (ℓ0). □
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Theorem A.3.6. For any factorization N = N1N2 where N2 is the squarefree product of an odd number of
primes not dividing N1, and for any prime ℓ0||N , we have∑

ℓ|N2

cf (ℓ)− (ν(N2) + 2)cf (ℓ0) ≤ ord℘
ηf (N, 1)

⟨φf,N2
, φf,N2

⟩
≤
∑
ℓ|N2

cf (ℓ) + 2cf (ℓ0).

Proof. By Lemma A.3.5, it suffices to show

(157)
∑
ℓ|N2

cf (ℓ)− (ν(N2) + 1)cf (ℓ0) ≤ ord℘
δ(N, 1)

⟨φf,N2
, φf,N2

⟩
≤
∑
ℓ|N2

cf (ℓ) + 2cf (ℓ0).

Suppose first that ℓ0|N2. If ℓ0 = N2, then Proposition A.3.2(1) proves (157). So assume without loss of
generality that there exists a prime q|N2 with q ̸= ℓ0. Then by Proposition A.3.2(1), we have

(158) ord℘
δ(N1q,N2/q)

⟨φf,N2
, φf,N2

⟩
= cf (q),

and since ℓ0|N2/q Corollary A.3.3 shows

(159)
∑
ℓ|N2/q

cf (ℓ)− ν(N2/q)cf (ℓ0) ≤ ord℘
δ(N, 1)

δ(N1q,N2/q)
≤
∑
ℓ|N2/q

cf (ℓ).

Combining (158) and (159) yields (157), in fact with stricter bounds.
Now suppose ℓ0|N1. Then by Proposition A.3.2(2), we have

(160) −cf (ℓ0) ≤ ord℘
δ(N1/ℓ0, N2ℓ0)

⟨φf,N2
, φf,N2

⟩
≤ cf (ℓ0).

Moreover, Corollary A.3.3 shows

(161)
∑
ℓ|N2ℓ0

cf (ℓ)− ν(N2ℓ0)cf (ℓ0) ≤ ord℘
δ(N, 1)

δ(N1/ℓ0, N2ℓ0)
≤
∑
ℓ|N2ℓ0

cf (ℓ).

Combining (160) and (161) completes the proof of (157). □
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