KOLYVAGIN’S CONJECTURE, BIPARTITE EULER SYSTEMS, AND HIGHER
CONGRUENCES OF MODULAR FORMS

NAOMI SWEETING

ABSTRACT. Let E/Q be an elliptic curve and let K be an imaginary quadratic field. Under a certain Heegner
hypothesis, Kolyvagin constructed cohomology classes for E using K-CM points and conjectured they did
not all vanish. Conditional on this conjecture, he described the Selmer rank of E using his system of classes.
We extend work of Wei Zhang to prove new cases of Kolyvagin’s conjecture by considering congruences of
modular forms modulo large powers of p. Additionally, we prove an analogous result, and give a description
of the Selmer rank, in a complementary “definite” case (using certain modified L-values rather than CM
points). Similar methods are also used to improve known results on the Heegner point main conjecture of
Perrin-Riou. One consequence of our results is a new converse theorem, that p-Selmer rank one implies
analytic rank one, when the residual representation has dihedral image.
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1. INTRODUCTION

Let f be a weight 2 cuspidal eigenform, new of level I'g(N), without complex multiplication. The Birch
and Swinnerton-Dyer Conjecture predicts:

(1) r(Ay/Q) = [Ef : Qords—1 L(f, s),

where A is a representative of the isogeny class of G'La-type abelian varieties associated to f, r denotes the
Mordell-Weil rank, and Ey is the coefficient field of f. In pioneering works on this problem, Perrin-Riou [57]
and Kolyvagin [45, 46] studied ranks of elliptic curves over an auxiliary imaginary quadratic field K through
the theory of Heegner points on modular curves. We prove, in new cases, conjectures made by both authors.
Fix a quadratic imaginary field K, and a prime p of Ey of residue characteristic p, with O = Oy, the
completion at @ of the ring of integers Oy C Ey. Assume the following generalized Heegner hypothesis:

(Heeg) N = NTN~, where all /|{NT are split in K, all /| N~ are inert in K, and N~ is squarefree,
as well as:
(unr) p 12N disc(K).

The rational p-adic Tate module V, Ay of Ay is equipped with an action of Ey; write Vy =V, Ay @p, Ey,

for the p-adic Galois representation attached to f, and let Ty C Vy be a Galois-stable O-lattice. We shall

assume that T’y := T} /T is absolutely irreducible as a representation of the Galois group Gg = Gal(Q/Q).
For purposes of exposition in this introduction, we sometimes assume:

(sclr) The image of the Gg action on Ty contains a nontrivial scalar.

By [18, Lemma 6.1], (sclr) holds when p > 5.
To formulate Kolyvagin’s conjecture, we use the hypothesis

(disc) disc(K) # -3, —4,

and that the number of prime factors v(N ) is even. If m is a squarefree product of primes inert in K, one
can use Heegner points of conductor m on the Shimura curve X+ y- to construct classes

c(m) € HY(K, Ty /I,),
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where I, is the ideal of O = Oy, generated by £ + 1 and the (th Hecke eigenvalue a(f) for all £|m. (See
(4.3.1) for the definition of X+ y-, and (5.3.4), (8.2.7) for the definition of c¢(m).) These classes are a mild
generalization of the ones constructed by Kolyvagin [46]. We are able to prove the following result towards
Kolyvagin’s conjecture that the system {c(m)} is nontrivial:

Theorem A (Corollary 8.2.8). Assume (Heeg), (unr), and (disc) hold for f,p, and K, and v(N ™) is even.
Suppose the following conditions hold:

e The modulo ¢ representation Ty associated to f is absolutely
wrreducible; if p = 3, then Tf is not induced from a character of
Go(v=3):

(&) o If p is inert in K, then there exists some prime £y||N.

e If a, is not a p-adic unit, then there exist primes £;||N fori=1,2
(possibly with €1 = £3) such that Tf|G@ei is ramified fori =1,2 and

G _ .
T, o (Tf®XK)G““»’2 =0, where f @ xk 1is the quadratic twist.
Then there exists a nonzero Kolyvagin class

0# c(m) € HY(K, Ty /1)

As Kolyvagin observed, Theorem A can be used to give a description of the Selmer ranks r* = rko Sel(K, Ty)*,
where superscripts refer to the action of complex conjugation. Indeed, define the vanishing order of the sys-
tem {c(m)} as

(2) vi=min{v(m) : ¢(m) # 0}

where as before v denotes the number of prime factors. Then we have:

Corollary B (Corollary 8.2.8). Under (sclr) and the assumptions of Theorem A,
max {r+, 7’7} =v+1.

Moreover ™+~ is odd, and the larger eigenspace for complex conjugation has eigenvalue (—1)"les, where
¢ 15 the global root number of f.

The latter two assertions can alternatively be deduced from the parity conjecture proven by Nekovar [52].

Since ¢(1) € Sel(K, T) is the Kummer image of the classical Heegner point yx € A¢(K), the Gross-Zagier
formula implies that L'(f/K,1) # 0 if and only if ¢(1) # 0, or equivalently if and only if yx is non-torsion.
Hence Corollary B yields a so-called p-converse theorem (in fact, under slightly weaker hypotheses):

Corollary C (Corollary 8.1.3). Assume that (Heeg), (unr), and Condition { hold for f, p, and K, and
v(N~) is even. Then L'(f/K,1) # 0 if and only if rko Sel(K,Ty) = 1, in which case Ay has Mordell- Weil
rank [Ey : Q] over K.

Now suppose instead that v(N7) is odd; it turns out that Kolyvagin’s construction, suitably modified,
may still be used to relate Selmer ranks and CM points. The Jacquet-Langlands correspondence associates
to f a quaternionic modular form

(3) ¢f 5XN+,N* *)Of,

where X+ n- is a double coset space for a definite quaternion algebra, usually called a Shimura set. (See
(4.4.2) for the definition.) If m is a squarefree product of primes inert in K, there exist analogues of CM
points of conductor m on Xy+ y-. Using the values of ¢, at these points, we construct certain special
elements (well-defined up to units)

(4) A(m) € O/I,,.

Here the ideal I,, C O is as before; see (5.3.4) and (8.2.7) for the definition of A(m). The analogues of
the elements A\(m) for p-power conductor have long been used in anticyclotomic Iwasawa theory, e.g. [3].
However, for squarefree m, a novel observation of this work is that the elements A(m) encode the same
information about the Selmer ranks of Ay/K as Kolyvagin’s classes ¢(m).
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Theorem D (Corollary 8.2.8). Suppose that (Heeg), (unr), (sclr), (disc), and Condition <) hold for f,p,
and K, and that v(N~) is odd. Then the vanishing order

v :=min{r(m) : A(m) # 0}
is finite and
V= max{r+,7“_} .
Moreover (—1)" = €5 and r™ + 1~ is even.

As before, the final statement is a consequence of the parity conjecture; we include it only to emphasize
that it follows from the non-vanishing of some A(m), in analogy to the indefinite case.

1.1. Comparison to previous results. In the indefinite case, the first results towards Kolyvagin’s con-
jecture were obtained by Zhang [81], under a number of additional assumptions: that p > 5, that the Galois
representation associated to Tf is surjective, and additional hypotheses on the residual ramification. In
particular, under the hypotheses of [81], there exists a class ¢(m) whose reduction in H!(K,T) is nonzero;
this is not the case in general. In the definite case, the classes A(m) are a novel feature of this work and
were not considered in [81]. Since the results of this paper were first announced, alternative approaches to
Kolyvagin’s conjecture have been introduced by Burungale, Castella, Grossi, and Skinner [7] in the split
ordinary case, and by Kim [43] in the ordinary case with surjective residual Galois representation and some
ramification conditions, based on various forms of the Iwasawa main conjectures for f. In the context of
multiplicative reduction, Kolyvagin’s conjecture has also been studied by Skinner and Zhang [69].

The converse theorem we obtain (Corollary C) is new in several cases, most notably when the image of the
Galois action on T’y is dihedral, or when p = 3. A number of authors have also obtained p-converse theorems
by purely Iwasawa-theoretic methods, without first proving Kolyvagin’s conjecture; see for instance the work
of Skinner [70] and Wan [78] in the split ordinary case, Kim [42] in the ordinary case, Castella-Wan [17]
and Burungale-Biiyiikboduk-Lei [6] in the non-ordinary case, Burungale-Tian [11] and Burungale-Castella-
Skinner-Tian [10] in the CM case, Castella-Grossi-Lee-Skinner [15] in the residually reducible case, and
Venerucci [77] in the case of multiplicative reduction.

1.2. Iwasawa theory. Now suppose again that ¥(N7) is even, and assume as well that g is a prime of
ordinary reduction for f, with p split in K. While the Kolyvagin classes are constructed by varying the
conductor of CM points on X+ y- over squarefree integers, one may instead p-adically interpolate CM
points of p-power conductor to obtain a class:

(5) Koo € HY(K, Ty @ A(V)),

where A = O[Gal(K,/K)] is the anticyclotomic Iwasawa algebra, given Gal(K /K)-action by the tautolog-
ical character U. (Note that the specialization of k. at the trivial character is a multiple of ¢(1).) The
methods used to prove Theorem A also yield a result towards Perrin-Riou’s Heegner point main conjecture.
To state it, let Wy be the p-divisible Gg-module Vy/T}.

Theorem E (Corollary 7.3.2). Suppose that (Heeg), (unr), and Condition < hold for f,p, and K, and
that v(N~) is even. Suppose further that a, is a p-adic unit and p splits in K. Then there is a pseudo-
isomorphism of A-modules:

Sel(Koo, Ws)V A M & M

for some torsion A-module M, and
chary (W) = charp (M)

as ideals of A ® Q. If (sclr) holds, then the equality is true in A.

For precise definitions of the above Selmer groups and of k«,, which is denoted (1) in the text, see §5.2.
Finally, we have the following result on the anticyclotomic main conjecture for f when v(N ™) is odd.
Evaluating the quaternionic modular form ¢; on CM points of p-power conductor on the Shimura set

Xn+ n-, one constructs the algebraic p-adic L-function
(6) Ao €A,
denoted A(1) in the text. The square of A has an interpolation property for twisted L-values of f.
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Theorem F (Corollary 7.3.3). Suppose that (Heeg), (unr), and Condition < hold for f,p, and K, and that
v(N ™) is odd. Suppose further that a, is a p-adic unit and p splits in K. Then there is a pseudo-isomorphism
of A-modules:
Sel(Koo, Wy)Y ~ M & M
for some torsion A-module M, and
(Aso) = charp (M)
as ideals of A ® Qp. If additionally (sclr) holds, then the equality is true in A.

One direction of this equality is due to Skinner-Urban’s work on the Iwasawa main conjecture [71]; indeed,
along with [29] in the non-ordinary case, this is an essential ingredient in all of our results, as explained below.

1.3. Comparison to previous results. The hypotheses in Zhang’s proof of Kolyvagin’s conjecture were
carried over to Burungale, Castella, and Kim’s proof [8] of the lower bound on the Selmer group in the
Heegner point main conjecture, where it was also assumed that p is not anomalous. While the methods
used in this paper build on those of [8], Castella and Wan [16] have used a different method to prove a
three-variable main conjecture when v(N ) is even. Their result also requires some hypotheses on residual
ramification avoided here, and that N be squarefree. (Also see the references cited in §1.1 for several results
on the Heegner point main conjecture in other contexts.)

For upper bounds on the Selmer group in Theorem E and Theorem F, various technical assumptions on
the residual representation and on the image of the Galois action were used in prior works by Bertolini and
Darmon [3] and Howard [37, 38], and in Chida-Hsieh’s higher-weight generalization [18].

Since the results of this paper were first announced, Burungale, Castella, and Skinner [9] have also given
an independent proof of Theorem E when N~ =1 and p > 3 using base change.

1.4. Overview of the proofs. To prove Theorems A and D, we extend Kolyvagin’s construction to a larger
system of classes

(7) c(m, Q1) € H'(K,Ty/p™), Am,Q2) € O/p™,

where M is a fixed integer, and m,Q1,Q2 are squarefree products of auxiliary primes satisfying certain
congruence conditions, such that v(N~@Q1) is even and v(N~Q3) is odd. The classes (7) form a bipartite
Euler system in the sense of Howard [38] for each fixed m and a Kolyvagin system for each fixed Q. If

v(N ) itself is even, then the classes ¢(m, 1) = ¢(m) agree with Kolyvagin’s original construction. The Euler
system relations are of the form:

(8) IOC(] C(m7 Ql) ~ A(mv qu) ~ 8q/C(m, quq/)a
where ¢, ¢’ are two additional auxiliary primes not dividing Q1; and
(9) locjE c(m, Q1) ~ 0f c(ml, Q1),

where ¢ is an additional auxiliary prime not dividing m. Here locy, 9y, loc}t7 8} are certain localization
maps landing in subspaces of the local cohomology free of rank one over O/p™. The classes c¢(m, Q1) were
introduced by Zhang, although the A(m, Q2) are only implicit in [81].

If ¢(m, Q1) # 0, then one can use (8) and (9) to find an auxiliary ¢ — either prime or equal to 1 —
such that 9,e(ml, Q1) # 0 for some ¢|Q1. By (8), this implies A(mf,Q1/q) # 0. On the other hand, if
A(m,Q2) # 0 and ¢|Q2, then by (8) ¢(m,Q2/q) # 0. Combining these two observations, we reduce the
non-vanishing of some class ¢(m, 1) or A(m, 1) — depending on the parity of ¥(N~) — to exhibiting a single
Q2 such that A(1,Q2) # 0.

Now, if there exists a newform g of level NQo with a congruence to f modulo ™, then A(1,Q2) is
essentially the reduction of the algebraic part of the L-value L*#(g/K, 1) modulo p™, which is related to the
length of the Selmer group of g by the Iwasawa main conjecture [71, 29]. To complete the proof, it therefore
suffices to choose a suitable (Y2 and construct such a g with a small Selmer group. We remark that our
results can only be obtained by working modulo ™ for a large M, since in general it will not be possible to
choose g such that L&(g/K, 1) is a p-adic unit; in [81], M = 1 is fixed throughout, and the need to show
that the L-value is a unit is responsible for most of the additional hypotheses.

To construct g, we use deformation-theoretic techniques developed by Ramakrishna [59], and extended by
Fakhruddin-Khare-Patrikis [28]. Standard level-raising methods work by producing a modulo p eigenform
of the desired level, and then using that all modulo p eigenforms lift to characteristic zero, but this is not
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the case modulo . Instead, we deform the representation Ty/ oM to a p-adic Galois representation of a
suitable auxiliary level, and then apply modularity lifting to ensure the resulting representation is modular.
The auxiliary level @2 must be chosen to control two Selmer groups: the adjoint Selmer group governing
the deformation problem, and the Selmer group Sel(K, W, ) that is related to the L-value. (Here, W, is the
p-divisible Galois module constructed analogously to Wy = Vy/T}.)

We now make some remarks on the construction of the Euler system. The elements c¢(m, Q1) (resp.
A(m, Qz)) are constructed from CM points of conductor m on the Shimura curve Xy+ y-¢, (resp. Shimura
set Xn+ n-@,), associated to the indefinite quaternion algebra over Q with discriminant N~Q; (resp. the
definite quaternion algebra with discriminant N~Q2). Similar Euler system constructions have been made by
many authors, e.g. in [18, 3] as well as in [81], but all have relied on certain hypotheses ensuring an integral
multiplicity one property for the space of algebraic modular forms on X y+ n-¢,, which we do not impose
here. Instead, we obtain a control on the failure of multiplicity one, using the work of Helm [35] on maps
between Jacobians of modular curves and Shimura curves. The construction of the Euler system is intimately
related to level-raising, and so our method also improves results on level-raising of f to algebraic eigenforms
modulo M new at multiple auxiliary primes, which had previously been restricted to the multiplicity one
case. A precise statement is given in Theorem 4.6.7.

The proof of Theorem E is similar to that of Theorem A: the p-adically interpolated Heegner class K
is viewed as the bottom layer of an Euler system {k(Q1), A(Q2)}. (The squarefree conductor m no longer
plays a role.) If g, as above, is a newform of level NQ2 with a congruence to f, then A(Q2) is congruent to
Bertolini and Darmon’s anticyclotomic p-adic L-function of ¢ [3]. Using this and an Euler system argument,
we reduce the lower bound on the Selmer group in the Heegner point main conjecture to the lower bound on
the Selmer group in the anticyclotomic main conjecture for g, which was proven in [71]. Finally, the upper
bound on the Selmer group in Theorems E and F follows by standard arguments from the construction of
the Euler system.

In the text, the arguments described above are phrased in the language of ultrapatching, which amounts
to a formalism for letting M tend to infinity; this also forces each prime factor of m, @1, @2 to tend to
infinity in order to satisfy the congruence conditions. (The number of prime factors of m, @1, and Q-
remains bounded.) This method was inspired by [67], where ultrapatching was applied to the Taylor-Wiles
construction. Our setting is different in that we patch Galois cohomology groups and Selmer groups rather
than geometric étale cohomology groups. The benefit of ultrapatching is that it allows us to consider the
Euler system classes as characteristic zero objects in patched Selmer groups, significantly streamlining the
Euler system arguments. For instance, with patching, we are able to make precise the heuristic that the
non-vanishing of each Euler system class ¢(m, Q1) or A(m, Q2) is equivalent to the (m, Q;)-transverse Selmer
group being rank one or zero, respectively, cf. Lemma 8.2.4.

Structure of the paper. In §2, we review basic properties of ultrafilters and introduce patched cohomology
and Selmer groups. In §3, we present a simplified version of the theory of bipartite Euler systems that
appeared in [38], using patched cohomology. In §4, we establish the geometric inputs that will be used to
construct bipartite Euler systems: the work of Helm on maps between modular curves and Shimura curves,
the modulo pM level-raising result, and the behavior of Heegner points on Shimura curves under reduction
and specialization. In §5, we present a general framework for constructing bipartite Euler systems out of
CM points, which we then specialize for our applications. In §6, we give the deformation-theoretic input to
construct the newform g (in fact a sequence g,, satisfying increasingly deep congruence conditions). We then
prove Theorems E and F in §7. Theorems A and D are proven in §8. Finally, in the appendix we generalize
some results on degrees of modular parametrizations, proved in special cases by Ribet-Takahashi [64] and
Khare [41, §3.2]. These results are needed to compare different normalizations of periods in §8.

1.5. Notational conventions.

e If N is a squarefree positive integer, then v(IN) denotes its number of prime factors.

e If L is an algebraic extension of Q, we write G, = Gal(L/L) for its absolute Galois group.

o If L is a number field, we write Az (resp. Ay ) for its ring of adeles (resp. finite adeles). If v is
a place of L, then we write G, for the absolute Galois group of the completion L,, and I, C Gy,
for the inertia subgroup if v is nonarchimedean. We write Oy, for the ring of integers of L and Op,
(resp. Ofp, () for the completion (resp. localization) at a prime ideal p C Op. If ¥ is a finite set
of places of L, then L* denotes the largest algebraic extension of L unramified outside . If ¥ is a
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finite set of places of Q and X, is the set of places of L lying over places in X, then we abbreviate
L* = L%,

e The symbol Frob, always denotes an arithmetic Frobenius element.

e If L is a number field and A is a Gp-module, then L(A) is the smallest algebraic extension of L such
that G'1(4) acts trivially on A.

e We fix, for each place v of Q, an embedding Q < Q,,, which induces an embedding Gg, < Gg.

e For most of the paper, we will fix a quadratic imaginary field K ¢ Q C C. In this case we also fix
embeddings K — K, for all places w of K, which induce embeddings G, — Gx. If w is induced
by a place v of Q and the embedding K C Q <« Q, chosen above, then we make these choices
compatibly with the ones for @, so that Gk, is a subgroup of Gg, .

e The p-adic cyclotomic character is denoted x : Gg — Z,; .

e Starting in §3, we shall fix a cuspidal eigenform f of weight 2 and trivial character, new of level
N, and without complex multiplication. For all primes ¢, let a;(f) be the ¢th coefficient of the
normalized g-expansion of f, and let ey = £1 be the global root number. We denote by O¢ C C the
ring of integers of the number field generated over Q by the Fourier coeflicients ay(f). We denote by
o a prime of Oy lying over an odd prime p; except in §6, we also assume p{ N. We write O for the
completion of Of at g, and let £ = Frac(O). We let 7 € O be a uniformizer.

e For f as above, we denote by V; the p-adic Galois representation associated to f, defined in the
beginning of this introduction. Fix a Gg-stable O-lattice Ty C Vy. We will always assume that
Tf = Ty /7 is absolutely irreducible, in which case T is determined up to rescaling. We also write
W =T ®o E/O = Vf/Tf.
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2. ULTRAFILTERS AND PATCHING

2.1. Ultraproducts. The following discussion is inspired by the unpublished notes of Manning [48, §I.1].

2.1.1. A (non-principal) ultrafilter § for the natural numbers N = {0,1,...} is a collection of subsets of N
satisfying the following properties:

(1) Every set S € § is infinite.

(2) For every S C N, either Se For N— S € 3.

(3) If S; € S2 c N and S; € §, then S; € §.

(4) If 51,52 € §, then S1 NSy € F.
Throughout this paper, we fix once and for all a non-principal ultrafilter § on N, which is possible assuming

the axiom of choice. We will say that a statement P holds for §-many n € N if the set S of n for which P
holds lies in §.

Proposition 2.1.2. Suppose that C is a finite set and S C N lies in §. Then for any functiont : S — C,
there is a unique ¢ € C such that t(n) = ¢ for F-many n.

Proof. The function ¢ defines a finite partition of N:
N=(N-8)u| |t (.
ceC

An easy induction argument shows that, for any partition of N into a finite number sets, exactly one of the
sets lies in §. Since N — S € §, the result follows. O
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2.1.3. If M = {My,}, .y is a sequence of sets indexed by N, then § defines an equivalence relation ~ on
11 M.,:
(mn)nen ~ (M)neny <= {n : m, =m,} €3.

The quotient [| M,,/ ~ is called the ultraproduct of the sequence M and is denoted U(M). The ultra-
product is functorial: let M’ = {M/,} be another sequence of sets and suppose given, for §-many n, maps
©n : M, — M. Then there is a natural map ¢ : U(M) — U(M'). In particular, if each M,, is endowed
with the structure of an abelian group (resp. R-module for a fixed ring R), then U(M) is naturally an
abelian group (resp. R-module).

Proposition 2.1.4. (1) Let M = { My}, and M" = {M]} .\ be sequences of nonempty sets, and
suppose given maps @p, : My — M) for F-many n. If @, is injective (resp. surjective, bijective) for
F-many n, then oM is injective (resp. surjective, bijective).

(2) Let M be a finite set and suppose M = {M}, _y is the constant sequence. Then the diagonal map
M — U(M) is an isomorphism.

(3) Suppose M = { My}, y, where each M, is a nonempty finite set such that #M, < C for F-many
n. Then U(M) is finite and #U(M) = #M,, for F-many n.

Proof. (1) Suppose ¢, is injective for F-many n and let m,m’ € U(M) be the equivalence classes of
sequences (my)neny and (M) )nen. If @M (m) = M (m/), then for F-many n, ¢,(m,) = @,(m.).
Hence for §-many n, m,, = m!,, so m = m’ in U(M). Therefore @ is injective.

Now suppose ,, is surjective for F-many n, and let m’ € U(M’) be an element represented by

(m!,)nen. We will show that m’ lies in the image of ¢¥. Let S € § be such that ¢, is surjective for
n € S. Define a new sequence (my,)nen by choosing m,, € M, arbitrarily for n ¢ S, and choosing
my, € M, such that ¢, (m,) =m], for n € S. Then the equivalence class m of this sequence satisfies
oM (m) = m'. Hence, @ is surjective.

(2) The diagonal map is clearly injective, and it is surjective by Proposition 2.1.2.

(3) By Proposition 2.1.2, there exists some ¢ < C such that #M, = c for Fmany n. Let [¢] =
{0,...,c— 1} and choose isomorphisms of sets

On s M, = [

for F-many n. By (1), ¢“ induces an isomorphism from U/(M) to the ultraproduct C of the constant
sequence {[c]}, . However, C is canonically isomorphic to [c] by (2).
O

Proposition 2.1.5. Let S be the category of sequences of abelian groups indexed by N. Then U is exact as
a functor from S to the category of abelian groups.

Proof. Let A= (An)nen, B = (Bpn)nen, and C = (Cy,)nen be three sequences of abelian groups, and suppose
given exact sequences

OﬁAnﬂ—)Bnﬂ—)CnHO

for all n € N. We wish to show that
0= UA) L5 UB) L= UEC) — 0

is exact. By Proposition 2.1.4(1), it suffices to show that the kernel of ¥ is the image of Y. Suppose
(b )nen represents an element b € kery¥. Then, by definition, v, (b,) = 0 for F-many n, so for F-many
n there exists a,, € A, with ¢,(a,) = b,. Hence, there exists a sequence (a,)nen representing an element
a € U(A) with ¢¥(a) = b. We have shown that ker ¥ C im ¢". Since the opposite inclusion is clear, this
completes the proof. O

2.2. Ultraprimes.
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2.2.1. Fix a number field L yith alﬁgebraic closure L and let My, be its set of places. For each s € My, we
assume fixed an embedding L < L, which identifies G1, with a subgroup of G.! If My, is the constant
sequence of sets { M} then we define the set of ultraprimes of L as
Mg =U(ML).

By definition, an ultraprime s € My, is an equivalence class of sequences (s, )nen, where each s,, is a place of
L.

The map s — (s,s,...) induces an embedding My — M, written s — s, and we say an ultraprime is
constant if it lies in the image of this embedding.

We will say s € My, is archimedean if it is a constant ultraprime s = s for an archimedean place s of L; s
is non-archimedean otherwise.

neN?

Proposition 2.2.2. Let s be a non-constant ultraprime. Then there exists a unique Frobenius element
Frobs € G with the following property: for each finite Galois extension L C E C L, and for any repre-
sentative (Sp)nen of s, there are F-many n such that s, is unramified in E/L and the Frobenius of sy in
Gal(E/L) is the natural image of Frobs.

Proof. Let (s,)nen be a representative of s, and fix for the time being a finite Galois extension E/L inside
L. If s, is archimedean or ramified in E for §-many n, then Proposition 2.1.2 implies that s is constant.
Thus for F-many n, the Frobenius of s, is a well-defined element of Gal(E/L) (determined exactly, and
not only up to conjugacy, by the fixed embeddings E < L < L, ). By Proposition 2.1.2, the map
n — Frobs, € Gal(E/L) sends §-many n to a (unique) common value gg € Gal(E/L). Note that g does
not depend on the representative (s,)nen. By the uniqueness of gg, the association E — gg is compatible

with restriction to subextensions E’ C F, hence defines an element of the absolute Galois group. ]

2.2.3. Let s be an ultraprime. We define its abstract Galois group Gs as G, if s = s is constant, and as the
semi direct product

Z(1) » (Frob)
otherwise. Here, (Frobs) denotes the free profinite group on one generator, where the generator acts on Z( 1)
by Frobs € Gr. We define the inertia group Is C G5 of s to be the usual inertia group if s is constant, and
the normal subgroup Z(1) C G otherwise.

2.3. Local cohomology.
2.3.1. For any (topological) G-module A and for any s € My, there is a natural action of G5 on A (factoring
through the quotient Gs — (Frobs) if s is nonconstant). We define local cohomology groups by:

H'(Ls, A) == H'(Gs, A),

HY (I, A) == H'(I, A), i>0,
where on the right-hand side we take continuous cochain cohomology. (In particular, for all s € M,
H'(Ls, A) = H'(Ls, A).)

Proposition 2.3.2. Lets € My, be an ultraprime represented by a sequence (Sn)nen- If A is a finite, discrete
Gr-module unramified outside finitely many primes, then for §-many n there are canonical isomorphisms
(functorial in A, compatible with cup products, and compatible with the natural restriction maps):

HY(L,,,A) ~H (L, A),

H(I,,, A) ~ H' (I, A), i>0.
Proof. If s is the constant ultraprime s, then s, = s for §-many n, and the desired isomorphisms are given
by Proposition 2.1.4(2); so suppose s is nonconstant. For §-many n, the action of the decomposition group
G,, at s, on A is unramified and the Frobenius of s, acts by Frobs. Let £,, be the prime of Q lying under

Sn; since L/Q is a finite extension and A is finite, for §-many n we have £,, 1 |A|. Restricting to these n, the
inflation map induces isomorphisms:

HY(G! JA)~H'(Ls,,A), H'(I, ,A)~H'(I,,,A),

IWe will usually apply this formalism with L = Q or L = K, in which case the choices of embeddings L < L are fixed
according to the conventions of §1.5.
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where G’;n and [ ;n denote the tame quotients and we again take continuous cochain cohomology. The tame
Galois group G is identified with the semidirect product:

It x (Froby, ) =~ Z*)(1) » (Frob,, ).

S

In particular, both Gin and G have cohomological dimension two; and both Iﬁn and I5 have cohomological
dimension one. So it suffices to prove the first isomorphism of the proposition when ¢ < 2 and the second
when ¢ < 1. Now note that, on any finite quotient of i( 1), the actions of Froby,, and Frobs agree for F-many
n. The proposition therefore follows from the following easy lemma in group cohomology (applied to both
GY and Gi). O

Lemma 2.3.3. Let G =1 x (F) be a group, where I is abelian and profinite of cohomological dimension at
most one, and (F') denotes the free profinite group on one generator, acting on I by an automorphism. If A
is a finite Z|F]-module, viewed as a G-module via G — (F'), then there are canonical isomorphisms for the
continuous cochain cohomology:

H'(I,A) = H'(I/|A|, A), i=0,1,
HY(G,A) = H'(I/|A| x (F), A), i=0,1,
H2<G7A) = H1(<F>7H0m(1/|A‘7A))>

Proof. The only identities that are not immediate are for H*(G, A), with i = 1,2. For i = 1, we claim that
the inflation map induces an isomorphism

HY(I/|A] x (F),A) = H'(G, A).

Equivalently, if H := |A|I C G, we wish to show that the restriction map H'(G, A) — H'(H, A) is trivial.
Indeed, the restriction map factors through H'(I, A) — H'(H, A), which is the zero map since I acts trivially
on A.

For i = 2, the Hochschild-Serre spectral sequence gives a canonical isomorphism

H*(G,A) = H'((F), H'(I, A)) = H'((F),Hom(I/|A|, A)),

since both (F) and I have cohomological dimension at most 1.

|
2.4. Patched cohomology.
2.4.1. Let S C My, be a finite set of ultraprimes {s(l),s(2)7 e ,s(T)}. A representative of S is a sequence
(Sn)nen, with S,, € My, such that S,, = {5511), e ,ssf)} for some sequences (sg))neN representing s(9). If

L = Q and S contains no archimedean ultraprimes, we will also refer to S being represented by the sequence
of squarefree integers Henesn ln. If Ais a Gp-module, we say A is unramified outside S C My, if it is
unramified outside S N M7y,.

Definition 2.4.2. Let A be a finite Gz-module unramified outside a finite set S C My, represented by a
sequence (S )neny with S, C M. Then we define the ith unramified-outside-S patched cohomology, for all
i >0, by:

HI(LS /L, A) = ({15 /L, )}, ) -
Remark 2.4.3. When i = 0, the patched cohomology H°(LS, A) is canonically isomorphic to H°(L, A).

Proposition 2.4.4. Let A be a finite G -module unramified outside a finite set S C My. Then:
(1) The patched cohomology H'(L>/L, A) is independent of the choice of representative (Sp)nen of S.
(2) The maps A~ H(LS/L, A) are functorial in A.
(3) Given a finite set S' C My containing S, there is a natural map H'(LS/L, A) — HY(LS'/L, A),
compatible with the functoriality of (2).
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Proof. Given two sequences (Sp)neny and (T, )neny C M|, representing S, we have S,, = T,, for F-many n; for
these n we have

HY(LS"/L,A) = H (L™ /L, A).
Hence Proposition 2.1.4(1) shows that U <{Hi(LS"/L,A)}n€N) and U <{Hi(LT"/L,A)}neN> are canoni-
cally isomorphic. This shows (1); (2) and (3) are immediate from the functoriality of the ultraproduct. [

Lemma 2.4.5. Let A be a finite Gr-module unramified outside a finite set S C My. Then H'(L%/L, A) is
finite for all i > 0.

Proof. By Proposition 2.1.4(3), it suffices to show that the cardinality of H*(L®/L, A) remains bounded as
S ranges over finite sets of My, of cardinality |S| such that A is unramified outside S. This is clear when
1 =0, and the case i > 3 is handled by [51, Chapter 1, Theorem 4.10(c)]. For ¢ = 1 and 2, let Sy be the set
of primes at which A is ramified, or with residue characteristic dividing |A|. Now the map

HY(LS/L,A) = [ H'(L.,A)
vESUSH
has kernel contained in III% (A), which is finite by part (a) of loc. cit. Moreover S is finite and H'(L,, A)

is finite for all v € Sy. For v € S\ Sy, we have |[H(L,, A)| < |A|? by the local Euler characteristic formula
and local Poitou-Tate duality; hence

[HY(LS/L, A)| < [T, (A)] - [] [H' (Lo, A)] - |APF,
vESH

which gives the desired uniform bound. |

2.4.6. Suppose A is a topological G-module unramified outside a finite set S C My. If A is profinite, then
its unramified-outside-S patched cohomology is defined as:
HI(LS/L,A) = Tim HI(L%/L, A)
A—»A
where the inverse limit runs over finite quotients and the transition maps are induced by Proposition 2.4.4(2).
Similarly, if A is ind-finite, then its unramified-outside-S patched cohomology is defined as
HY(L%/L, A) = lim H'(L>/L, A"),
A'CA
where the direct limit runs over finite submodules. If A is finite, then both these definitions recover Definition
2.4.2. If A is either profinite or ind-finite, then the totally patched cohomology is defined as
HY(L,A) = 1lim H'(LT/L,A),
SCTCM,
where the direct limit is over finite subsets such that A is unramified outside S and the transition maps are
induced by Proposition 2.4.4(3).

By construction, the maps A ~ H*(L%/L, A) and A — H*(L, A) are functorial in topological Gr-modules
which are either profinite or ind-finite.

Definition 2.4.7. A profinite topological Gr-module A is said to be countably profinite if it admits only
countably many finite quotients, or equivalently, if it admits a presentation as a countable inverse limit of
finite discrete Gr-modules.

Lemma 2.4.8. Suppose A is countably profinite. Then for alli > 0, the natural map induces an isomorphism
HY(Ls, A) ~ lim HY(Ls, A)
A—»A'

where the inverse limit runs over finite quotients of A. Similarly, if A is ind-finite, then for all i > 0, the
natural map induces an isomorphism

H'(Ls, A) ~ lim H'(Ls, A")
A'CA

where the inverse limit runs over finite sub-Gr-modules of A.
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Proof. In the countably profinite case, this follows from [55, Corollary 2.7.6] applied to Gs. In the ind-finite
case, it is clear by the exactness of direct limits. O

2.4.9. Suppose A is a topological G-module which is ind-finite or countably profinite, and unramified outside
a finite set S C My ; let s € M, be any ultraprime. Using Lemma 2.4.8, we can define localization maps
Res? : HY(LS/L, A) — Hi(Lg, A)
Res, : H (L, A) — H(Ls, A)
as follows.
o If A is finite, define Res® as the composite

Hi(LS/L, A) = U ({Hi(LSn/L,A)}neN) Ny ({Hi(Lsn, A)}neN) ~ Hi(Ls, A),

where (s, )nen and (S, )nen are sequences representing s and S and the last isomorphism is by
Proposition 2.3.2.
e If A is countably profinite, define Resf as the composite

S
Res;

H(L>/L, A) = lim HY(L®/L, A") —= lim H'(L, A) ~ H(Ls, A),
A=A’ A—sA

where the inverse limit runs over finite quotients of A and the last isomorphism is by Lemma 2.4.8.
e If A is ind-finite, similarly define Resf as the composite

S
Res;

HI(LS/L, A) = lim H(LS/L, A") =% lim H(L, A') ~ H'(Ls, A),
A'CA A'CA

where the direct limit runs over finite submodules of A.
e Suppose S’ O S is a finite subset of My. By construction Resf coincides with the composite
HY(LS/L, A) — HY(LY /L, A) — H'(Ls, A);
hence we obtain a well-defined map
Res, : H' (L, A) — H'(Ls, A).
We now observe that patched cohomology recovers the usual Galois cohomology when S contains only
constant ultraprimes.
Proposition 2.4.10. Suppose A is a countably profinite or ind-finite topological G -module unramified
outside a finite set S C My ; let S C My, be the corresponding set of constant ultraprimes. Then:
(1) HY(L3/L, A) is canonically isomorphic to H'(L® /L, A).
(2) If s € My, is any place and s = s is the corresponding constant ultraprime, then the restriction map
Ress : HY(L%/L, A) — H'(Ls, A) = H'(L,, A)
coincides with the usual one under the identification of (1).
Proof. If A is finite, (1) is immediate from the definition; the general case of (1) follows by taking limits,
using [55, Corollary 2.7.6] in the countably profinite case. (The finiteness condition there is satisfied by

Lemma 2.4.5.) Given (1), (2) is clear from the definition.
O

Proposition 2.4.11. If A is either countably profinite or ind-finite, then, for all i, the natural map
H(L3/L, A) — HY(L, A) identifies H'(L° /L, A) with the kernel of the composition
HI(L,A) == T H(Ls, A) = H'(Ls, A).
seMp —S

Proof. 1t suffices to show that, for all finite sets T C My — S,

HY (LS /L, A) ~ ker (Hi(LSUT, A) = [JH (L, A)) .
seT
This holds when A is finite by Propositions 2.1.5 and 2.3.2; the general case follows by taking limits. ]
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Lemma 2.4.12. Let
0>A—-B—-C—0

be an exact sequence of either countably profinite or ind-finite G ,-modules unramified outside S. Then there
is an induced long exact sequence beginning:

0— HY(LS/L,A) — H(L3/L,B) — HY(L®/L,C) —
— HY(L®/L,A) = HY(LS/L,B) — - --
Proof. If A, B, and C are all finite, then this follows from Proposition 2.1.5.
Now suppose that A, B, and C are all profinite. Let I, J, and K be directed sets indexing the finite

quotients A — A;, B — Bj, and C — C}, respectively. We define morphisms of directed sets ¢ : J — I and
s:J— K by

i) =im(A = By), Ci) = Bj/Ay)-
Because the subgroup and quotient topologies on A and C' agree with the profinite topologies, the images of
t and s are cofinal in I and K, respectively. We therefore have:
H*(L>/L, A) = lim H*(L%/L, Ay;)), H*(L®/L,C) = lim H*(L%/ L, Cy(jy).
JjeJ jEJ
For each j, the finite case of the lemma yields a long exact sequence in patched cohomology associated to
the short exact sequence of finite G'r-modules

0— At(j) — Bj — Cs(j) — 0;

by Lemma 2.4.5, each term in the long exact sequence is finite. Since countable inverse limits of finite abelian
groups are exact, taking limits completes the proof. The ind-finite case is analogous. O

The following lemma will be needed in the proof of Corollary 8.2.8 below.

Lemma 2.4.13. Let A be a countably profinite or ind-finite G 1,-module unramified outside a finite set S. If
s &S has Froby = 1 € G, then Resg H'(L3/L, A) = 0.

One can easily show using the Chebotarev density theorem that there are infinitely many s € My with
Frobs = 1, so the lemma is not vacuous.

Proof. Without loss of generality, we may assume A is finite. Let S and s be represented by sequences
(Sn)nen and (s, )nen, respectively, with s, € S,,. Because A is finite, a class ¢ € H'(L%/L, A) is represented
by a sequence of cocycles ¢,, € H*(L%" /L, A). The restriction of ¢, to G'1(4) is a homomorphism G4y — A4;
let L(c,) be the fixed field of its kernel, which is a finite extension of L. Then for F-many n, s, is unramified
in L(c,)/L with Frobs, = 1 € Gal(L(c,,)/L). For these n, Ress, ¢, € H'(Ls,, A) is the trivial unramified
cocycle Frobg, +— 0. Hence Res,, ¢, = 0 for §-many n, which shows Ressc = 0. O

2.5. Selmer structures and patched Selmer groups.

2.5.1. For any topological G -module A and any ultraprime s € My, define
Hine(Ls, A) == ker (H' (L, A) — H'(I5, 4)) .

Definition 2.5.2. Let A be a countably profinite or ind-finite Z,[Gr]-module. A (generalized) Selmer
structure (F,S) for A consists of:

e a finite set S C My, containing all constant ultraprimes s = s with s lying over p or oo, such that A
is unramified outside S;
e for each s € My, a closed Z,-submodule (the local condition)

H3(Ls, A) C H'(Ls, A)
such that HL-(Ls, A) = HL  (Ls, A) for all s & S.

If A is an R-module for some ring R and G, acts on A by R-module automorphisms, then the patched local
and global cohomology groups inherit an R-module structure; a Selmer structure for A over R is a Selmer
structure such that every local condition is an R-submodule.
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2.5.3. If B C A is any closed Galois-stable submodule, then a Selmer structure (F,S) for A induces Selmer
structures on B and A/B defined in the usual way:

H'(Ls, A)
! = 1 T\ )
H>(Ls, B) = ker <H (Ls, B) — H;(LS’A))

H%(Ls, A/B) = im (H%(Ls, A) — H'(Ls, A/B)) .

Note that these Selmer structures are well-defined because, if s € S, then the unramified local condition for
A at s induces the unramified local condition for B and A/B; the proof is the same as for [49, Lemma 1.1.9].

2.5.4. To a generalized Selmer structure we associate the patched Selmer group, defined by the exact
sequence:

(10) 0 — Selx(A) — HY(LS/L, A) %Hm

By Proposition 2.4.11, Sel=(A) does not depend on S but only on the local conditions, so we sometimes omit
S from the notation. By Proposition 2.4.10, if S consists only of constant ultraprimes, then this definition
recovers the usual notion of Selmer groups.

2.5.5. If B C A is Galois-stable, and B, A/B are equipped with the induced Selmer structures, then by
definition there are natural maps:

Sel}‘(B) — Sel}-(A) — Sel}-(A/B)

Proposition 2.5.6. Let (F,S) be a generalized Selmer structure for A. If A is countably profinite and each
continuous finite quotient A — A’ is equipped with the Selmer structure induced by F, then:

lim Selz(A") ~ Selx(A).
«—
If instead A is ind-finite and each finite submodule A" C A is given its induced Selmer structure, then:
. N o~
h_H)lSGl]-‘(A ) =~ Sel=(A4).

Proof. We show the countably profinite case; the ind-finite case is similar. By definition, Selz(A) is the
kernel of

HY (L, A)
lim H! (LS /L, A') - 7,
N ey

whereas

Y(Ls, A)
. AN T S / Sy
h£18e1;(A)_h£1ker< (L3/L, A") g (Lo A7) )

_ S (L57 A/)
Since H%(Ls, A) is a closed subgroup of H!(Ls, A), it is isomorph1c to the inverse limit:
HL(Ls, A) = lim im (Hx(Ls, A) = HY (Ls, A")) = lim HL (L, A").
This implies the result. 0

Remark 2.5.7. The following remark will be needed in §3.3. Suppose L/Q is Galois, and let A be a
countably profinite or ind-finite topological G1-module unramified outside a finite set S C My. For an
element v € G, consider the twist A, of A, where the G, action is precomposed with the conjugation map

CPV:GL‘}GL'

If s — s denotes the natural action of Gg on My, (factoring through Gal(L/Q)), then there are canonical
isomorphisms

(11) HY(L%/L, A) = H'(L>" /L, A,),
(12) H'(Ls, A) = H'(Lgv, A,), Vs € Mp.
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Indeed, when A is finite, these are induced functorially from the map induced by ¢, : G, — G on usual
Galois cohomology, using Proposition 2.3.2 in the local case; in general, they are induced by taking limits,
applying Lemma 2.4.8 in the local case. In particular, a generalized Selmer structure (F,S) for A induces a
generalized Selmer structure (F7,S7) for A, by setting H% (Ls, A,) to be the image of H%(L_,-1, A) under
(12) for all s € M. Note that (11) then induces a canonical isomorphism

(13) Selr(A) = Selz+ (A,).

2.6. Selmer groups and duality over discrete valuation rings.

2.6.1. Let O be a discrete valuation ring, with uniformizer 7, which is a finite flat extension of Z,; write
E =0[1/n].

Proposition 2.6.2. Lets € My be any ultraprime and let R = O, O/n7, or E/O. Then there is a canonical
isomorphism

R, s non-archimedean,
H?(Ls, R(1)) 2 { R[2], s=s, s archimedean, Ly = R;
0, s = s, s archimedean, Ly = C.

Proof. For R = O /77, this follows from Proposition 2.3.2. The cases R = O and R = E/O follow from the
case O/mJ by Lemma 2.4.8. O

2.6.3. For a topological O[G]-module A, let

A* = Homp (A, E/O(1))
be the Cartier dual. By Proposition 2.6.2, the cup product induces a pairing
(14) (s : Hi(Lg, A) x H* (L, A*) = E/O, i=0,1,2,
for all s € My..

Proposition 2.6.4. Suppose A is a countably profinite O[Gr]-module unramified outside a finite set S
containing all s = s with s|poco. Then:

(1) The pairing (-,-)s is perfect if s € My, is non-archimedean, or if i = 1.

(2) Ifs € My, is not equal to s for a prime s|p, then HL_ (Ls, A) and H},,
under (-, -)s.

(8) Fori=0,1,2, the induced pairing

(Ls, A*) are exact annihilators

Yees(, s : HI(LS/L, A) x H*~Y(L°/L, A*) — E/O
1s identically zero.
Proof. Let d be the valuation of the different of E/Q,, i.e.
(e E : tr(zO)CZ,y =70,
and let tr’ : E/O — Q,/Z, be the composite

EJO ™Y Birmto0 B Q,/2,.

If we set A’ := Homg, (A, Qp/Z,(1)), then the map ¢ — tr’ op defines an isomorphism A* = A’. This
isomorphism fits into a commutative diagram

Hi(Ls, A) x H2~#(Ls, A*) —22%4 E/O

: b

H'(Ls, A) x H**(L,, A") <*>S> Qp/Zy
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for ¢ = 0,1,2. Tt is then not difficult to check that each of (1), (2), (3) follows from its analog for A’. So
without loss of generality we may suppose O = Z,. We may also assume without loss of generality that A
is finite, since the general case of each statement follows by taking limits using Lemma 2.4.8. Then (1) and
(2) follow from Proposition 2.3.2 and the usual local Tate duality. For (3), S is represented by a sequence
(Sn)nen such that A is unramified outside S,, and each S,, contains all s|poco. Since A is finite, the pairing
map Yses (-, )s is the ultraproduct of the maps

Senes, (s s, + H (L L, A) x H*H(LS" [L, A%) = Qp/Zy,
which are all identically zero by global Tate duality. O

2.6.5. Suppose A is an O[Gr]-module such that either A or A* is countably profinite. If (F,S) is a generalized
Selmer structure for A over O, then we define the dual Selmer structure (F*,S) for A* by:

HL. (L, A*) = HL(L,, A)*.

Here L denotes the orthogonal complement under the pairing of (14); the local conditions outside S are
unramified by Proposition 2.6.4(2). Moreover, the proof of that proposition shows that the dual local
conditions do not change if we instead view A as a Z,[GL] module. We observe that the dual Selmer
structure to (F*,S) is again (F,S). When A is finite, the dual Selmer groups are related by the Greenberg-
Wiles formula:

Proposition 2.6.6. Let A be a finite O[GL]-module, and let (F,S) be a Selmer structure for A over O. We
have:
# Selr(A) #HO(LS/L, A) H #HL(L
# Selr« (A*) T #HO (LS/L, A*) #HO(L

Proof. Suppose s € S is represented by the sequence (s,)nen. Then Proposition 2.3.2 implies that, for
$-many n, we have isomorphisms

H'(L,,A) 2 H (L, A)
and
H(L,,, A*) = Hi(Ls, A*)
for i = 0,1, 2, compatible with the duality of Proposition 2.6.4(1). Let H} (Ls,,A) C H'(Ls,, A) be the im-
age of Hj-(Ls, A) under the first isomorphism; then its orthogonal complement Hz. (Ls, , A*) C H'(Ls, , A*)

is the image of HX. (Ls, A*). This defines dual Selmer structures (F,, S,) and (F, S,) on A for F-many n,
where (S,,)nen represents S. By Propositions 2.1.5 and 2.3.2,

Selz(A) = U ({Selr, (A)},cy)» Selr-(A*) = ({Selp )}nEN) ,
so by [24, Theorem 2.19] and Proposition 2.1.4(3), we have

#Selr(A)  #HO(L,A) #HL (L, A)
#Selr-(A*)  #HO(L, A*) H #HO (L, , A)

for §-many n; since
#HF, (Ls,, A) = #Hz(Ls, A)
for F-many n by definition, and likewise for H?, this implies the proposition. n

2.6.7. Given two Selmer structures (F,S) and (G, T) for A, we may define Selmer structures (F +G,SUT)
and (FNG,SUT) by the local conditions:

Hy g(Ls, A) = H(Ls, A) + H§ (Ls, A),
Hing(Ls, A) = Hx(Ls, A) N HE (L, A).

Corollary 2.6.8. Let A be an O[GL]-module such that either A or A* is countably profinite, and let (F,S)
and (G, T) be generalized Selmer structures for A over O. Then

Selr4g(A) c Hiﬁrg(l’s’ 4)

Sel}-mg (A) sESUT H}_—mg(Ls, A)
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and
Selr g+ (A") c Hi g+ (Ls, A*)
Selzxngr (A*) sCSUT H}:*ﬁg* (LS, A*)
are exact annihilators under the perfect pairing
HL - (Ls, A) .G ,A
ZseSUT<'7'>s3 H}-WTSA H H]: +6 > A )) — E/O
seSuT  FNGATS seSUT Feng-(

induced by (14).

Proof. By Proposition 2.5.6 and Lemma 2.4.8, we may assume without loss of generality that A is finite.
Proposition 2.6.4(3) implies that the spaces

Selryg(A) Selr+ig-(A¥)
Selrng (A) ’ Selr«ng= (A*)

annihilate each other under X¢esyt(:, +)s, so it suffices to show

# Selrig(A) #Self*+g H #Hf+g 4)
#Selrng(A)  # Selr-ng-( CsuT #HEAg( A)

By Proposition 2.6.6, the left-hand side of (15) is

T #HE g(Ls, A) #HE. g (Ls, A7)
#HO(L,, A) ZHO(L,, A*)

(15)

seSUT

or equivalently
11 #Hr g (Ls, A) #H'(Ls, A)
#HO(Lg, A) #H]_-mg(Ls,A)#HO(LS7A*)

seSuUT
because Hg(Ls, A) is the exact annihilator of H}:*+g*(LS,A*) under (-, -)s. So it suffices to show

H'(Ls, A)
11 #HC Ls,A #HO(Ls, A*)

seSUT

(16) =1.

Now note that, by the local Euler characteristic formula, Proposition 2.6.4(1), and Proposition 2.3.2,
#H(Ls, A) #H' (Ls, A)

#HO(L, A)#HO(Ly, A*) — #HO(L,, A)#H2(Ls, A)

unless s = s, where s|oo or s|p; moreover we have

o, #HO(Ls, A)#HO(Ls, A*) #Hl(Ls,A)
5‘;’ s|oo
This shows (16) and completes the proof. O

2.6.9. Now suppose that A = T is a topological O[G1] module, unramified outside a finite set S C My, which
is free of finite rank over O. In particular, T is countably profinite. Suppose S C My, is a finite set containing
all archimedean places and all places over p, such that T is unramified outside S. If TT = Homo (T, O(1)) is
the dual, then the cup product induces a local Tate pairing

(17) (-, )s : HY(Ls, T) x HY(Ls, TT) — O.
Proposition 2.6.10. The kernels on the left and right of (17) are the O-torsion submodules; moreover, the
induced pairing
HY(LS/L,T) x HY(LS/L, T1) — [ H'(Ls, T) x H'(L, T1) =225 0
seS

is identically zero.
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Proof. For each s, we have the short exact sequence
0 — HY(Ls, T) /77 — H'(Ls, T/77) — H?*(Ls, T)[r?] — 0
arising from the long exact sequence in Gs-cohomology associated to 0 — T'— T — T'/mJ. Hence
0 — lim Homo (H*(Ls, T)[#’], O /77 ) — lim Homoe (H*(T/77), O /n?) — Homo (H' (Ls, T),0) — 0
J J
is exact. By Proposition 2.6.4(1) and Lemma 2.4.8, this is canonically identified with an exact sequence
(18) 0 — lmH(Ls, T%) /77 — H'(Ls, T") — Homo(H'(Ls, T), 0) — 0,
J

where the third arrow is induced by (17). The first term in (18) is clearly m-power-torsion, while the last
term is torsion-free, and so we can identify I'&Hj HO(Ls, T*)/m7 with HY(Ls, TT)[7>°]. This proves the first

claim, and the second follows from Proposition 2.6.4(3) using the commutativity of the diagram

HY (L, T) x HY(Ls, TT) ——— O

! J

HY(Ls, T/77) x HY(Ls, TT/77) —— O/77
for all s € S and all j > 1. O

Given a Selmer structure (F,S) for T over O, taking the orthogonal complement of each local condition
under (17) yields a Selmer structure (FT,S) for 7.

Definition 2.6.11. A closed O-submodule HY(Ls,T) C H'(Ls, T') is said to be saturated if the quotient
HY(Ls, T')/HY(Ls, T) is 7-torsion free. A Selmer structure (F,S) for T over O is saturated if each local
condition H%:(Ls, T) is saturated.

Note that, if T' is unramified outside S C Mz, then H} (L, T) is saturated for all s ¢ S because H!(Is, T')
is m-torsion-free.

Proposition 2.6.12. If H-(Ls,T) is saturated, then for all j > 1, we have
ML (Lo, T*[77]) = Hly (Lo, T /)
under the natural identification T*[77] ~ TT/77. In particular, if (F,S) is a saturated Selmer structure for

T, then
Selz- (T*[x7]) = Selz+ (T /7).

Proof. For ease of notation, we abbreviate HY(TT) = Hi(LS,TT), etc. We have an identification TT ®¢
(E/O) ~ T* and an embedding TT/m/ < T*; let H%.(TT/77) be the induced local condition from this
embedding. Consider the following commutative diagram with exact rows:

0 — HYT*) a5y — HL(TT) —— Homo (M,(’)) — 0
F HL(T)

5 s b

0 — HY(T")/n? — HL%(TT/77) — Homo (Hl(T) O/ﬂ'j) — 0.

AL(T)”

Here, the first horizontal map on each row is the Kummer map, the subscript /div refers to the quotient by
the maximal divisible submodule, and the exactness of the top row uses (18). By the saturation hypothesis,
v is surjective, and « clearly is as well, so ( is surjective by the snake lemma. O

Proposition 2.6.13. Let (F,S) be a Selmer structure for T over O. Then:
rko Sel#(T) — rko Sel z (TT) = rko HO(L,T) — rko H(L, TT)+

Z (tko Hi(Ls, T) — tko HO(Ls, T)) .
seS
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Proof. We first reduce to the case that (F,S) is saturated. Indeed, if we define
HY(Ls, T)
H;;(LS,T) = ker (Hl(LS,T) — H}_—T:T) & Qp)
for all s, then (F,S) is a saturated Selmer structure for T. Now, there is an exact sequence 0 — Sel(T') —
HL(stT)
F

Sel=(T) — [qes AL Since the final term is a finitely generated torsion O-module, we have

ko Sel7(T') = rko Sel (7).

So, replacing F with Fif necessary, we may assume (F,S) is saturated. By Propositions 2.6.6 and 2.6.12,
we have for each j:
lgo, Sel(T/m7) —lge Sel gt (TT /7)) = 1go HO(L, T/77) —1go HO(L, T /77

+3 (g Hy(Ls, T/77) — g H(Ls, T/77)) .
s€S

Since Selx(T') is a finitely generated O-module, it follows from [49, Lemma 3.7.1] that
lge Selx(T/n7) = j - tko Sel#(T) + O(1)

as j varies, and likewise for Sel+ (T'") and each term on the right-hand side; the proposition follows. |

3. BIPARTITE EULER SYSTEMS
3.1. Admissible primes.
3.1.1. Let f, N, p, O, E, m, Vy, Ty, and Wy be as in §1.5. Then V; is a two-dimensional E-vector space
equipped with a non-degenerate, symplectic, Gg-equivariant pairing:
(19) Vi x Vi = AV =2 B(1).
Recall that Ty = Ty/7 is absolutely irreducible as an O[Gg]-module. Since the dual lattice to T is also
O|Gg]-stable, after rescaling we may assume that (19) restricts to an O(1)-valued pairing
(20) Ty x Ty = O(1)
which identifies Ty with Homo (T, O(1)). We will sometimes use the condition:
(sclr) The image of the Gg action on T's contains a nontrivial scalar.

Fix an imaginary quadratic field K/Q of discriminant coprime to Np.

Definition 3.1.2. A nonconstant ultraprime q € Mg is said to be admissible with sign ¢; = £1 for f if
Frob, has nonzero image in Gal(K/Q), x(Frobq) # 1 (mod p), and Ty admits a basis of eigenvectors for
Frob, with eigenvalues €4 and x(Frobg)eq.

For example, if Froby € Gg is a complex conjugation, then q is admissible with either choice of €.

3.1.3. If q is admissible with sign €4, then we write Fil(‘;sq Tt C T} for the eigenspace of Froby with eigenvalue
X(Frobq)eq. We abusively write q for the unique ultraprime in Mg lying over q € Mg, whose Frobenius is
Frob? .

q

Definition 3.1.4. If q is admissible with sign ¢, for f, then we define the ordinary local condition (with
sign €q) as:

HL oo (Kq Ty) = im (Hl(Kq,Fﬂ;Eq Ty) — Hl(Kq,Tf)) .

ord,eq

The subscript €q will often be omitted (from this and future notation) when there is no risk of confusion.
Similarly, let
Hl

ord,eq

(Kqs W) = im (H! (K, (Fily.., Ty) ©0 E/O) — H'(Kq, W)))
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Example 3.1.5. Suppose Frobq € Gg is a complex conjugation and let {eq,e2} be a basis of Ty such that
Froby e; = —e; and Frobg e = e5. Then as noted above, q is admissible with either choice of €4; if ¢ = +1,
then Filj’Eq Ty = (e1), and if g = —1, then F1l$€q Tt = (e2). The local cohomology group H' (K, Ty) is free
of rank 4, with a canonical decomposition into rank 2 subspaces:

HY (Ko, Tr) = H' (Kq, {e1)) & H' (Kq, (e2))-

The former is the ordinary local condition if ¢; = +1, and the latter if ¢ = —1. The unramified subspaces

Hi.. (Kq, (e;)) are free O-modules of rank one.

Proposition 3.1.6. Let q be admissible with sign eq. Then HOrde (Kq,Ty) is its own exact annihilator
under the local Tate pairing

H' (Kq, Ty) x H'(Kq,Ty) — O
induced by (17) and (20).

Proof. The Frobenius Froby € Gg acts on Ty with eigenvalues x(Frobq)eq and eq. Let e1,e2 € Ty be
generators of the corresponding eigenspaces, so Fil; e If = (e1). Then

(21) HY (Ko, Ty) = H' (Kq, (e1)) & H' (K, (e2)),

and H e (Kq, Ty) = H!(Kq, (e1)). Since the pairing (19) is symplectic, each of the direct summands in (21)
is isotropic for the pairing on H'(Kg, Tr). Now note that:

(22) Hl(anTf)tors - Hl(an <€1>).
Indeed, in the exact sequence

0 — H!

unr

(Kq, (e2)) = H! (Kq, (e2)) — H'(Iq, {e2)),

the last term is automatically torsion-free, and the first is as well since FI"Ob2 acts trivially on es. We claim

(22) implies the proposition. Suppose y € H (K, T) pairs trivially with H! , . (Kq, T}), and write

ord,eq
Y=y +y2

in the decomposition (21). Since y; pairs trivially with HOrd e (Kq,T¥), y2 does as well. But y also pairs

trivially with H! (Kq, (€2)), so ys lies in the kernel of the local Tate pairing, hence is a torsion class (Proposition
2.6.10), hence trivial by (22). O

3.1.7. For any finite set S C Mg such that T is unramified outside S, and any admissible q ¢ S with sign
€q, define a localization map

locqqu : (KS/K Tf) — Hunr(KC{an) —
(23) HL (Kq, Tf) 1
Y =H}..(Kq, Ty/Fil{, Ty) =~ O.
Hunr(K Tf) N Hord €q (anTf) @t ca !

Define as well a residue map

8q,ﬁq : H (K Tf) — H (Kq7Tf) — Hord eq(Kq7Tf) —
(24) Hord ,€q (KQ’Tf)
H1 (Kq,Tf) N Hord e (Kq,Tf)

unr

= H(Iy, Fil},_ Tp)Po%=1 ~ 0,

9,€q

where the second map is given by the projection Ty — (Frobgq —eq)T =~ Fil:{eq Tt. We similarly define the
maps locg,e,, O, for Wy.

3.2. Euler systems for anticyclotomic twists.
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3.2.1. Let R be a complete flat Noetherian local O-algebra with finite residue field, equipped with an anti-
cyclotomic character ¢ : Gxg — R* which is trivial modulo the maximal ideal of R. We write T, for the
anticyclotomic twist Ty @ R(p), which is a countably profinite Gx-module. If q is admissible with sign e,
then gp(Frobi) =1,s0

(25) HY(K,,T,) = H' Ky, Tf) ®0 R.

We extend the ordinary local condition of the previous subsection by linearity to define the local condition
HY 4 .. (Kq,T,), and likewise the maps locq,c,, 9q,c,-

ord,€q

3.2.2. We will always suppose given a finite set S C Mg and a generalized Selmer structure (F,S) for T,
over R. For any finite set of ultraprimes T, let N = Ng be the set of pairs {Q,eq} where Q C Mg is a
finite set of ultraprimes disjoint from the image of S in Mg and eq : Q — {£1} is a function such that q is
admissible with sign eq(q) for all ¢ € Q. (We will drop the subscript S when it is clear from context or when
S contains only constant ultraprimes.) Given a pair {Q,eq} € N, we identify Q with a subset of Mg and
define a generalized Selmer structure (F(Q, eq),SU Q) for T, by the local conditions:

HL (K., T,
(26) My (Ko T) = { BT s 2@
Hord,eQ(q)(KmTtp)a s=q€Q.

For § € 7Z/27, let N® C N be the collection of pairs {Q,eq} € N such that Q] = § (mod 2). Given two
pairs {Q, eq} € N? and {Q’,eq } € N%' such that QN Q' = 0), write
{QQ' eqq'} € N

for the pair formed in the obvious way from Q U Q' and the sign functions €q, eq. The pair {0,0} € N will
be abbreviated as 1.

Similarly, suppose given {Q,eq} € N and an additional ultraprime q ¢ Q which is admissible with sign
€q- Then we write {Qq, eqq} € N for the pair formed in the obvious way from QU {q} and the natural sign
function.

Definition 3.2.3. A bipartite system (x,\) for (T, F,S) of parity 6 € Z/2Z consists of the following
data:

1) for each pair {Q,eq} € N%, a cyclic submodule
Q
(K(Q7 €Q)) C Sel]"(Q,eq)(TsD);
(2) for each pair {Q,eq} € N°*!, a principal ideal
(MQ,eq)) C R.

Y

A bipartite Euler system is a bipartite system satisfying the “reciprocity laws”:
(1) For each {Qq,eqq} € N°*1,

locq((#(Q, cq))) = (A(Qa, eqq)) < B
(2) For each {Qq,eqq} € N?,
9q((#(Qq; €qq))) = (A(Q,€q)) C R.

We say (k,A) is nontrivial if there exists some {Q,eq} € N such that either A(Q,eq) # 0 or k(Q,eq) # 0
depending on the parity of |Q| + 4.

We will suppress eq from the notation when it is clear from context and write simply x(Q), A(Q), F(Q).

3.3. Euler systems over discrete valuation rings.
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3.3.1. Suppose that R is a discrete valuation ring with uniformizer w, and let W, =T, ®0 E/O = W; ®o
R(p). Let 7 € Gg be a complex conjugation, and let Tw(7,,) be the module T}, with G g-action twisted by
7. Then there is a perfect G-equivariant pairing
(27) ()" : Ty x Tw(T,) = R(1)
induced by
($®7’,y®5)7 = 'I"S(.’E,yT), r,s € R7 z,y € Tfa

where (-, -) is the pairing of (20).

Using the local isomorphisms

H' (K, Tw(T,)) = H' (K-, T,)

of Remark 2.5.7, the pairing (27) induces local pairings
(28) HY' (K, T,) x H'(Ks,T,) — R.

The pairing (27) also induces a perfect pairing

W, x Tw(T,) - R(1) 8o E/O = (R& Qy/Z,)(1).

Recall that we have fixed a generalized Selmer structure (F,S) for T, over R. For any {Q, eq} € N, we write

(F(Q),S™ U Q) for the Selmer structure on W, which is dual to the Selmer structure (F(Q)™,S™ U Q) on
Tw(T,) (see Remark 2.5.7).

Definition 3.3.2. We say (F,S) is self-dual if, for all s € Mg, H%(K;,T},) and H: (K-, T,) are exact
annihilators under the local pairing.

Equivalently, (F,S) is self-dual if, after identifying Tw(T,,) and Tj, = Homp (T, O(1)) via (27), the local
conditions given by (FT,S) and (F7,S7) coincide.

3.3.3. If g € Mg is admissible, then q7 = q; let
(g Hl(vaTso) X Hl(quTso) - R
be the pairing obtained from (28) by identifying H!(K4-,T,) = H'(Kq,T,). Then unraveling the definition
of (-,-)g shows that
(29) (01,02>g = (c1,Frobg ca)q, c1,02 € Hl(Kq,Tw),

where

(-, )q : HY(Kq, T) x HY(Kq,T,) — R
is the local pairing induced by (20), extending linearly using (25). (Here Frobg acts naturally on H! (K, T,,) =
HY (K4, T¢) ®o R since Ty is a Gg-module.)

Lemma 3.3.4. The residual representation T's is absolutely irreducible as an O|Gk]-module. Moreover, if
(sclr) holds, then there exists an element z € Gk that acts as a nontrivial scalar on T';.

Proof. The discriminant of K is coprime to Np by assumption, so we have K NQ(Tf) = Q. Hence the image
of Gx — Aut(Ty) coincides with the image of Gg — Aut(7), and this implies the lemma. O

Corollary 3.3.5. Suppose that (F,S) is self-dual. Then (F,S) is saturated, and for all j > 0, we have
isomorphisms
Selx(T, /@) = Sel (W, [w’]) = Selz(W,,)[=”].

Proof. Self-duality implies saturation by Proposition 2.6.10, so the first isomorphism results from Proposition
2.6.12. The second is immediate from Lemmas 3.3.4 and 2.4.12. (|
Proposition 3.3.6. Suppose that (F,S) is self-dual. Then, for each {Q,eq} € N:

(1) (F(Q),SUQ) is self-dual.

(2) There is a non-canonical isomorphism of R-modules:

Selr(q)(Wy) = (R® Qp/Zy)" & Mq & Mq

for some finite-length R-module Mq and an integer rq.
(3) rQ = I‘kR SGIJ:(Q)(TLP).
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Proof. For (1), we need only check self-duality of the local conditions for q € Q; this follows from Proposition
3.1.6 and (29) because Hérd,EQ(q)(K(WTf) is Frobg-stable for all ¢ € Q. For (2), it suffices to show that

Selrq)(Wy,)[w®]/w Selx(q) (W) [w® ] is an even-dimensional vector space for all s. For this, we claim the
proof of [37, Theorem 1.4.2] applies with the obvious modifications for patched Selmer groups. Indeed, we
use Lemma 3.3.4 to check the hypothesis H.1 of op. cit.; the (patched analogue of) Hypothesis H.3, or
equivalently the condition in [38, Definition 2.2.2], follows from Corollary 3.3.5 and [49, Lemma 3.7.1(i)].
Hypotheses H.2 and H.5 are not used in the proof of loc. cit., and Hypothesis H.4 is clear from the discussion
in (3.3.1).
Finally, (3) follows from Corollary 3.3.5, (1), and [49, Lemma 3.7.1(ii)].
|

3.3.7. For the next proposition, we require the following extension of (3.1.7). Let q be admissible with sign
€q. Since W, = W; ®0 R(yp), we have
(30) Hl(anWAa):Hl(KmWf) Qo R

by the same reasoning as (25). We use (30) to define, by linearity, the subspace Hérd’sq (Kq,W,) and the
localization maps locq,¢,, Og,c, following (3.1.7). By Proposition 3.3.6(1) combined with Proposition 2.6.12,
for any {Q,eq} € N and any q € Q, we have

(31) H¥ (@) (Ka» We) = Hi (Kq, We,).

ord
Proposition 3.3.8. Suppose (F,S) is self-dual. For any {Qq,eqq} € N, exactly one of the following holds:
(1) locq(Selrq)(Ty)) = 0, 0q(Selr(qq)(T,)) # 0, and rqq = rq + 1. Moreover,
lg Mqq = lgp Mq — lgR coker 0q(Selr(qq) ()
=lgr Mq — lgp locq(Selrq)(W,)).
(2) locq(Selrq)(Ty,)) # 0, 0q(Selr(qq)(T,)) = 0, and rqq = rq — 1. Moreover,

lgr Mqq = lgp Mq + 1gR cokerlocq (Sel 7(q) (T},))
= lgp Mq + 18 0q(Selr(qq) (Wy))-

Proof. Consider the Selmer structures (F9,5SU Qq) and (Fq,S U Qq) for T,,, where F4(Q) = F(Q) + F(Qq)
and Fq(Q) = F(Q) N F(Qq). By Proposition 2.6.13, we have:

rkr Selra(q)(Ty,) = rkr Selr, (@) (Tw(T},)) + 1
= I‘kR Sel;q(Q)(T¢) + 1;

the second equality is by (13). Moreover, because F(Q) is self-dual, Proposition 2.6.10 implies that the
image of

unr

Selr,@)(Ty)  Hiq(KaTp)  Hy q(Kq.Tp)  Hp q)(Kq Ty)

is self-annihilating under the R-bilinear local pairing induced by (-, -)7, which is symmetric by (29) because
the pairing (20) is alternating and Gg-equivariant. Since a two-dimensional nondegenerate quadratic space
cannot contain three distinct isotropic lines, the image of (32) is contained either in the ordinary or unramified
part. In other words, exactly one of locq(Selr(q)(T,)) and Oq(Selr(qq)(7,)) is nonzero, which gives the
alternative of the proposition.

For the relation between Mq and Mqq, we suppose we are in case (1), because the two arguments are
analogous. By Corollary 2.6.8, the image of

Selzaq)(We) He(q) (Ko, W
Sel]-'q(Q) (Wso> H (va We

1
Selj:q(Q)(TLP){_>H]-‘q(Q)(Kq7TLP) _ Hl (anTso) e Htlzrd(Kq’TLP)

(32) ~ R?

Hlﬁnr(K‘h W@) o Hérd(KQa W#P)

Hlfq(Q)(Kq’W¢> H (Kq, Wy)

is the exact annihilator of 0q(Selr(qq)(7,)) under the perfect induced local pairing

~(R® Qp/Zp)®2

) _
-

1 1
Fa(Q) Fa(Q)

(7 He(q) (Ko, 7o) y Hioq) (5 Woo) L ReQ/Z
L B Tp) AL o (e W) b/ Ly
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This implies that Oq(Selzqq)(W,,)) is divisible and
(33) lg r locq (Selr(q) (W) = lgg coker 9q(Sel x(qq) (Ty))-
Now, for any short exact sequence of R-modules

0—+-A—B—C—0,

there is an induced exact sequence
AN By;
(%) 0— <d”
Adiv

where the subscript div denotes the maximal w-divisible submodule and M qi, = M/Mg;y for any R-module
M. Also note that

) — A/div — B/div — C/div — 07

lim Sel z(qq) (Wi )aiv[@’] = Selr(qq) (L)
J
by Corollary 3.3.5 and Proposition 2.5.6, compatibly with the map Jy, and so we can identify

Sel]:q Q) (Wap) N Sel}-(Qq) (ng)div

34 = coker Jq (Sel T,)).
( ) Sel}‘q(Q) (ng)div q ( ]:(Qq)( 90))
Consider the short exact sequences:
(35) 0— Sel}‘q(Q)(WLp) — Sel}-(Q)(W¢) — IOCq (Self(Q)(W¢)) —0
(36) 0— Selfq(Q)(W¢) — Sel}‘(Qq)(W@) — 8q (Sel;(Qq)(W¢)) — 0.
By (%) and (34), we obtain the exact sequences of finite-length R-modules:
(37) 0— SEI}'Q(Q)(W@)/div — Self(Q)(th)/div — 10Cq (Sel;(Q)(Ww)) —0
(38) 0 — coker Bq (Selj:(Qq)(T@)) — Sel]-'q(Q)(Wgo)/div — Self(Qq)(Ww)/div — 0.

From this and (33), we deduce

lg g Sel (@) (We) jaiv = 18x Selr(aq) (Wes) saiv + 2185 locg (Selzq) (W) ,
which gives the result. (|

The following result will allow us to control the alternative in Proposition 3.3.8.

Theorem 3.3.9. Let c € HY(KT/K,T,) be any nonzero element, where T O S is a finite set. Then there
are infinitely many admissible ultraprimes q ¢ T, with associated signs €q, such that locqc, ¢ # 0.

The proof is via a series of lemmas.

Lemma 3.3.10. There is an integer j such that, for all n > 0,
= HY(K(T,)/K,T,/=") = 0.

If (sclr) holds, then we may take j = 0.
Proof. Let G = Gal(K(T,)/K), and let Z C G be its center; Lemma 3.3.4 implies that T,, ® F is absolutely
irreducible as an E[Gk]-module, and so Z acts on T, by scalars. We claim:
(39) Z 4 {1}
Assuming (39), the lemma follows from the inflation-restriction exact sequence

HY(G/Z,H(Z,T,/=")) — H'(G,T,/=") - H'(Z,T,/=")

(and Lemma 3.3.4 for the extra assertion under (sclr)). Let us now prove (39). Let G' = Gal(K(T})/K),
and let L/K be the Galois subfield of K(T}) cut out by the center Z’ = Z(G') C G’. By [61, Theorem 5.5]
or [54, Theorem B.5.2], Z’ is nontrivial. Let E/K be the Galois extension determined by the kernel of ¢;
then it suffices to show that EL/L and K(Ty)/L are linearly disjoint. Both EL and K (T) are Galois over
Q, so Gg acts on Gal(FL/L) and Gal(K(Ty)/L) by conjugation. If 7 € G is a complex conjugation, then
T acts trivially on Gal(K(Ty)/L) but by inversion on the pro-p-group Gal(EL/L), so the two groups have
no nontrivial common quotient compatible with the Gg-action; hence EL N K (Ty) = L. |
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Lemma 3.3.11. Suppose given a cocycle
ce H' (K, T,/=")

such that w’c # 0, where j is as in Lemma 3.3.10. Then, for any integer M > n, there exists a sign ¢ = %1
and infinitely many rational primes q such that:
(1) q is inert in K and unramified in the splitting field Q(Ty,c).
(2) Frob, € Gal(Q(Ty)/Q) has distinct eigenvalues £1 on Ty ® R/w™ (where R has trivial Galois
action).
(8) For any cocycle representative, c(Frobz) has nonzero component in the € eigenspace for Frob,.

Proof. Abbreviate L = K(T,/w™), and let ¢ € Home, (Gr,T,/w™) be the image of ¢ under restriction;
by hypothesis ¢ # 0. Without loss of generality, we may suppose that the image of ¢ is contained in
T,/w"|[w] ~ T,/w, which, since ¢ is residually trivial, is the extension of scalars Ty ®o,, R/w. Fix a
complex conjugation 7 € Gg. Now,
Homg, (GL,Tf ® R/w)

has a natural action of Gal(K/Q), so we may assume without loss of generality that ¢™ = e¢ for some
€ € {£1}. Also, since T’ is absolutely irreducible as an O[G k]-module by Lemma 3.3.4, there exists g € G,
such that ¢(g) has nonzero component in the e eigenspace of 7. Then

P(rgrg) =77 (9) + d(g) = e7é(g9) + ¢(9)
has nonzero component in the e eigenspace as well. Any g with Frobenius 7¢g in L(¢) satisfies the desired

conditions. O

Remark 3.3.12. If p > 5 and the image of the Galois action on T is sufficiently large, then we can instead
use primes ¢ such that pt¢? — 1, as is more common in the literature.

Proof of Theorem 3.3.9. By Lemmas 2.4.12 and 3.3.4,
HY(KT/K,T,)[=] = 0.

Thus there exists some n such that the image ¢ of ¢ in HY(K7/K,T,/w") satisfies w’c # 0, for some j
as in Lemma 3.3.10. By definition, ¢ is represented by a sequence of classes ¢,, € H' (K™ /K,T,/w")
such that w’c,, # 0 for F-many m, where (T}, )men represents T. For each m, apply Lemma 3.3.11 with
M = max {m,n} to obtain a prime g,, ¢ T}, and a sign €,,. If ¢ € Mg is the equivalence class of the sequence
(gm)men, and €q € U({£1},, o) =~ {£1} is the equivalence class of the sequence (em,)men, then q satisfies
the theorem with the sign €,. Since there are infinitely many choices for each ¢,,, there are also infinitely
many choices for q. (]

Corollary 3.3.13. For any {Q,eq} € N, there exists some {QQ’,eqq '} € N such that rqq = 0; moreover,
we may choose Q' such that @ N'T =0 for any fized finite set T C Mg.

Proof. If rq > 0, then Theorem 3.3.9 and Proposition 3.3.8 imply that there exists an admissible ultraprime
q ¢ TUQ with sign €4 such that such that rqq = rq — 1. The corollary follows by induction on 7q. O

Combining Proposition 3.3.8 and Theorem 3.3.9 allows us to prove the main result of this subsection.

Theorem 3.3.14. Suppose that (F,S) is self-dual and that (k, \) is a nontrivial bipartite Euler system with
parity 6 for (T,,F,S). Then there exists an integer C' (possibly negative) such that:

(1) For all {Q,eq} € N?, rq is odd, rq = 1 if and only if K(Q) # 0, and in that case

Sel}-(Q) (Tg,)
lgp Mg =g ( +C.
f A (s(Q)
(2) For all {Q,eq} € N°T, rq is even, rq = 0 if and only if A\(Q) # 0, and in that case
lgp Mq = ord, A(Q) + C.

In particular,
d =rkrSelr(T,)+1 (mod 2).

Proof. The proof will be in several steps.
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Step 1. If A(Q) # 0 for some {Q, eq} € N°*L, then rq = 0.

Proof. 1f 0 # c € Selrq)(T}), then by Theorem 3.3.9, there exists an admissible ultraprime q with sign e
such that locq ¢ # 0. By Proposition 3.3.8, 94(x(Qq)) = 0, which contradicts the reciprocity laws. |

Step 2. If K(Q) # 0 for some {Q,eq} € N°, then rq = 1.

Proof. Choose an admissible ultraprime q with sign e such that locq £(Q) # 0. Then by the reciprocity laws,
A(Qq) # 0, so by Step 1 rqq = 0. Proposition 3.3.8 implies rq = 1. a

Step 3. For all {Q,eq} € N, rq =5+ |Q| + 1 (mod 2).
Proof. Tf {QQ’,eqq'} € N, then by Proposition 3.3.8
rQq — ey = |Q'| (mod 2).

In particular, the parity of rq — |Q| is constant as Q € N varies, so Steps 1 and 2 imply Step 3. ]
Step 4. Suppose rq = 0 for some {Q,eq}. Then, for all admissible ultraprimes q ¢ QU'S with sign €q,
rQq =1 and
SeI}-(Q )(Tap)
lgp Moq + ordes AM(Q) = lg Mg +1 (q .
€r MQq ( ) gr MQ gRr (H(Qq))

Proof. By Step 3, A(Q) and x(Qq) are well-defined. Then Step 4 follows from Proposition 3.3.8, since by the

reciprocity laws
Sel;(Qq) (TW) >
Ig ( + lg i coker O, (Sel T,)) = ords A(Q).
R (H(Qq)) R CI( ]-'(Qq)( W)) ( )
The same reasoning implies:
Step 5. Suppose that rq =1 and q € QUS is an admissible ultraprime with sign eq such that rqq = 0. Then

Sel}-(Q) (T@)
(£(Q))
Now consider the graph X whose vertices are the elements of N, and where the edges are between vertices

of the form {Q,eq} and {Qq, eqq}, for some admissible ultraprime q with sign ¢, (cf. [38, §2.4]). We say
{Q, eq} is a core vertex if rq < 1. The core subgraph &j of X is the full subgraph on core vertices.

lgp Mqq + 18R ( ) = lgp Mq + ords A(Qq).

Step 6. Assume Xy is path-connected. Then the theorem holds.
Proof. For every {Q,eq} € Xy, set

lgp Mo — lgr (Z58552) . if {Q.ca} €N,
Cq = (<(Q))
lgp Mq — ords A(Q), if {Q,eq} € NO+L.
(A priori, Cq could be —oo.) By Steps 4 and 5, Cq is constant along paths contained in Xy. Moreover, if
(%, A) is nontrivial, then Steps 1 and 2 imply that there exists Q € Ay with Cq finite. Under the additional

assumption that Xy is path-connected, the common value of Cq for Q € Xj is the global constant C' of the
theorem. 0

In the rest of the proof, we will establish the path-connectedness of Aj.
Step 7. If v ={Q, eq} and v = {QQ’,eqq' } are core vertices, then they are connected by a path in Xy.

Proof. We proceed by induction on |Q’|, where the base case |Q'| = 1 is trivial. If rqq//q <1 for any q € Q’,
then we may apply the inductive hypothesis, so assume otherwise. By Proposition 3.3.8, rqqr = 1 and
0q(Selrqq)(Ty,)) = 0 for all g € Q". Hence

Sel}-(QQ/)(Tw) C Sel}-(Q) (T(p)
Then, by Theorem 3.3.9 and Proposition 3.3.8, there exists an admissible ultraprime q ¢ QUQ’US with sign
€q such that rqq = rqq/q = 0. For any ultraprime q' € Q', {QQ'a/q’, eqarqa’laqa/a} € N is a core vertex,
which is connected to v’ in Xy. By the inductive hypothesis, {QQ’q/q’7 €QQqq’ \Qqu/q/} is also connected to
the core vertex {Qq, eqq}, hence to v, by a path in &j. This completes the inductive step. |
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Step 8. If v = {Q,eq} is a core vertex and T C Mg is any finite set, then there exists a core vertex
v ={Q,eq } such that v and v' are connected by a path in Xy and Q N'T = 0.

Proof. By iterating, it suffices to assume that QNT consists of exactly one ultraprime q € Q. If rq/q < 1, then
the conclusion is obvious, so suppose otherwise. As in the proof of Step 7, choose an admissible ultraprime
g’ ¢ QUSUT with associated sign ey such that rqq = 0, which implies r7qq/q = 1. The core vertex
v' = {Qq'/q, €qq'|qq/q} has the desired properties. O

Finally, we have:
Step 9. The core subgraph X is path-connected.

Proof. Let {Q1,¢eq,} and {Qa2,eq,} be two core vertices; we wish to show they are connected by a path in
Xo. Without loss of generality, by Step 8, we may assume Q; N Qz = (. (This step is necessary because the
sign functions eq, and eq, need not agree on Q; N Qz.) Consider {Q1Q2,€q,q,} € N. This may not be a core
vertex, but, by Corollary 3.3.13, there exists {Qs,€eq,} € N such that {Q1Q2Qs,€q,q.q,} is a core vertex.
We may then conclude by Step 6. O

O

Proposition 3.3.15. In the setting of Theorem 3.5.14, there exists a constant C' > 0 depending on |S|, T},
and the ramification index of R/O, but not on ¢, such that C > —C'. If (sclr) holds, then we may take
' =0.

Proof. By Theorem 3.3.14, it suffices to show that there exists a constant C’ with the desired dependencies
and a pair {Q, eq} € N such that rq = 0 and lgp Mq < C’. Inspecting the proof of Lemma 3.3.10, we first
note that the constant j in Lemma 3.3.11 can be chosen to depend only on T and the ramification index of
R/O, and we can take j = 0 under (sclr).

Moreover, if k is the residue field of R, then d = dimj H'(KS/K, W, [w]) is also bounded with a bound
depending only on |S| and T, by the proof of Lemma 2.4.5. We now construct a sequence {Q;, €q, } recursively
(starting from Q; = 1) by the following rules:

e If rq, = 0 and the exponent of Selz(q,)(W,) # 0 is n; > (i +2) - j, then choose any q;11 ¢ Q; with
sign €q,,, such that the exponent of locg,,, (Selr(q,)(W,,)) is at least n; — j.
e If rq, > 0, then choose any q;41 ¢ Q; with sign €q, , such that

lgr coker(locg, ,, Selr(q,)(T,)) < Jj.

These choices are possible by Lemma 3.3.11 and Corollary 3.3.5, cf. the proof of Theorem 3.3.9. In either
of the above two cases, set {Qi+1, 6Qi+1} = {Qiqi_H, eQqul}; if neither holds, then end the construction.
For each i, let rg, be the minimal number of generators of the torsion R-module @' Mq,, which is also the
dimension of the k-vector spaces @™ Mq, /@ Tt Mq, and (@™ Mq, )[w].
Claim. In the first case of the construction, rq = < rg.. In the second case, rg, = < rq..
i+1 i i+1 3
Before proving the claim, we show it implies the proposition. After 7 < d steps (where the inequality
holds by Corollary 3.3.5 and Proposition 3.3.6), we alternate between the two cases of the construction by

Proposition 3.3.8, and so the claim implies that the construction must halt after at most 2r; < 2d more
steps. Hence for some i < 3d, rq, = 0 and w27 Mg, = 0. In this case,

lgp Mq, < (Z + 2)] dimg Sel}-(Qi)(VI/}P)[w] < (3d + Q)j(d + 3d),

the last inequality by the reasoning of [38, Corollary 2.2.10]. Since d and j have bounds depending only on
IS|, T, and the ramification index of R, and we may take j = 0 under (sclr), the proposition follows.
Now let us prove the claim, for which we abbreviate A := Sel ].‘q'+1(Qi)(W¢) /div- Start with the first case.

From (35), we have an exact sequence
(40) Hompgn: (Selr(q,) (W), A) — Homponi (A, A) — Ext}g/wni (locg,,, (Sel;(Qi)(Ww)) ,A),
where the last term is @7 -torsion because locq,, (Selr(q,)(Ws)) is a cyclic R/@w"-module of length at least

n; — j. Hence there is a map f : Selr(q,)(W,) — A such that the composite A — Selr(q,)(W,) L As
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multiplication by w’. Let B be the image of the resulting map

fEBlocqi+1

Sel]‘_(Qi) (WLP) A® 1OCCI7J+1 (Sel]:(Qi) (WW))a

so that
dimy, @ B/ !B < 21{%,
Now, an elementary calculation shows that B contains @’ A ® w’ locg,, , (Self(Qi)(WW))5 S0
dimy, w I A /DA 11 < dimy @ B/w B < 2rf .

(Here we are using that @17 locg,,, (Selr(q,)(W,)) # 0, which holds because locq,,, (Selz(q,)(W,)) is
cyclic of length at least n; — j > (i + 1)j.) On the other hand, c(*+1)7 SelF(Qiqir1)(We) jdiv 18 @ quotient of
w(1)J A by (38), so we have

QT/QH»I < dimy w(i"'l)jA/w(H‘l)j"'lA < 21"& -1,

which proves the claim in this case.
We now consider the second case of the construction. Analogously to (37), (38), in this case we have exact
sequences:

(41) 0—>A— Self(Qqul)(WS@)/div — 8q'i+1 (Self(QiQi+1)(W4p)) — 0,
(42) 0 — coker IOCqu (Self(Qi)(Tsﬂ)) — A= SelF(Qi)(W¢)/div — 0.
By (42),

dimy, @ A/w T A < 2rg + 1.
Since Oy, , (SelF(Qiqi11)(We)) is cyclic and w’-torsion by the analogue of (33), the exact sequence (41)
shows that w(*+1)J SelF(Qiqis1)(We), aiv injects into @' A, so we conclude 2r6i+1 < 2rq, + 1; hence réiH <
Tq,» as claimed. O

3.4. Euler systems over A. For this subsection, we assume:
(ord) ap(f) & p.

3.4.1. Let Ko /K be the anticyclotomic Z,-extension, and let A be the anticyclotomic Iwasawa algebra
O[Gal(K/K)] with canonical character

v GK — A%
If v is a topological generator of Gal(K,/K), then as a ring A = O[T] where T' = ¥(y) — 1. For each height-
one prime P C A with P # (p), let Sz be the integral closure of A/ in its field of fractions, so that ¥ induces
a character G — A* — Si. We write Tog for the twist Ty ®o Sqp(¥), Wiy for Ty ® Q,/Z,, = Ty ®0 E/O,
and T for the interpolated twist T ®o A(V). Also let Wy = T be the Cartier dual with A action twisted
by the canonical involution ¢, so that for each B there is a natural map

Wq3 — Wf
of A[Gkl-modules (see, e.g., [37, §2]).

3.4.2. For each place v|p of K, there is a free rank-one direct summand Filj Ty C Ty on which I, C Gk
acts through the cyclotomic character; let gr, Ty = T/ Fil} T} be the quotient. Let S C My be the set of
ultraprimes v = v lying over v|Np, and define the Selmer structure (F,,S) for T as follows:

im (HY(K,,Fil] Ty ® A) - HY(K,,Ty)), v=uv,0|p,
(43) H.17-A(KVan) = Hl(Kvan)v V:Q/U‘NOO, v=u",
Hi (K, Ty), otherwise.

unr

Remark 3.4.3. If ¢||N is inert in K, then a direct calculation shows that the whole cohomology group
H'(K,, Ty) is ordinary in the sense of [38, §3.1], so (43) is consistent with the Selmer structure defined in
loc. cit. under the conditions therein.
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3.4.4. For each height-one prime P C A with P # (p), we also define the Selmer structure (Fyp,S) for Tip
by:
ker (Hl(KwT‘B) — Hl(Kvagrv Tf Y S‘ﬁ) ®Zp Qp) , V= Q,U\p,

44 HE, (Ku, Ty) =
(44) J—‘m( ‘13) {ker ((Hl(KwaB) N Hl(IWqu) Rz, Qp) , otherwise.

This is well-defined because H! (1, Ty) is p-torsion-free when Ty is unramified at v.
As in (3.3.1), for all Q € N the Selmer structure (Fa(Q),S) for T; induces a dual Selmer structure
(Fa(Q)*,S) for Wy.

Proposition 3.4.5. The Selmer structures (Fy,S) are self-dual for all B # (p). Moreover, for all B # (p)
and for all Q € N, the natural map induces well-defined homomorphisms:
Selr, Q) (Ty) ®a A/P — Selry (@ (Tp), Selry @) (Wy) — Selz, @)« (W) [F]-

The first map is injective. Moreover, there is a finite set of height-one primes Xa of A such that, for all
B & Xp, both maps have finite kernels and cokernels whose cardinalities are bounded by a constant depending
on Ty and [Sy : A/B], but not on Q or on P itself.

Proof. The self-duality of Fy follows from the self-duality of the usual ordinary (resp. unramified) local
condition on H'(K,, Ty ®z, Q,) for each v|p (resp. v|N).

By the proof of [38, Proposition 3.3.1] and the references therein, for the rest of the proposition it suffices
to show the following:

Claim. The inclusion T;/BT; — Ty induces maps
Hx @ (B, Tp) © A/B — HE () (By, Tp), Hi ) (Ky, W) = HE, () (Kv, Wr)[]
with kernels and cokernels having bounds of the desired sort, for v = v with v|N, v =v7, and for v=q € Q.
Forv=q€Q,

1
Hx,

(Q)(KQ7 Tf) = Hfl)rd(KQan) ® Aa H_17-"33(Q)(KQ7T‘J3) = H(l)rd(KQ7Tf) ® 5‘137

so we clearly have local maps with kernel and cokernels bounded as desired (and similarly for Wy and Wiy).
So suppose that v = v with v|N and v = v". Then ¢ is trivial on G,, so

HY(K,,T;) = H'(K,,Ty)® A, H'(K,,Ty)=H"(K,,Tf) ® Sy.
In particular, H' (K, Ty) is finite, so
HE, (K., Typ) = H (K, Ty).

Hence the desired local map H o (Ky,Ty) ® A/P — H.lr\p(Q) (K, Ty) is well-defined and injective, and

its cokernel is identified with H'(K,,Tt) ® Sy /(A/9), which clearly has a bound of the desired sort. The
argument for the second map in the claim is similar. ([l

3.4.6. Recall that, for any finitely generated A-module M, there exists a unique A-module M’ of the form
A" @ @ A/B;" such that M admits a map to M’ with finite kernel and cokernel, where 93; are height-one
primes; we denote this relationship by M ~ M’. The characteristic ideal chary (M) is zero if » > 1, and
equal to [[B;" otherwise. The following easy lemma is implicit in [49, p. 66].

Lemma 3.4.7. Let B C A be a height-one prime. Then there exists an integer d and a sequence of distinct
height-one primes B,, such that, for all finitely generated torsion A-modules M,

lgo (M /%) = mdordy chara (M) + O(1)

as m varies (holding M fized). Moreover [Sy, = A/Bm] is constant for large enough m, and if B # (p),
then the rings A/B, are abstractly isomorphic.

Proof. Tt P # (p) is generated by a distinguished polynomial f € A, and 7 is a uniformizer for O, then
we may take B, = f + 7" (for sufficiently large m) and d = [Syp : O]. If ‘P = (p), then we may take
B, =T +mand d=1. O
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Proposition 3.4.8. For all {Q,eq} € N, we have
Selx, (@) (Wy)¥ ~ A" @ Mq & Mq
for some torsion A-module Mq, where
rq = rka Selz, (@) (Ty).
Here, for a topological O-module M, M" denotes the Pontryagin dual.
Proof. This follows from Propositions 3.3.6 and 3.4.5 exactly as in the proof of [37, Theorem 2.2.10(b)]. O

Theorem 3.4.9. Suppose that {k,A} is a nontrivial bipartite Fuler system with parity & for the triple
(T¢,FA,S). Then there exists a nonzero fractional ideal I C A ® Qp such that:

(1) For all {Q,eq} € N?, rq is odd, rq = 1 if and only if k(Q) # 0, and in that case

Sel]—'A(Q) (Tf) )
(r(Q)) .

(2) For all {Q,eq} € N°T1 rq is even, rq = 0 if and only if A(Q) # 0, and in that case
chary (Mq) - I = (A(Q)).

chary (Mgq) - I = chary <

In particular,

=1kpSels(T¢)+1 (mod 2).
If (sclr) holds, then I C A.
Proof. Let B C A be any height-one prime other than (p); via the natural maps Selr, (Ty) — Selr, (Tip)
and A — Sg, the Euler system (x, A) defines an Euler system (kg Ap) of parity ¢ for the triple (T, Fip, S).
In particular, Theorem 3.3.14 applies.

By Lemmas 2.4.12 and 3.3.4, Selz, (q) (Ty) is A-torsion-free. Hence for fixed Q, by Proposition 3.4.5,
k(Q) # 0 if and only if £y (Q) # 0 for all but finitely many 9B. Similarly, A(Q) # 0 if and only if Ap(Q) # 0
for all but finitely many 3. Because

I‘kA Sel}-A(Q)(Tf) = I‘ksm Sel}-m(Q) (Tgp)
for all but finitely many 3 by Proposition 3.4.5, the claims about rq follow from Theorem 3.3.14.
For any ‘B and {Q, eq} € N°*! such that A(Q) # 0, by Proposition 3.4.5 and Lemma 3.4.7 we have
ep(Q) = ordg(A(Q)) — ordg charp (Mq)
~ i 8098, /A9, (Q) — 180 Moy,

m—00 md

Applying Theorem 3.3.14, this quantity does not depend on {Q, eq} (as long as A(Q) # 0); it is also clearly
zero for almost all P, so that []y B® defines a fractional ideal I of A satisfying (2). The same calculation
shows that I satisfies (1) as well. Then Proposition 3.3.15 shows that ez > 0 if P # (p), and also for
B = (p) under (sclr), which shows the desired integrality properties for I and completes the proof. O

4. GEOMETRY OF MODULAR JACOBIANS

4.1. Purely toric reduction of semistable abelian varieties.

4.1.1. Fix a prime /, and let A be an abelian variety over Q; whose Néron model Az, is semistable with
purely toric reduction. We denote by Ap, the special fiber, by A]%z the neutral connected component, and

by X;(A) the character group of Af , which is a free Z-module of finite rank with an action of Gal(F¢/Fy).
Also let Xp(A)Y = Hom(Xy(A),Z) be the Z-dual. We recall the following basic result from the theory of
rigid analytic uniformizations.

Proposition 4.1.2. (1) With notation as above, there is a canonical Gg,-equivariant exact sequence:

0 — X(AY) = X (A)Y @z @Z — A(Qy) — 0.
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(2) Suppose that AR, splits over Fen. Taking Gal(Qy/Qen)-invariants in (1) gives an evact sequence
fitting into a commutative diagram of Gal(Qgn /Qg)-modules:

0 —— X(AY) —— X(A)Y ®2Q), —— A(Qpm) —— 0

lid | lordz lsp
0 —— X (AY) —L— X(A)Y ——— dy(A) —— 0.

Here, j is the monodromy pairing of [34, §9], and ®,(A) is the component group of Ap,.
(3) For any p # £, there is a canonical exact sequence of Gg,-modules:

0 = Xp(A)Y @z Z,(1) = TyA = Xy(AY) @z Z, — 0.

Proof. Let T be the algebraic torus over Z, with character group X;(A); let Ty, C T be the special fiber and
T the formal completion of T along Tf,. By [33, Theorem 3.6], the isomorphism Tf, = A]%z lifts uniquely
to an isomorphism between T’ and the formal completion A of A along Ag,. Then by [5, Theorem 1.2], this
isomorphism T =~ A extends uniquely to a surjection of rigid analytic groups 7" — A"&, whose kernel M
is a lattice in T™&. By [5, Theorem 2.1] and étale descent, the rigid analytic torus with character group M
uniformizes (AY)"8; hence by [5, Proposition 6.10], M is canonically identified with x,(A"), and so we have
an exact sequence of rigid analytic groups over Qy:

0 — xe(AY) — T"E — A"s 0.

Taking Q,-points gives the exact sequence in (1). For (2), the top row of the diagram is exact since
HY(Qgn, Xe(AY)) = Hom(Gg,., Xe(AY)) = 0. The commutativity of the leftmost square is [20, Theorem
2.1], and to establish the commutativity on the right it suffices to show that the image of X;(A)Y ®z Z;;, in
A(Qgn) = A(Zyn) is exactly those points that reduce to the neutral connected component of A%Z. But this
is clear because Xy(A)Y ® Z;, = T(Zgn) maps isomorphically to A(Z¢) by construction, and by definition
A\(Zgn) C A(Zgn) is the set of points that reduce to A, (Fen).

For (3), apply the snake lemma to the commutative diagram

0 —— X(AY) — (A @,Q, —— A(Q)) —— 0

b P

0 — X(AY) — X(A)Y ®2Q, —— A@,) — 0
and take inverse limits in n. O

4.2. Multiplicity one.

4.2.1. Let N7 and N> be coprime positive integers, with Ny squarefree. Consider the Hecke algebra T =
Tn, n, generated over Z by operators T for all primes £ { N = N1 N2 and U, for all £|N, acting on the cusp
forms of weight two and level I'g(/V) which are new at all factors ¢|No. If I is the kernel of the projection
Tx1 — T, then we set

(45) Toia* = Jo(N)/LIo(N),

an abelian variety over Q with a (faithful) action of T. If Ny, Ny are clear from context, we will omit the
superscript.

4.2.2. For any maximal ideal m C T and any T-module M, let M,, denote the m-adic completion. If A is
an abelian variety with an action of T, the m-adic Tate module is Ty A = (T A)m, where p is the residue
characteristic of m.

Proposition 4.2.3. Suppose m is non-Fisenstein with residue characteristic p 4 2N. Then Ty Jmin s free
of rank two over Ty,.
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Proof. Throughout the proof, we will also view m C Ty, n, as a maximal ideal of Ty,; via pullback. By
[63, Theorem 5.2(b)], Jo(N)[m] is a two-dimensional vector space over Ty 1/m. Now, by [35, Proposition
2.2], the dual map to the projection ¢ : Jo(N) — Jpin identifies JY. with the neutral connected component
of Jo(N)[I] (notation as in (45)); in particular, ¢V is injective, $0 T Jo(N) — TiJmin is surjective. Hence
Jmin[m] is a Ty, N, /m-vector space of dimension at most two (in particular, exactly two because m is non-
Eisenstein), so the proposition follows as in [74, Corollary 2, p.332]. (]

4.2.4. Now suppose that A is an abelian variety over Q with faithful T-action, admitting a T-equivariant
isogeny t0 Jmin. Then the Néron model of A over Z; has purely toric reduction for all ¢|N, and we will
apply the notations of §4.1.

Proposition 4.2.5 (Helm). Let m C T be non-Eisenstein of residue characteristic pt2N. Then the natural
maps induce Tn-module isomorphisms:

Tmein ®Tm Hom(Jmina A)m :_> TmAv
in)m ®Tm HOHI(JmiIhA)m l} Xg(A\/)m, V€|NQ

Here, all Hom-sets are understood to be T-equivariant morphisms, and tensor products are taken modulo
Z-torsion.

(Y

m

Proof. This follows from [35, Corollary 4.10, Proposition 4.14]. Note that [35] uses contravariant Tate
modules, so it is necessary to dualize to recover the covariant formulation. O

We record the following elementary lemma for later use.

Lemma 4.2.6. Let X = Xy(J); )m for some ¢|Ny and m C T, where m is non-Eisenstein of residue
characteristic p 1 2N . If the associated residual representation py, is ramified at £ or if pt ¢ — 1, then X is

free of rank one over Ty. In general, there exist T -module maps
d)iZX*}Tm, ’l/)iSng)X7 Z:LQ

such that
pi0th; = hio ¢y = t; € Ty C End(X)
and
ti1+to=0—1¢€Ty.

Proof. If £ — 1 is a p-adic unit, or if p,, is ramified at ¢, then this follows from [35, Lemma 6.5]. In general,
abbreviate XV = Homgz (X;(JY,), Z)m- By Proposition 4.1.2(3), we have an exact sequence of Tiw[Gg,]-
modules

(46) 0= XV(1) = TrmJmin — X — 0;

the action of Gg, on X is unramified and Frobenius acts as Uy [63, Proposition 3.8], which is a constant +1
because the residue characteristic of m is p > 2.

By Proposition 4.2.3, Ty Jmin is free of rank two over T,,. Choose a basis {e1, ez} for Ty Jmin, which
identifies A2T i Jmin = T by the generator e; A eg. Let

<'a > : Tmein X Tmein — /\ZTmein = Tm
be the resulting alternating pairing, so that

(47) y = (e1,y)e2 — (e2,y)ex
for all y € Ty Jmin- Define maps

5@' T min — Tma 1= 172

¢1:y = (y, (F = Urea)

¢2 1y = (y, (F' = Uper),

where F' € Gq, is any lift of Frobenius. We first claim that the maps al factor through m. Since T, is
p-torsion-free, it suffices to check this after inverting p. It follows from (46) that, on T Jmin @ Qp, F acts
semisimply with distinct eigenvalues U, and ¢Uy, and each eigenspace is isotropic for (-, -) because the action
of Gg, on A?Ty Jmin is through the cyclotomic character. Since (F — Up)y lies in the £U,-eigenspace of F for
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all y € Ty Jmin ® Qp, the maps QNSZ' ® Q,, factor through the projection onto the Up-eigenspace, hence through

m ® Q, by the exact sequence (46). So indeed each ¢; descends to a Ty-module map ¢; : X — Ty. Now
define maps

YTy = X, i=1,2
Y1 : 1= Upm(er)
o 1 1= —Upm(eq).
We claim that 1; and ¢; satisfy the conclusion of the lemma. One readily calculates:

¢1091(1) = Urler, (F — Us)ea)
P10 ¢1(m(er)) = Ueler, (F — Up)ea)m(er)
Y10 d1(m(e2)) = Urlez, (F — Up)ea)m(er)
Ug(el, (F — Ug)62>7'((€2) - UZ(F — U[)'/T(@Q)
= Uyley, (F — Up)ea)m(ea),

where in the last two steps we have used (47) and the fact that F' = U; on X. Similarly,
P2 01P2 = th2 0 ¢g = —Uy(ea, (F — Up)er),

and
Ug<€17 (F — Ue)€2> — Uz<€2, (F — U4)61> =trr, g

min

UF—Up)=0—1.

4.3. Shimura curves.

4.3.1. If v(N2) is even, then fix a maximal order Op of B and let XN, Np,z 1) be the smooth projective
Shimura curve over Spec Z[%} described in [3, §5.1]. In particular, for Ny > 1 and for any field k of residue
characteristic not dividing N, the points Xn, v, (k) = Xy, n, 7 1 (k) parametrize isomorphism classes of
triples (A4, ¢, C), where A is an abelian surface over k, ¢ is an embedding Op < Endg(A), and C C A[NV,] is
a sub-group scheme of order NZ which is stable and cyclic for the action of Op. For No = 1, X N1z[4) 18

the usual modular curve Xo(NV), and the preceding moduli interpretation applies to the open modular curve
Yo(N) C Xo(N). We write Xn, n, = XN, N,,0 for the generic fiber.

4.3.2. For all £ { N3, we have the usual Hecke correspondences Ty (¢ { N) or Uy (¢{|[N1) on Xy, n, 711 %
XNy N 2[5 for | Ny, we have the involution U, of XNy N2 [ L] whose action on the complex fiber is given
by the double coset operator of [18, p. 873]. By [35, Theorem 2.3], these correspondences induce, by Picard
functoriality, a faithful action of Tx, n, on the Jacobian JM:V2 := Jac(Xy, n,). When N; and Na are
understood, we abbreviate J = JN1"¥2. By [35, Corollary 2.4], there is a noncanonical Hecke-equivariant

isogeny J — Jmin-

4.3.3. If ¢ t N is a prime, then we have the two natural degeneracy maps 641,942 : Xn,q.N» — XN, N, defined
on the level of the moduli problems by by d4.1(A,¢,C) = (A, ¢, C[N1]) and §,42(A4,¢,C) = (A/C[q],+, C/Clql).
Consider the following Taylor-Wiles hypothesis on the residual representation p,,, : Gg — GL2(T/m) associ-
ated to m:

(TW) if p =3, then p,, is absolutely irreducible over Q(v/—3).

If ’]I’Sgl) W.N, 18 the subalgebra of Ty, 4 v, generated by all Hecke operators except for Uy, then a maximal ideal

m C T, n, also defines a maximal ideal m(® of ']ngl ~, by pullback along the projection Tg\?z N2 — Ty N

Proposition 4.3.4 (Thara’s Lemma). Let ¢ t+ N be any prime, and let m C Ty, n, be a non-Eisenstein
mazimal ideal of residue characteristic p1 2N satisfying (TW). Then the natural map

5;’1_,_5;’2 : JN1,N2[m]®2 _>JN1q,Nz[m(q)]

18 injective.
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Proof. Let £16Npq be a prime such that pt¢—1 and T} — (¢ + 1)? € m; infinitely many such primes exist
by [26, Lemma 2] and (TW). Let Xn, n,(¢) be the Shimura curve defined analogously to Xy, n, but with
an additional with 'y (¢) level structure, and similarly for Xy, 4 n, (€); let JNN2(¢) and JN19:N2(¢) be the

5
corresponding Jacobians. The forgetful projections X, n,(£) % Xnyeny —— Xy, n, and X, g n, (£) —
XNige,Ny — XN, g,N, induce a commutative diagram of degeneracy maps:

2 941105 JN14Nz [

|@ie |

JNlZ,NQ [p}®2 @ s JN1q€3N2 [p]

l(’v*)e” l

TN (O] o NN ()]p).

TNz [p]@

By [27, §3, Theorem 2] (and the end of [26] for the case p = 3), every Jordan-Holder constituent of the
F,[Ggl-module (ker 3) ®g, F, is one-dimensional. The same is true of ker a since the map 7* is injective
(as v has degree ¢ — 1, which is prime to p). On the other hand, every Jordan-Holder constituent of
JN1N2[m] @ ), is an irreducible two-dimensional representation because m is non-Eisenstein; so it suffices
to show that 47, : JNEN2[m] — JN16N2 [ (9] §s injective. Indeed, the composite

)

JNl’N2[m]@2 01997 2 JNlZ’N2[m(E)] 80,1,+D02,2,x JNl’N2[m]®2

is given by the matrix
{+1 T,
T, (+1)°
cf. [27, p. 447], which is injective because T — (£+1)? & m; so a fortiori &; ; : JN0N2[m] — JNEN2 m®] is
injective, as desired. 0

Theorem 4.3.5 (Helm). Let m C T be a non-FEisenstein mazximal ideal of residue characteristic p t 2N
satisfying (TW). Then there is an isomorphism of Ty-modules:

Hom (Jmin, J)m =~ ® Xe(Jmin)m
0| N2

modulo Z-torsion on the right-hand side. Here, the tensor products are over Ty,.

Proof. If p # 3, this is [35, Theorem 8.7]. However, as explained in [35, Remark 8.12], the assumption p # 3
is used only in the level-raising arguments of [35, §7]: in particular, the application of [27, Theorem A] in the
proof of [35, Lemma 7.1], and the application of Thara’s Lemma in the proof of [35, Proposition 7.2]. Under
condition (TW), the first result still applies even when p = 3 by [26, Theorem 1]; and the necessary case of
Thara’s Lemma is given by Proposition 4.3.4 above. O

4.4. Shimura sets.

4.4.1. Let B = By, be the quaternion algebra over Q ramified at the prime factors of Ny (and possibly
00). Recall from [62, p. 369] that an oriented Eichler order (R, ¢) of level Ny in B is an Eichler order R of
level N7 equipped with a local orientation ¢, for each ¢|N. If | Ny, then ¢, is the data of a maximal order
Ry C B® Qy containing R ® Zy. If £|Na, then ¢, is the data of a homomorphism from R to a fixed field F2
of cardinality ¢2. In particular, for a fixed R, there are exactly two choices of local orientation ¢, for each
¢|N. An isomorphism of oriented Eichler orders (R, ¢) and (R, ¢’) is an automorphism of B (necessarily
inner) carrying R to R’, compatibly with the orientations.
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4.4.2. If v(N3) is odd, then we define the Shimura set Xy, n, to be the set of isomorphism classes of oriented
Eichler orders of level Ny in B. Because B* (Ay) has a natural transitive action on the set of oriented Eichler
orders of level Ny, choosing an oriented Eichler order (R, ¢) as a base point identifies X, n, with the finite
double coset space

(48) BX(Q\B* (Ag)/R*.
When N; and Ny are clear from context, the subscripts on Xy, v, may be omitted. We will write Z[Xn, n,]°
for the set of > a;y; € Z[X N, n,] with >~ a; = 0.

4.4.3. The set X x X carries Hecke correspondences Ty (¢ 1 N) and U, (¢|N), given in the double coset
description as in [18, p. 873]. We let these correspondences act on the set Z[X]? by Picard functoriality, i.e.
by identifying Z[X] with the set of formal 0-cycles Homge (X, Z). By the explicit description of the Jacquet-
Langlands correspondence in [27, p. 459], we obtain in this way a faithful action of Ty, n, on Z[X]". The
analogue of Theorem 4.3.5 is:

Theorem 4.4.4. Let m C T be a non-FEisenstein mazimal ideal of residue characteristic p 1 2N satisfying
(TW). Then there is an isomorphism of']T -modules:

m - ® XZ mln
e
modulo Z-torsion on the right-hand side. Here, the tensor products are taken over Ty,.
Proof. Choose any prime q|Na, so that v(Na/q) is even. Let T' = Ty, 4 n,/q, and write m as well for the
maximal ideal of T” induced by the map T’ — T.
Applying Theorem 4.3.5 to the pair Nyq, Na/q, we obtain an isomorphism of T, -modules (modulo Z-
torsion)
(49) Hom (i PN/0 ghaNe/ay o (R) A (RN 1Y),
£|N2/q

By [35, Corollary 5.3, Lemma 8.2], this implies an isomorphism of Ty,-modules
(50) Hom (™, JM=/ 1) = @) Ae(I3"),

min ’ q-new min
{IN2/q

where JNE%VIVVQ/q is the g-new quotient of JN19N2/4 in the sense of [35, p. 66]. Then, by Proposition 4.2.5,

we have

Nig,N N1,Na,V NNz v
(51) (Jq il({ew 2/2, \/) ~ X (‘]mlln : m & ® Xg mlln : )m-
£|N2/q
By [3, Proposition 5.3], X, (JV1¢N2/4:V) is identified with Z[X, n,]°. It remains to show that the inclusion
Jévil%‘f,%/q Moy JN1aN2/aV ipduces an isomorphism on character groups at ¢. Indeed, since the projection

JNa:N2/a Jé\fln(évjvv 2/9 has connected kernel, by [21, Theorem 8.2] the induced map on character groups is
surjective:

(52) Xq(Jqu’Nz/q’ )*» X (Jqu,NQ/q, )

-new

After tensoring both sides with @, (52) is an isomorphism because the g-old isogeny factors of JNa:N2/a,v
have good reduction at ¢. Since the source of (52) is a free Z-module, the surjection is an isomorphism. O

4.5. Special fibers of Shimura curves.

4.5.1. We again suppose v(Nz) is even, and fix an orientation on the maximal order Op C B = By, from
(4.3.1). In this subsection, we will recall — following [62] — the geometry of the special fiber of the canonical
model of Xy, n, over Z, in two cases: ¢t N, and ¢|Ns.

Proposition 4.5.2. Suppose v(Ns) is even, and fiz a prime g1 N1Na. Then:

(1) The supersingular locus X n, n,(F2)%* = Xn, n, (F2)** is canonically identified with Xy, Nyq- This
identification is compatible with all the Hecke correspondences Ty (€1 Nq) and Uy (¢|N ); moreover,
the action of Frobg on Xn, n,(Fg2)%® coincides with the action of Uy on XN, Nyq-
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(2) If m C Tn, N, is a non-Eisenstein mazimal ideal of residue characteristic pt2Nq satisfying (TW),
then the Abel-Jacobi map induces a surjective composite
(53) ZIX Ny Nagl® = TV (F o) — HY (B2, T JVN2)

%)

such that ¢ o Uy = Frobg o .

Note in (1) that the correspondence Uy on Xy, n,q X XN, ,N»q is the graph of the involution that reverses
the local orientation at g, so it makes sense to refer to the action of U, on Xy, n,q itself.

Proof. The first part is proven in [62, Theorem 3.4], but we recall the construction for use below in Proposition
4.7.12. Tf (A, 1, C) is a point of Xy, n, (Fy2)**, then End”(A, ¢) is isomorphic to By, 4, and R := End(4,¢,C) C
End®(A4, ) is an Eichler order of level Ni. Moreover, R has a natural orientation at all primes dividing £|Ng,
which we now recall. For ¢|Ny, the local orientation is determined by the inclusion R C End(A,:), where
the latter is a maximal order.

For ¢|No, if my C Op is the unique maximal ideal of residue characteristic ¢, then A[m,] is a vector space
of dimension one over Op/my ~ Fy2, where the isomorphism is chosen according to the orientation of Op.
The action of R on A[my| therefore defines a homomorphism R — Fy2, which we take to be the orientation
of R at /.

Finally, the Lie algebra of A is a m—vector space of dimension 2, on which R acts by scalars valued in IF»
cf. [62, p. 24]. This defines a map R — F 2, which we take to be the local orientation at ¢q. Thus for every
(A,1,C) € Xn, N, (Fg2)**, we have described an oriented Eichler order of level Ny in By, 4, well-defined up
to the choice of isomorphism End”(A, 1) ~ By,q, i-e. up to By, ,(Q)-conjugacy. This describes a map

XNl,Nz (FqQ)SS — XNl,Nqu

and [62, Theorem 3.4] shows that this map is an isomorphism.

The Hecke compatibility for operators coprime to ¢ is clear from the construction. We can also see that
replacing (A, ¢, C) by its Frobenius twist has the effect of sw1tch1ng the orientation of End(A,:,C) at g,
which is precisely the action of U; on Xy, n,q. In particular, Frob acts trivially on Xn, n,(F2)%, so all
the supersingular points are in fact defined over F,2, which shows (1)

For (2), the identity ¢ o U; = Frob, op follows from (1). We claim the surjectivity follows from the
proof of [47, Proposition 4.8] (replacing the Shimura curve therein with its compactification when Ny = 1),
although op. cit. imposes the additional assumptions [47, Assumption 4.1(1)-(5)] on p and p,,.2 Indeed,
these conditions are used only thrice in the proof of [47, Proposition 4.8]: first, to establish Thara’s Lemma
[47, Lemma 4.7], which in our case is Proposition 4.3.4; second, to deduce that Hgt(XNthﬁq,ﬁp)m =0,
which only requires that m is non-Eisenstein; and, third, to control the action of the Hecke operator denoted
Sp in [47, p. 2100], which is unnecessary in our context since all our Shimura curves have I'g(N;) level
structure.

O

4.5.3. Now suppose instead that g|Na. The Shimura curve Xy, v, has a canonical, semistable integral model
XN, N, z, over SpecZg. We denote by X N No/q the set X /g X {£}.

Proposition 4.5.4. The set of irreducible geometric components of the special fiber Xn, N, r, of XNy N,z 18
canonically identified with Xﬁl Na/q' Each component is defined over Fy2, and the Frobenius action switches

the sign without changing the value in Xy, n,/q-
This identification is compatible with all the Hecke correspondences Ty (¢ + N) and Uy (¢|N, € # q);

moreover, the induced action of U, on Z[X]j\[, Nz/q] > ZIX N, Nyjq)” i given by the matriz

(0 o)

’In [47, Definition 4.5], it is also assumed that ¢ Z 1 (mod p), but this is not used in the proof of Proposition 4.8 of op.
cit.
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Proof. This follows from [62, Theorem 5.4], but once again we recall the construction for use in Proposition
4.7.13 below. First, [62, Theorem 5.3] identifies the set of irreducible components with the set of so-called
pure triples (4, ¢, C), where A is a superspecial abelian surface over IF 2 with an embedding ¢ : Op — End(A)
and C'is a I'g (N1 )-level structure. The purity condition means that Op acts on the 2-dimensional [F2-vector
space Lie A via scalars, i.e. through a homomorphism Op — F,2. Since Op is given with an orientation at g,
we say a pure triple is of type + if this homomorphism agrees with the orientation, and of type — otherwise.

Now for any pure triple (4,:,C), End’(A, ) is isomorphic to By, /q, and End(A,¢,C) is canonically an
oriented Eichler order of level Ny in End®(A,¢). (The orientation is defined as in the proof of Proposition
4.5.2.) Thus we have a well-defined map from the set of irreducible components to XJ:\EL Na/q® sending a pure
triple (4, ¢, C) of type § € {£} to (End(A4,¢,C),d). This map is an isomorphism by [62, Theorem 4.13], and
the Frobenius action is described in the following remark of op. cit. The Hecke equivariance is clear away
from ¢, and the action of U, is described in [3, Proposition 5.8(2)]. |

4.5.5. Let ® be the component group of the special fiber of the Néron model of JM N2 over ZLq.

Proposition 4.5.6. Supposem C Ty, 4 n, 5 a non-Fisenstein mazimal ideal. Then we have an isomorphism

ZIXR, Nafam
54 T NLNa/gm g
(54) (U2 -1) "

with the following property: for all degree-zero divisors y = > a;y; on XNy N»/q,Q, Such that each y; lies in
XNy N, /q(Qq2) and reduces to a smooth point of XNl,Na/qJqu lying on the component y;, (54) sends the class

of " a;; to the image in P of [y] € JNN2/9(Qy2).
Proof. This is [3, Propositions 5.13, 5.14]. O
4.6. Geometric level raising.

4.6.1. Let f, N, p, O, E, m, Vy, T, and Wy be as in §1.5. We also fix a factorization N = N;N», where
N7 and Ny are coprime, and Ny is squarefree. If Q and Q' are coprime squarefree positive integers, then we
abbreviate Tg, = Tn,0, N2Q's omitting any ‘superscript or subscript which is equal to 1. From now on, we
will abbreviate T; := Ty /77 and O; := O/n’ for any integer j > 1.

Definition 4.6.2. We say a prime ¢ { 2pN is j-admissible with sign €, = £1 if a,(f) = ¢,(¢+1) (mod 77)
and ¢ # 1 (mod p). In this case, T; has a unique subspace Fil;eq T}, free of rank one over O;, on which Frob,
acts as ge;. We will omit the subscript €, when there is no risk of confusion. We say ¢ is weakly admissible
with sign €, if it is j-admissible with sign ¢, for some j > 1. A weakly admissible pair {Q, e} is an ordered
pair of a squarefree number @ and a function €q : {¢|Q} — {£1} such that ¢ is weakly admissible with sign
eq(q) for all ¢|Q. If {Q,eq} is a weakly admissible pair, then for all ¢|@, there is a unique root u, € O of
the polynomial y? — ya,(f) + ¢ such that u, = €g(q) (mod p). We view O as a T%-algebra by letting U,
act through ug, and letting the other Hecke operators act through their eigenvalues on f; let mg;’ be the
associated maximal ideal (we will usually drop the superscript). Finally, a weakly admissible pair {Q, eq} is
called j-level-raising if
Igo (Tq ®1e O) 2 j.
Remark 4.6.3. If {Q,¢q} is j-level-raising, then each ¢|@ is j-admissible with sign eg(g). Indeed, in Tq

we have Uq2 = 1 for each ¢|@Q, but U, acts on O by the unique root of y* — ya,(f) + ¢ congruent to eg(q);
hence a4(f) = eq(q)(g+1) in Tg @1 O.

4.6.4. In light of the structural similarity of Theorems 4.3.5 and 4.4.4, let
{Hom(JNl’]\lzc’g7 JNUN2Q) (N, Q) even,
Q =

min

(55) Z[XNlﬁNzQ]O, Z/(NQQ) odd.

Lemma 4.6.5. Suppose {Q,eq} is a weakly admissible pair, and let

C= ) ord (1)
Z‘Nz
Tf unram at £
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Then there exists an O-module map
Mg ®1e O = Tg ®1e@ O

with kernel and cokernel annihilated by 7€ ; in particular, ’/TC(MQ ®ta O) is cyclic of length at least

Proof. We may assume that mg C T descends to Tq. Now, by Theorem 4.3.5 or Theorem 4.4.4 (depending
on v(N2Q)), we have

Ni,N.
MQ;mQ = ®Z|N2QX€ (Jmiln7 2Q7V)m )
Q
modulo Z-torsion on the right. Lemma 4.2.6 implies that there exists a collection of Tg-module maps

G : MQ,mQ - TQJ’“Q? (2 TQ’mQ - MQm‘th i=1,.. .,2,,(1\/2)

such that
pio; =10 ¢ =t; € Tom, C End(Mgm,)
and
i+ gy = H (t-1)¢€ TQme-
£| N2

Ty unram at £
Since O is a discrete valuation ring, we may choose some ¢ such that the image of ; in Tg ®re O divides
7¢. Then ¢; and 1); induce O-module maps

Mg ®1e O = Tg Qe O, Tg Qe O = Mg Qe O
whose composition in either direction is multiplication by a divisor of 7€, which implies the result. (Il

The following corollary is not needed for geometric level raising, but will be used later in the construction
of bipartite Euler systems.

Corollary 4.6.6. Let {Q,eq} be a weakly admissible pair that is (j+2C)-level raising, and suppose v(N2Q)
is even. Then there exists a map of T?[Gg|-modules

(56) T IV N9 = T

that factors through T c — T; and is surjective after O-linearization, and this map is unique up to multi-
plication by a unit scalar.

Proof. Write Tg ®re O = O/7™ for some M > j + 2C. Note that

(57) T IV @10 O = Ty = Ty /™

indeed, they are both free of rank two over @/7™ by Proposition 4.2.3, so (57) follows from [14, Théoréme
1] and the Eichler-Shimura relation

Frob? —T; Froby +-£ = 0 on Try, JNLN9, WOt Np.
By (57) and Proposition 4.2.5, we have
TmQ JN1,N2Q ®TQ O = MQ ®TQ (TmQ Jrfr\lfi:N2Q ®TQ O)
= Mg @1y T

The corollary now follows from Lemma 4.6.5 and the absolute irreducibility of T';.

Theorem 4.6.7. Assume Ty satisfies (TW).
(1) If {Qq.eqq} is a weakly admissible pair, then

Tg ®1e O
lgo (Toq ®1es O) > 18 ((aq(f) _ EQ;F(q)(q + 1))) -

where C is the number of Lemma 4.6.5.
(2) If {Q,eq} is a weakly admissible pair such that q is j-admissible with sign eg(q) for all q|Q, then
{Q,eq} is (j —v(Q) - C)-level-raising.
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Proof. (2) follows from (1) by induction, so we prove (1). In the proof, we will abbreviate ¢; = egq(q).
There are two cases, depending on the parity of v(N2Q).

Case 1. v(N2Q) is even.

Let us abbreviate J? = JN1:N2Q and Jgin = JrJXiln’MQ. Consider the composite
Mqq ! (Fq?a Tmg ']Q) M. ® Tng Jgin
—» ~ —
(Uqg =€) (Frobg —€q) @me Flamg (Frobg —€q)

induced from Proposition 4.5.2(2) and Proposition 4.2.5. Since Th,, Jgin is free of rank two over Tg m, and
Frob, acts with the characteristic polynomial Frobg —T, Frob, +¢ (whose roots are distinct modulo mq), we
may fix an identification
mq “Ymin
(Frobg —eq) — (T — €4(q + 1))
of T mg,-modules. Using the Hecke compatibility from Proposition 4.5.2(1), we obtain a map
O

(aq(f) = €qlg+1))’

Tng IS TQ,me

Mgq ®1es O — Mg Qra

hence (by Lemma 4.6.5) a map
@)
(aq(f) — €q(q + 1))
with cokernel annihilated by 7¢. Since the action of T?Y on Mg, factors through Tg,, we conclude

o
180 (Toq ®ras 0) > lgo ((aq(f)Q—Qgiiq + 1))> ¢

Mgq ®raq O = T Qe

Case 2. v(N2Q) is odd.
By Proposition 4.5.6, the action of 'H‘Zg’qu on

. T, — € -1
MQ,mQ ®']1‘Q <T?2/1m < q . q _eq)> ,

with U, acting by €,, factors through Tgg m,,- Hence the action of TqQ on
@
(@a(F) — ealg + 1))
likewise factors through Tg, (again with U, acting by €,). By Lemma 4.6.5, A has a ']I‘Zg—module map to
Tg ®1e O
(aq(f) —€q(q+1))

with cokernel annihilated by 7€, from which the result follows as in Case 1. O

A = MQ ®TQ

Remark 4.6.8. If {Q,eq} € N in the notation of (3.2.2), then for F-many n there is a corresponding weakly
admissible pair {Qpn,€q, }, where (Qn)nen is a sequence representing Q. To be precise, if Q = {q1,...,9,},
we choose sequences (q')nen representing each q;; for §-many n, the product @, = ¢} - - - ¢/, equipped with
sign function eq, (¢*) = €q(d;), forms a weakly admissible pair {Q,,€q, }. It follows from the definition of
N and from the theorem that, for any j > 0, there exist §-many n such that the pair {Q,,¢€q, } is j-level-
raising. We say that a sequence of weakly admissible pairs {Qn, €g, } (defined for §-many n) represents the
pair {Q, eq} if it is obtained from this construction for some choice of representatives (¢")nen-

4.7. CM points.

4.7.1. Let us now fix an imaginary quadratic field K C Q, and a positive integer N = NtN~ such that
every prime factor of N* is split in K, and N~ is a squarefree product of primes inert in K. Let B = By -
be the quaternion algebra over Q ramified at the factors of N, and possibly co. For each ¢|N, we have a
fixed embedding K — Q < Q,. If /[N, this determines a distinguished prime [ of K above £. We write
[° for its conjugate. If ¢|N—, this determines a distinguished isomorphism O /¢ ~ F2. Finally, for each
positive integer m, let O,, k C Ok be the order of conductor m.
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4.7.2. Assume v(N ) is even, and again fix an orientation on the maximal order Op of B from (4.3.1).

Definition 4.7.3. Let m be a positive integer coprime to N, and write K[m]| for the ring class field of
conductor m. The set of (positively oriented) CM points of conductor m,

CMy+ n-(m) C Xn+ n-(K[m]),

is the set of triples (4, ¢, C) over K[m] admitting an isomorphism O,, x — End(A,:,C) such that:

(1) The action of Oy, k on the K[m]-vector space Lie A is through the natural inclusion O, x C K C
K[m)].

(2) For all primes N1, O,k ® Zy = Ok, X O e acts on the ¢-primary component Cy C C' through
the projection to Ok ;.

(3) For all primes ¢{|N—, let my C Op be the unique maximal ideal of residue characteristic £. Then

Almy](K[m]) is a rank-one vector space over Op/my ~ Fj2, where the isomorphism comes from
the orientation of Op at . We require that the action of O,, x/¢ = Ok /¢ on this vector space
correspond to our distinguished isomorphism O /¢ ~ F2.

4.7.4. If A is an abelian variety, any element v € (End(A) ® A;)™ defines an abelian variety A, with a map
f A, = Ain the isogeny category of abelian varieties such that f.(T;A,) = ~,TpA for all £. In this way,
we obtain a canonical action of

Pic Oy i = KX\AT /O
on CMy+ n-(m). We denote by
(58) rec : Gal(K[m]/K) — K*\A /O

the reciprocity map of class field theory, normalized so that uniformizers correspond to geometric Frobenius
elements.

Proposition 4.7.5. (1) Via the reciprocity map, the action of Gal(K[m]/K) on CMy+ ny-(m) agrees
with the action of KX\A;K/@::MK described above.
(2) CMn+ n-(m) is a torsor under the action of Gal(K[m]/K).

Proof. Part (1) follows from Shimura’s reciprocity law. For (2), see the discussion in [80, p. 55]; it is an
elementary exercise using the complex uniformization of X+ y- to see that our definition of the positively
oriented CM points of conductor m agrees with the adelic description given in loc. cit. (Recall that any
C-valued point of X+ y- admitting extra endomorphisms by Oy, k is automatically defined over K[m].) [

4.7.6. Now assume that v(N7) is odd. In this case, we fix an embedding K — B.

Definition 4.7.7. Suppose m is coprime to N. Then CMy+ y-(m) is defined as the set of isomorphism
classes of oriented Eichler orders (R, ¢) of B of level N* such that:

(1) RNK = Oy k-

(2) For all primes {|NT, let Ry D R ® Z; be the maximal order determined by ¢, and choose an
isomorphism Ry ~ My(Zy). If ¢¥||N, then R ® Z, C Ms(Z,) is the stabilizer of a subgroup C' C
(Z/¢F)? with C ~ Z/¢*, and we require that the multiplication action of O,, x on C is given by the
projection Oy, /% — Oy, i /1F.

(3) For all primes ¢|N—, let my C R be the unique maximal ideal of residue characteristic £. Then
we require that the isomorphism O, x/¢ = R/my ~ Fp2 determined by ¢, agrees with the fixed
isomorphism O /¢ ~ Fy2 chosen above.

Here the equivalence relation is conjugation by K*. (Properties (1)-(3) are not stable under conjugation by

B*(Q).)
Notice that CMy+ n-(m) comes equipped with a natural projection map

(59) CMy+ n-(m) = Xn+ n--
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4.7.8. We define an action of Gal(K[m]/K) on CMy+ n-(m) as follows: for o € Gal(K[m]/K) and (R, ¢) €

CMy+ n-(m), let o - (R, ) be the Eichler order rec(a)l/%rec(a)’l N B(Q), with the induced orientation.
(Here rec is as in (58).)

Proposition 4.7.9. Suppose m is coprime to N. Then CMy+ n-(m) is a torsor for Gal(K[m]/K).

Proof. 1t is clear that Gal(K[m]/K) acts with trivial stabilizers on CM y+ n-(m), so we will show transitivity.
Let (R, ¢) and (R', ¢") be two elements of CMpy+ y-(m). Since the orientations ¢ and ¢’ are determined by
properties (2) and (3) of the definition of CMy+ y-(m), it suffices to show that there exists k € A7 ;- such
that
kR'k~' = R.

We do this by working locally at all primes £. To ease notation, abbreviate

Ry=R®Zy, Ry=R ®Zs, Bo=B®Qp, Opp k0 =Omx Ly, K =K Q.
Suppose first that £ { N. Because RNK = R'NK = O,, , [22, Lemma 6.2] implies there exists k;, € K, such
that keR%k;l = Ry. For ¢|N~, the maximal order in By is unique, so R, = Ry. For ([N, let j = ord(N1),
and fix an isomorphism By = M>(Qy) that identifies O o with

(& 5,) c )

Eichler orders of level ¢/ in By are all of the form End(L;) NEnd(Ls), where Ly C Lo are lattices in Q7 with
Ly/Ly ~ Z/PZ. If End(L) contains Oy, k¢, then L is of the form Z, @ ¢"Z, (up to homothety), for some
n € Z. The possible Eichler orders of level ¢/ containing O,, k¢ are therefore

Ly 0"y
(é"‘”Zg 7, >,n€Z.

These are evidently all conjugate by diagonal matrices, so we may choose k¢ € K, such that k:gR%k:[l = Ry.
Setting k = [[yn- ke, we have
kR'k~' N B(Q) = R.
([l

Remark 4.7.10. We will soon be varying N~ (keeping K and N7 fixed). The choices made in the definition
of the CM points — i.e. the oriented maximal order Op if ¥(N7) is even, and the embedding K < B if
v(N7) is odd — will be considered to be fixed, once and for all, for each possible N~.

4.7.11. In the remainder of this section, we recall the geometric ingredients for the explicit reciprocity laws
originally studied in [3].

Proposition 4.7.12. Suppose v(N ™) is even. Let m be coprime to N, and let gt Nm be a prime inert in K,
with q a prime of K[m] above q. Then there is an isomorphism ty+ n- 4 : CMpy+ y-(m) = CMpy+ y-,4(m)
of Gal(K[m]/K)-torsors fitting into a commutative diagram:

CMy+ n-(m) X+, n-(K[m])

ltzw,zv—,q lRedcI

CMN+’N—q(m) — XN+,N*q —— XN+ N (qu)ss —3 XN+,N* (qu).

Proof. Choose any (A,t,C) € CMpy+ n-(m), and let (Ao, to, Co) denote its reduction modulo g. Since ¢ is
inert in K, Ay is supersingular. Moreover we have a distinguished action Oy, x — End(Ag, to, Cy) coming
from the reduction of the complex multiplication. Choose an isomorphism End® (Ao, to, Cy) =~ By-, identi-
fying the corresponding embedding K < End®(Ay, 1o, Co) with our fixed inclusion K < By - q- The choice
of this isomorphism is unique up to K*-conjugacy. Therefore End(Ay, to, Co) yields a well-defined point of
CMp+ n-4(m) —note that conditions (2) and (3) of Definition 4.7.7 are satisfied by conditions (2) and (3) of
Definition 4.7.3, where the orientation on End (A, to, Cp) is defined in the proof of Proposition 4.5.2. This de-
fines the map ty+ ny- 4, and it is Galois-equivariant by Proposition 4.7.5(1). Since the Gal(K[m]/K)-action
is simply transitive on both CMy+ n-(m) and CMy+ n-4(m), ty+ n-4 is automatically an isomorphism.
The commutativity of the diagram follows from the construction in the proof of Proposition 4.5.2. ]
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Proposition 4.7.13. Suppose v(N ) is odd. Let m be coprime to N, and let ¢t 2N'm be a prime inert in K,
with q a prime of K[m] above q. Then every point of CMy+ y-4(m) lies in Xy+ y-q(K[m])*™, the subset
of points which reduce modulo q to smooth points of the special fiber. Moreover, there is an isomorphism
SN+ N-,q : CMy+ n—g(m) = CMy+ y- of Gal(K[m]/K)-torsors fitting into a commutative diagram:

CMpy+ N—g(m) —— Xn+ n—q(K[m])*™
J/SN‘F,N—,q lqu

(59)x{+}
CNIN*,N* (m) X]%-%—)N—'
Proof. That each point of CMpy+ n-4(m) has smooth reduction modulo q follows from [3, p. 55]. For the
rest, let (A, ¢, C) be a point of CMy+ y-4(m), and (Ao, to, Cop) its reduction modulo q. Since (Ag, 1o, Cp) is a
nonsingular O g{,,,}/q-valued point of the special fiber, by [62, Proposition 4.4, Theorem 5.3], there is a unique
(’)Bqu—Stable subgroup scheme H C A which is isomorphic to aq; since H is unique, it is automatically

Om, k-stable as well. Let 7y and C\ denote the induced C’)Bqu-action and To(NT)-structure on Ag/H.

Then (Ao/H, 7o, Cy) is a pure triple over Okim)/q9 =~ Fg in the notation of the proof of Proposition 4.5.4,
and the irreducible component of the special fiber of Xy+ y-, containing (Ao, t0,Co) is parameterized by
the g-Frobenius twist (Ag/H,%o,Co)@. As in the proof of Proposition 4.7.12, the induced O, k-action
on (Ag/H)@ allows us to view End(Ag/H,7,Co) as a point of CMy+ y-(m), and the resulting map
CMp+ n-¢(m) = CMpy+ ny-(m) is then an isomorphism of Gal(K[m]/K)-torsors.

To finish the proof, we must show that (Ag/H, 7o, Co)? is pure of type +, or equivalently that (Ay/H, 7y, Co)
is pure of type —. By [62, Proposition 4.7], it suffices to show that H is of type + in the following sense: if M is
the Dieudonné module of Ay[¢°°], then H corresponds to a submodule N’ C M containing (F, V) M; we wish
to show that OBqu acts on the one-dimensional F2-vector space M /N by the map (’)Bqu —Fpe CFpe
determined by the fixed orientation.

Let A denote the Néron model of A over Spec Okl q, With special fiber Ag. Now, M/FM is dual to
Lie Ag = Lie A ® Og[m1/q, and O,, k acts on Lie A by the canonical embedding O,k — Okm),q (using
the orientation condition of Definition 4.7.3(1)). Hence O,, x acts on M/FM via the reduction map to
Om,k/q >~ F,2. Because M /F M surjects onto M /N, it then suffices to show that the actions of OBN—q/mq
and Oy, x/q on M /N coincide under the fixed composite isomorphism OBqu/mq ~ Fp ~ Opk/q. For

this, it suffices to show the same compatibility for the actions on the finite flat group scheme A[m,]; these
actions coincide over the generic fiber of Spec O[] q by Definition 4.7.3(3), and so the desired compatibility
follows from [60, Corollaire 3.3.6] under the assumption g # 2.

O

5. CONSTRUCTION OF BIPARTITE EULER SYSTEMS

5.1. The CM class construction.

5.1.1. Fix a quadratic imaginary field K C Q, and let f, N, p, O, E, =, Vi, Ty, and W; be as in §1.5, such
that Ty satisfies (TW). We assume that N admits a factorization N = NTN~, where all £/|]NT are split in
K, and N~ is a squarefree product of primes inert in K. We continue the notation of §4.6 (using Ny = N+
and No = N7). Fix an integer m which is coprime to N, and let G,,, = Gal(K[m]/K). If ¢t m is a prime
inert in K, we fix a prime q of K[m] above ¢; for instance, this can be done by choosing an embedding
K[m] = Q. If ¢ is j-admissible with sign ¢, and inert in K, we define the ordinary subspace:

(60) H,

ey (K Ty) = i (H (K, Fil, 1) = HY (K, T))
Using the map obtained from Shapiro’s Lemma (e.g. [71, §3.1.2])
(61) Res, : H'(K[m],Tj) — Homget (G, H' (K4, T})),
we also have maps:
Og.e, : H'(K[m], T;) — Homset (G, H' (I, Fil] T})) = O;[Gn],
locg,e, - H'(K[m]”/K[m],T;) = Homget(Gm, Hoy, (Kq, Tj/ FilF T))) = O;[Gr], £ C My finite, ¢ ¢ 3,

unr
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defined as in (23), (24).

For notational convenience, for this section only we temporarily denote by N the collection of weakly
admissible pairs {Q, g} which are (j 4+ 2C')-level-raising, and such that all primes ¢|@ are odd and inert in
K. Let ¥ be the set of primes of Q dividing Npoo, and for any squarefree integer @, let ¥g be the set of
primes of Q dividing NpQoo.

Construction 5.1.2. For all {Q,eq} € N, there exist maps (well-defined to a unit scalar):
k(5 Q,e0) : CMy+ y-q(m) — HY(K[m]*? /K [m], Tj), v(N~Q) even,
Ai(+Q,€eq) : CMy+ n-g(m) = Homge (G, O;) = O} Gy, v(N~Q) odd,

compatible under the natural reduction maps for j' < j, Gal(K[m]/K)-equivariant, and such that the follow-

ing properties hold.
(1) If {Q,eq} € N;j where v(N~Q) is even, then for all q|@ and all y € CMpy+ y-g(m),

Resq(ﬁj (ya Q, EQ)) € ngd,EQ(q) (K47 Tj)'

(2) If {Qq.eqq} . {Q,eq} € N; where eg = €qgqlo and v(N~Qq) is even, then there is an isomorphism
i: Hl(Iq,Fil+ T;) ~ O; such that, for all y € CMy+ n-gq(m),

4,€Q4(q)
i (Dgcqqu(ti (¥ Qa: €q)) = Nj(sn+ n-.q(¥), Q €q)-
Here sy+ n-Q.q : CMy+ n-0q(m) = CMy+ y-g(m) is the map of Proposition 4.7.135.
(3) If {Qq,eqq} . {Q.cq} € Nj where eq = €qqlq and v(N~Qq) is odd, then there is an isomorphism
i HY (K, T;/ Filk T;) ~ Oj such that, for ally € CMy+ n-g(m),

unr 7,€Qq(q)
i (10¢q,e0,(q) (K5 (4, Qs €@)) = Aj(tn+ N-0,4(4): Qs )
Here ty+ N-g,q 1 CMy+ ny-g(m) = CMp+ n-qq(m) is the map of Proposition 4.7.12.

Proof. The specifications eg will be dropped to ease notation. We fix throughout a prime ¢y { Nmp such
that ag, (f) — o — 1 is a unit in O.

Suppose first that v(N~Q) is odd. By Lemma 4.6.5, there is a unique map (up to scalars) Mg — O; of
T?-modules that factors through O; ¢ and is surjective after O-linearization. For y € CMy+ ~N-@(m) and
g € Gy, we define \j(y, Q)(g) to be the image of gy by the composite map

Tgoffgfl
CMN+,N—Q(m) — XN*,N*Q _— MQ — Oj.

(The notation Mg was defined in (55).)

Now suppose that v(N~Q) is even. For each y € CMy+ y-¢(m), (Ty, — o — 1)y is a degree zero divisor
on Xn+ n-q, and its image in the Jacobian J€ is defined over K[m]. Let
d(y, Q) € H' (K[m]™® /K[m], TnyJ?)
be the Kummer image. We define x;(y, Q) to be the image of d(y, Q) under the map
H'(K[m]*?/K[m], Tng J?) — H'(K[m]*? /K[m], T;)
induced by Corollary 4.6.6.
We now establish properties (1)-(3).

(1) Let X = X,(J9) be the character group as in (4.1.1), and let XV = Hom(X,Z). Because J? is
Hecke-equivariantly isogenous to Jﬁ:NﬁQ over Q by [35, Corollary 2.4], X ® Q is isomorphic to
Xq(JéVl;’N_Q) ® Q as a Tg[Froby|-module; in particular, Froby acts on X as U, by [63, Proposition
3.8]. Since XV ® @qx is p-divisible and F‘robi =1 on X, the exact sequence in Proposition 4.1.2(1)
induces a Gal(K,/Q,)-equivariant commutative diagram of Kummer maps

(X & K) /" —s (g, XY 0 7,(1))

| J

lim (JO(K,)) /" ——— H'(Kp,T,J9),

lim
H
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(62)

(63)

NAOMI SWEETING

where the right vertical map is induced by the injection of Tg[Gg,]-modules XV ® Z,(1) — T,J9
from Proposition 4.1.2(3). Completing at mg, we conclude that the image of the Kummer map
JO(Kg)mg = H'(Ky, Tng J?) coincides with the image of the map H* (K, Xy, (1)) = H'(Ky, Tng J<)
coming from the short exact sequence of Tq m, [Gg,]-modules

0= Xyl (1) = T J? —= Xy = 0.

On the other hand, XY o (1) and X, have Frobg-action through the scalars ge, and €4, respectively,
where ¢, = €g(q). Hence the O-span of the image of Ay (1) under the map of ']I‘an [Ggl-modules
Twg JO — T; is Fil;‘ T}, and the claim follows.

By the reasoning of (1), we have a map

a JQZI(Kq)qu — ngd(KQaTj) — Hl(IQaFﬂ;r TJ)

such that 0q(k;(y,Qq))(9) = a((Ty, — o — 1)gy) for y € CMp+ n-@q; also, a factors through
H(1,, Fil;r Tj+c) and is surjective after O-linearization.

Let ® be the component group of the special fiber of the Néron model of J?¢ over Z,. Applying
the snake lemma to the diagram in Proposition 4.1.2(2), we see that the specialization map Sp,, :
JQU(K,) — ® is surjective, and the pro-p part of its kernel has Frob,-action through —U, since
ptq— 1. Meanwhile, H'(I,, Fil;‘ T;+c) has Frobg-action through €, = €gq(q); hence « factors as
@ o Sp,, for a map @ : Py, — Hl(Iq,Fﬂ;r T;) ~ Oj that factors through O;y¢c and is surjective
after O-linearization.

By Proposition 4.5.6 and the formula for the Uj-action in Proposition 4.5.4, restricting the map
(54) to the “+” components defines a surjection 8 : Mgqmq, = Pmg,- Applying Propositions 4.5.6
and 4.7.13, we also have

B ((Te, — Lo — 1)sn+ n-q,q(%) =Sp, (T, — Lo — 1)y)

for all y € CMpy+ n-qq- Since Lemma 4.6.5 shows that @ o 3 coincides up to a unit scalar with the
map Mqggmg, —+ O; used to construct A;(y, Qq), (2) follows.
By Proposition 4.7.12 and the local-global compatibility of the Abel-Jacobi map,

locg £ (y, Q)(9) € Hine(Qqe, Tj/ Fil} T)) = H' (Fy2, T;/ Fil T;)
is the image of ty+ n-¢ 4(gy) under the composite map

Teq—4o—1 (53)

CMp+ n-0q(m) = Xn+ N-0q Mg, H'(Fp2, Ty, J9) —
H'(Fp2,Tjrc) » H (B2, Tj) - H' (Fp2, T;/ Fil} T}).
We claim it suffices to show the composite
¥ Mgg — H' (Fg2, Tjpc/ Fill Tjo) = Oj ¢

is equivariant for the full Hecke algebra T?¢ Mg indeed, by Lemma 4.6.5, the composition of ¢ with
the reduction map Oj1¢c — O, will therefore coincide (up to a unit scalar) with the map used to
construct \;(y, Qg), which will give (3). The equivariance for all Hecke operators prime to g is clear,
so we wish to show

YolUy = €q1b,

where again €, = €gq(q). Now, the map ¢ : Mg, — H*(F2, T, J9) satisfies ¢ o U, = Frob, o ¢ by
Proposition 4.5.2(2). Also, the maps

H'(Fg2, T, J9) = H (Fye, Tjyc) —» H (Fge, Tjic/ Fil] Tjic)

are maps of Gal(IF,2/F,)-modules, and the latter map projects onto the ¢, eigenspace for Frob,.
Hence (63) holds, as desired.

O
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Remark 5.1.3. In the special case ) = 1, Construction 5.1.2 can be described more simply. First, let Ay be
a representative of the isogeny class of abelian varieties of GLo-type associated to f; we can and do assume
Endg(Ay) = Oy. Then Ty is realized as T, Ay ®0, ¢z, O.

When v(N7) is even, there is a modular parametrization ¢ : JNTNT

— Ay; we may assume without
loss of generality that the induced map ¢, : TpJV TNT T} is surjective after O-linearization, and that
the map Ty JV TN T; used in the construction of (-, 1) is the reduction of ¢, modulo 7. Then for
all y € CMpy+ n-(m), k;(y,1) is the image of ¢ ((Ty, — o — 1)y) under the Kummer map A¢(K[m]) —
HY(K[m], A¢[p]) = H(K[m], T;).

Similarly, when v(N7) is odd, there is a Hecke-equivariant map ¢ : Z[X y+ ~-]% = O corresponding to
the realization of f as a quaternionic modular form on BY_. Without loss of generality, ¢ is surjective
after O-linearization, and \;(y,1)(9) = ¢ ((Ty, — Lo — 1)gy) (mod 77) for all y € CMpy+ y-(m) and g €
Gal(K[m]/K).

5.2. p-adic interpolation.

5.2.1. Suppose for this subsection that:

(spl) p splits in K
and
(ord) a(f) ¢ p.

We denote by K, C K[p™] the mth layer of the anticyclotomic Z,-extension Ko /K.

Proposition 5.2.2. Suppose Q is a squarefree product of primes inert in K. Then there exists a sequence
y(m) € CMy+ n-q(p™) such that

Tpy(m) = trgpm1y/ kpm y(m +1) +y(m — 1), ¥Vm > 1,
as formal sums of points on Xn+ n-q-

Proof. This is a standard calculation, but we give a sketch of the proof for lack of a precise reference. The
set

CMpy+ N-0(P) = Un>0 CMy+ nv-o(»™)
carries a natural Hecke correspondence T),, compatible with the action of Gal(KX [p>°]|/K) and with the map
CMpy+ N-(P>*) = XN+ n-¢- If yis a CM point of conductor p™ with m > 1, then (since p is split in
K) T,y contains a CM point of conductor p™~!, and another of conductor p™*!. Since T,y is fixed by
Gal(K[p™T1]/K[p™]), the proposition follows formally. O

5.2.3. Suppose given any {Q,eq} € N, and let {Q, €, } be a representative sequence of weakly admissible
pairs as in Remark 4.6.8, with each @Q,, a squarefree product of primes inert in K. For each n, let y(m),, €
CMp+ n-q, (P™) be a sequence of CM points which are compatible in the sense of Proposition 5.2.2.

Since T}, € m, Hensel’s Lemma implies that the Hecke algebras ngn contain a (unique) element v ¢ mg,,
such that u? — uly +p =0. Let o, € O* be the image of u.

5.2.4. We now suppose that |Q| + v(N7) is even. Adopting the notation of Construction 5.1.2, it follows
from the compatibility relation of the y(m), that the classes

d(ma Qn) = CoresK[pm]/Km (uierld(y(m)na Qn) —u " ReSK[pm]/K[pm*ﬂ d(y(m - l)na Qn))

are compatible under the corestriction maps
H (K, Tng, JO) = HY (K1, T,

mo,, JQn)
Let kj(m, @) be the image of d(m, @) under the map of Corollary 4.6.6; this is well-defined for F-many
n depending on j, and the classes k;(m, Q) are compatible under corestriction. Let S C Mg be the set of
constant ultraprimes v such that v|Npoo, and, for each m, let (SUQ),, C Mg, be the preimage of SUQ
under the projection Mg, — Mg. We let

Kk(Q) € im H' (KGYVm /K, Ty) ~ H' (K°V9, T @ A(W))

m,j

be the class represented by the family x;(m, @), where the isomorphism follows from Shapiro’s Lemma.
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5.2.5. Similarly, if |Q| + v(N7) is odd, the elements
X (m, Qn) = o "IN (y(m)n, Qn) — "X (y(m = 1), Qn) € O5[Gal(K[p™]/K)]
are compatible under the natural projection maps
O;[Gal(K [p™]/K)] — O;[Gal(K [p™ ]/ K)).
Applying the projection Gal(K[p™]/K) — Gal(K,,/K) for each m, we then obtain an element
AQ) € lig}l/{ ({0; [Gal(Km/K)}}neN) ~ O]Gal(K/K)] ~ A.

m,j

Remark 5.2.6. If (N 7) is even, then (1) is the usual interpolated Heegner class, which appears in
slightly more restricted contexts in [8, 37, 57]. If (N ™) is odd, then A(1) is the usual anticyclotomic p-adic
L-function, e.g. the one denoted O in [19].

5.2.7. Recall the Selmer structure (Fa,S) for Ty =Ty ® A defined in (3.4.2).

Proposition 5.2.8. The pair (k,A) is a bipartite Euler system with parity v(N ) for the triple (T, Fa,S).
Moreover, either k(1) or X(1) is nontrivial, depending on the parity of v(N ™).

Proof. We first show that <(Q) lies in Selx, (q)(Ty) for all {Q,eq} € N*™7), or equivalently that x(Q) lies
in H}A(Q)(K\,,Tf) for all v. If v € SUQ, this is clear; if v =q € Q, it follows from Construction 5.1.2(1);
and if v = v with v|N, it is automatic because H}A(Q)(K\,, T;) = HY(K,, Ty) (by definition if v|N~, and by
[65, Corollary B.3.4] if v|NT).

So we verify the local condition for v = v with v|p. If Q is represented by the sequence (@, )nen, let
Filj T, J9 C Tw,, J9 be the maximal T, m, -stable subspace on which I, acts by the cyclotomic
character (adopting the notation of Construction 5.1.2 and if necessary restricting our attention to F-many
n). As in [18, Proposition 4.7], it suffices to show that, for all m and n and a fixed extension of v to Ko,
the image d,, ,, of the class d(m, @,,) under the composite

HY (K, T, JO) = H (Koo, Trng, J9 ) Filf Ty, J9)

is trivial. Since d(m, Q) is a T, m,, -linear combination of Kummer images over K,,, by [4, Example 3.11]
and [52, Proposition 12.5.8] d,, ,,, lies in the kernel of

HY (Koo, T, J9 ) Filf Tragy, J9) = H' (Ko, Qp ® Ting,, JO / Fil} Ty, JO).

Since the classes dy, ., are corestriction-compatible as m varies, the argument of [39, Proposition 2.4.5] shows
that indeed d,, ,,, = 0 for all n, m.

The explicit reciprocity laws are a consequence of Construction 5.1.2(2,3), and the nonvanishing of either
£(1) or A(1) (according to the parity of ¥(N 7)) is due to the work of Cornut and Vatsal [22, Theorem 1.10]
and Vatsal [76, Theorem 1.1]; see [76, §2.3] for the relation of the cited theorem to A(1). O

Remark 5.2.9. In fact, Vatsal proves the stronger result that A(1) # 0 (mod 7) when v(N7) is odd.
Indeed, this follows from [76, Proposition 4.7], combined with the independence of the choice of Heegner
points described in Remark 3.7 of op. cit. The constant v in [76, Proposition 4.7] is trivial because Tf is
absolutely irreducible.

5.3. Kolyvagin classes.

5.3.1. Before defining the Kolyvagin classes in patched cohomology, we begin by recalling a calculation
explained in [31, §3]. Throughout this subsection, we assume

(disc) disc(K) # —3, —4,

or equivalently O = {+1}.
Let m be a squarefree product of primes ¢ inert in K with (m, Np) = 1. Under the condition (disc), we
have
Gal(K[m]/K[1)) = [ Gal(K[)/K[1]);

£lm
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each Gal(K[(]/K][1]) is cyclic of order £ + 1. For a place A of K[m] over some £|m, extend \ to a place of Q
and let Froby € G be a lift of Frobenius. Also let o) € I C Ggy1) be an element whose image generates
Gal(K[¢]/K[1]). Recall the Kolyvagin derivative operators [31, p. 239]:

4
Dy =Y io} € Z[Gal(K[]/K[1])], Dm =][]De.

i=1 £|m
Finally, let @ be a squarefree product of primes inert in K that is coprime to Nmp, and choose a CM point
y(m, Q) € CMy+ y-g(m). We define
P(m,Q) = Diny(m, Q),

viewed as a formal sum of points on Xn+ y-¢-
Proposition 5.3.2. For any {|m, there exists a CM point y(m/l,Q) € CMy+ n-qo(m/l) such that:

(1) (ox = 1)P(m,Q) = ({+ 1) Dy yey(m, Q) — TyP(m/L, Q).

(2) If v(N~Q) is even, then

Dy yey(m, Q) = Froby P(m/£,Q) (mod X).

Proof. This is proved in [31, p. 240] in the modular curve case; the same reasoning applies to Shimura curves

by [53, Proposition 4.13]. The argument for (1) formally applies to Shimura sets as well, along the lines of
Proposition 5.2.2. (]

Fix £y as in the proof of Construction 5.1.2, and let
P'(m,Q) = (Ty, — bo — 1)P(m, Q).
Proposition 5.3.3. Let mg C Tg = Ty+ y-¢ be non-Eisenstein, and let I, C Tg be the ideal generated
by £+ 1 and Ty for all £)m. Then if v(N~Q) is even:
(1) Restriction induces an isomorphism

Resy, : H (K[, Trg J9/Im) = HY(K[m), Trg J?/L,,) S mI/ K1)

(2) The Kummer image d(m, Q) of P'(m,Q) in H' (K[m], T, J9/1,,) lies in the image of Res,,.
(3) If c(m,Q) = Coresgp)/x Res ' d(m,Q), then for all £|m and any choices of representatives,

c(m,Q)(ay) = Frob; ' ¢(m/¢, Q)(Frob3).
(4) The class c¢(m, Q) is unramified at any place v NpmQoo.

Proof. First note that the residual representation p,, Q associated to mg has no G'g-invariants by the same
argument as Lemma 3.3.4. Hence (1) follows from the inflation-restriction exact sequence as in [31, p. 241].
Also, (2) is immediate from Proposition 5.3.2, and (4) is clear from the construction. For (3), we modify
the argument of [50, Proposition 4.4]. First of all, both oy and Frob} act trivially on Tig J®9/1,,, so the
assertion is independent of the choice of cocycle representatives for ¢(m, Q) and ¢(m/¢, Q). Also, it suffices
to check the corresponding statement for ¢/(m, Q) = Res,,! d(m, Q) and ¢ (m/¢, Q).

Fix division points PléTiQ) and P/(Z/f’Q) in J9(K). For any g € Ggpy, 9+ d(m,Q) = d(m,Q), so there

exists Ay € Ty JQ/I,,, such that

P'(m,Q)
+1
Since G has no fixed points on Tw,J%/I,, (64) uniquely determines Ay, and g — A, is a cocycle

representing ¢'(m, Q). We wish to compute A,,. By Proposition 5.3.2(1),

P'(m,
(ox — 1)% = (To, = lo = 1)Dpnyey(m, Q) — Tt
for a uniquely determined torsion point 7' € J?[¢ + 1], and it follows that A,, is the image of 7. Since
the K-points of J?[¢ + 1] have distinct reduction modulo A, Proposition 5.3.2(2) shows that we can also

characterize T as the unique point in J?[¢ 4 1] congruent to

P(m/,Q)
+1

(64) (h—1)A, =(h—1)(g—1) € Ty J?/Im, Yh € Gilm)-

(Ty — Frobx(£+ 1)) (mod A).
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Since Frobi —T;Froby +£ = 0 on J? (kx), where ky = F, is the residue field, T is also the unique point in
JR[¢ + 1] congruent modulo A to
P'(m/t,Q)
f+1
this shows (3). O

(Froby — Froby ') = Frob, ' d(m/¢, Q)(Frob3) = Froby ! ¢(m/¢, Q)(Frob3);

Definition 5.3.4. For a squarefree product m of primes inert in K and coprime to N, let I,,,(f) C O be the
ideal generated by as(f) and £+ 1 for all £|m. Suppose given {Q,eq} € Nj (notation as before Construction
5.1.2), with (m, Q) =1 and v, (I (f)) > j. If ¥(N~Q) is even, then the Kolyvagin class

(65) ¢;(m,Q) € H'(K¥em /K, T})

is defined to be the image of ¢(m, Q) under the map Ty, J? /I, — Tj given by Corollary 4.6.6. If v(N~Q)
is odd, then Construction 5.1.2, extended linearly to formal sums of CM points, defines an element

i (P(m, Q), Q) € O;(Gal(K[m]/K)].

Because v, (Ln(f)) > 7, Aj(P(m,Q), Q) is constant on cosets of Gal(K[m]/K]1]) by Proposition 5.3.2(1)
and therefore descends to

(66) )\;(m, Q) € 0;[Gal(K[1]/K)].
The Kolyvagin element is then defined as:
(67) Aj(m, Q) = trgpy/x Nj(m, Q) € 0.

When m = @ = 1, then j can be arbitrarily large, giving a class ¢oo(1,1) € H'(K,T}) or an element
Ao(1,1) € O.

Remark 5.3.5. When Q = N~ = 1 and Oy = Z, this agrees with Kolyvagin’s original construction
described in [45, §1].

5.3.6. We now consider the local properties of the classes ¢;(m, Q) at places v|p of K. Recall from Remark
5.1.3 the abelian variety Ay such that Ty =T, Ay ®o,gz, O. For any finite extension L of Q,, define

(68) H{(L,Ty) =im (As(L) ®0, O — H'(L,Ty)) .
Also, for any j > 1, let
H}(L,Tj) = im (H}(L,Ty) - H'(L, T}))
=im (4;(L) ® O/¢’ — H'(L,T})),
which is also the kernel of the composite
H'(L,Tj) = H'(L, Af["]) — H'(L, A ().

Proposition 5.3.7. Let v|p be a place of K. For m, Q, and j as in Definition 5.5.4, ¢;(m,Q), lies in
H}(KU,TJ-).

Proof. Extend v to a place of K[m|. By [51, Proposition 3.8] and inflation-restriction (cf. the proof of [31,
Proposition 6.2(1)]), the natural map H'(K,, A;(K)) — H'(K[m],, A;(K)) is injective, so it is enough to
show that

Resgm), ¢j(m, Q) € H}(K[m]mTj).
Since Resgm) c(m, Q) = [K[1] : K]d(m,Q), and d(m, Q) is defined as the Kummer image of P'(m,Q), it
suffices to show:

Claim. The image of the composite map
(69) JO(K[m),) » H' (K[m],, J°[p') & H' (K[m],, Ty)
lies in H}(K[m]U,Tj).
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Here 3 is induced by the map of Gg-modules

(70) TP = Ty @ [y — Tug I @ /07 2 13,
Let J9 and Ay be the Néron models of J9 and Ay, respectively, over Spec Okfy,, - By [60, Corollaire 3.3.6],

the map (70) of G [m,-modules J9[p?] — T} extends to a map of finite flat group schemes J%[p?] — Ay[p]
over Spec Ok{y,,; moreover (69) fits into a commutative diagram

TUOkim),) — HE ¢(Spec Ok, T9[p’]) —— HE ¢(Spec Ok, » Af[97])

| |

J?(K[m],) ———— HY(K[m],, J®[p/]) ———— HY(K[m],,T}).

1
Here H, fpp

right vertical arrow is H;(K[m],,T;), and the claim follows. O

¢ refers to sheaf cohomology computed in the fppf topology. By [32, Lemma 7], the image of the

5.3.8. Recall that € is the global root number of f. For applications to the parity conjecture, we will require
the following;:

Proposition 5.3.9. Let m be a squarefree product of primes inert in K and suppose j < v,(Im(f)). Ifv(N™)
is even, then ¢;(m,1) lies in the e - (=1)*m*1 _eigenspace for the action of the generator T € Gal(K/Q).
Ifv(N7) is odd and \j(m,1) # 0, then ef = (—1)*(™).

Proof. Since f is a newform of level N, the maps ¢ : JNTNT Ajor ¢ Z[XNJr’N,]O — O from Remark
5.1.3 satisfy

1)V,

(71) pown =¢f- (= @,

where wy = HZ‘NJr wy HZ\N— Uy is the Atkin-Lehner involution; the minus signs appear because the local

root number of f at ¢|N~ is the negative of the U, eigenvalue for the quaternionic modular form on B} _
corresponding to f.

Now suppose v(N ) is even. Choose a lift 7 € Gal(K[m]/Q); then, for all y(m) € CMy+ y-(m), we claim
that wyTy(m) lies in CMy+ y-(m) as well. Indeed, this is clear from Definition 4.7.3: applying wyT reverses
all the orientation conditions (1)-(3), but then we can replace the action of Oy, x with its complex conjugate
so the conditions are again satisfied. Since ¢;(m,1) is independent of the choice of y(m) by Proposition
5.3.3(2) and the transitivity of the Gg-action on CMpy+ n-(m), the calculation in [31, Proposition 5.4]
applies to show (using (71) and Remark 5.1.3) that 7¢;(m, 1) = —¢; - (—1)*(™)¢;(m, 1), as desired.

The case when v(N ™) is odd is similar: if y(m) € CMpy+ n-(m) is represented by a pair (R, ¢) satisfying
Definition 4.7.7 for the fixed embedding K < B, then wyy(m) is represented by the pair (R, ¢°F), with
all orientations reversed. But (R, ¢°P) satisfies Definition 4.7.7 for the embedding K =+ K < B, which is
conjugate to K < B by an element of B*(Q), so wyy(m) lies in the image of CMy+ y-(m) = Xn+ n--
Applying formally the calculations in [31, Proposition 5.4], it follows from (71) and Remark 5.1.3 that
Aj(m, 1) = €7 - (=1)¥™\;(m, 1), which gives the claim. O

Definition 5.3.10. An ultraprime | € Mg is called Kolyvagin-admissible if
Frob, € Gal(K(Tf)/Q)

is a complex conjugation. We will also abusively write | for the unique corresponding ultraprime in M.
A Kolyvagin-admissible set is a finite set of Kolyvagin-admissible ultraprimes, and the collection of all
Kolyvagin-admissible sets is denoted K. We will use multiplicative notation for the Kolyvagin-admissible
sets, i.e. if m,n € K with mNn = ), we write mn for the union mUn. Similarly, if | € m is Kolyvagin-admissible,
we write ml for m U {I}. We write 1 for 0 € K.
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5.3.11. If | is Kolyvagin-admissible, then the local cohomology
HY (K, Ty)

is free of rank four over O, and carries a natural action of the complex conjugation 7 € Gal(K/Q). It has a
canonical splitting of the finite-singular exact sequence:

Hl(KhTf) = Hl (KhTf) D H%r(Klan)v

unr

defined as follows. If the sequence (¢, )nen represents |, then for any j and for F-many n, Froby, acts as
complex conjugation on T}, and

Hy, (Ke,, Ty) = ker (H' (Ky, Ty /7’) = H'(K[(]5,, Ty /7))

is isomorphic to H!(I, Tj)Fmbl%n:l, where A, is a prime of K[¢,] over ¢,. Then

H%r(KhTf) = lgnu ({Htlr(Kéanj)}neN) - Hl(KhTf)

unr(Kl’ ,I‘f)jz and
HY (K, Ty) — Htlr(KhTf)i, respectively, where the superscript =+ refers to the Frobenius eigenspace with
eigenvalue £1. The codomain of each is free of rank one over O.

Let S C Mg be the set of constant ultraprimes v such that v|Npoo. We will consider the Kolyvagin-
transverse Selmer structure (F(m),SUm) on T}, for any m € K:

is our transverse subspace. We denote by 10c|lL and 8|i the composites H' (K, T ) — H!

HY(K,,V,
ker (HI(KU,Tf) - 7}1}5&%;) , v=uveS,

(72) Hmy (K3 Ty) = § HL (K, T), v=lem,
H, (K, Ty), otherwise.

unr

Here H}(Kv, V) is the Bloch-Kato local condition on Vy = Ty ® Q,; when v|p, the notation is consistent
with (68) by [4, Examples 3.10.1, 3.11]. Note that (F(m),S U m) is a self-dual Selmer structure by the
self-duality of H}(KU, V) — the transverse local conditions at m are self-dual by [49, Proposition 1.3.2]. If
{Q, eq} € Nsum, then we denote by (F(m,Q),SUm U Q) the modified Selmer structure of (3.2.2).

5.3.12. Let {Q,eq} € Ngfﬁi), and fix representatives (Qn)neny and (my)nen; for §-many n, Q,m, is a

squarefree product of primes inert in K. Our patched Kolyvagin class is the element
K(m, Q) € H' (K>U™Q /K, Ty)

whose image in H!(KS“™YQ/K T}) is represented by the sequence of images of the classes ;(my,, Qn),
well-defined for §-many n.

If {Q,eq} € NZNVFL then we similarly set

SUm
A(m. Q) € O ~limi ({O/x'})

to be the element whose image in O/77 is represented by the sequence \;(my,, Q).

v(N7)
Sum

(r(m, Q)) C Selr(m,q)(Ty)-

Proposition 5.3.13. For any m € K and {Q,eq} € N

Moreover:

(1) For all m € K and all Kolyvagin-admissible | ¢ m, and all {Q,eq} € Ngfﬁl—),

(loci" (k(m, Q))) = (9 (x(ml, Q)))

as submodules of O.
(2) For allm € K and all {Qq,eqq} € Ngfﬁ ),

(0q(r(m, Qq))) = (A(m,Q))

as submodules of O.
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(3) For allm € K and all {Qq,eqq} € Ngfﬁi)_a

(locg(k(m, Q))) = (A(m, Qq))
as submodules of O.

In particular, for any fized m, (k(m,-), AX(m,-)) forms a bipartite Fuler system with parity v(N~) for the
triple (T, F(m),SUm).

Proof. To prove the first claim, we verify the local conditions for each v € SUmU Q. If v = v for a prime
v|Noo, then the local condition is all of H'(K,,Ty), so there is nothing to show. (Indeed, H'(K,,T}) is
torsion for any v|Noo.) If v = v for a prime v|p, then we have

Res, k(m, Q) € Hj(K,,Ty) = @H}(KU,Tj)
j

by Proposition 5.3.7.

If v =1 € m, then, adopting as well the notation of (5.3.1), the class ¢(m,, @) is zero when restricted to
K[my)x, because Dy, = £,,(¢,,+1)/2 on F,; it follows that Res, x(m, Q) € H{, (K, Tf). The local conditions
at q € Q are satisfied by Construction 5.1.2(1) because every factor of @Q,, splits completely in K[m,]; for the
same reason, (2, 3) follow from Construction 5.1.2(2, 3). Moreover (1) is clear from Proposition 5.3.3(3). O

Remark 5.3.14. (1) The condition (disc) is only used to control the structure of the Galois group
Gal(K[m]/K][1]) in (5.3.1) above. In particular, one sees from the construction that the bipartite
Euler system (x(1,-), A(1,-)) makes sense in the generality of (5.1.1). We will use this observation
to prove the p-converse theorem (Corollary 8.1.3 below) without the assumption (disc).

(2) Note as well that, under (spl) and (ord), (x(1,-), A(1,-)) may be viewed as a specialization of (k, X).
Indeed, let 1 : A — O be the specialization at the trivial character. Then by the usual Heegner
point norm relations [23, Proposition 3.10] (adapted to our context as in the proof of Proposition
5.2.2), LA(Q)) = (ap = 1)*(A(1,Q)) and 1(k(Q)) = (ap — 1)*(5(1,Q)) when {Q,eq} € N*(V )+
and {Q,eq} € N* W) respectively.

6. DEFORMATION THEORY

In §4, we used geometric methods to produce level-raising congruences on the level of so-called “weak
eigenforms” (i.e. ring maps from a Hecke algebra to O/77), which typically do not lift to characteristic
zero. To prove the main results, we also need to be able to m-adically approximate our fixed modular form
f by genuine level-raised eigen-newforms. In this section, we provide this input via the relative deformation
theory of Fakhruddin-Khare-Patrikis [28].

6.1. Review of relative deformation theory.

6.1.1. Let f, N, p, O, E, w, V§, Ty, and Wy be as in §1.5. However, for this section only we allow p|N (since
it does not change any of the statements of our results).
We will also consider the hypothesis:

(TW) If p = 3, then Ty is absolutely irreducible when restricted to Go/=3)-

Consider the adjoint representation
L =ad’ Ty

and its O-dual, LT ~ L(1), and let L and I" ~ L' /7 be the associated residual representations. Although
we continue to assume 7'¢ is absolutely irreducible, we do not assume L is absolutely irreducible.

6.1.2. We now recall the construction in [28, Proposition 4.7] of certain local conditions for the Galois
cohomology of L. Let Co be the category of complete local Noetherian algebras R with a map O — R
inducing an isomorphism on residue fields. Fix a basis for Ty over O, which identifies the Galois action on
Ty with a homomorphism py : Gg — GL2(0), and let p; be the reduction of py modulo 7. For all primes

{ £ p, let E@ € Co denote the framed universal deformation ring of ﬁf|GQ/, of fixed determinant x; that is,

Homco(ﬁg,A) = {PA : GQ[ — GLQ(A) P pA®a A/mA :ﬁf‘G@e’ det py = X}, AeCo.
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Similarly, for ¢ = p, let Ep € Co denote the framed potentially semistable deformation ring of Tflg@p
(constructed in [44]), with fixed Hodge-Tate weights 0 and 1, fixed determinant y, and fixed Galois type
agreeing with that of ps|g, . For any ¢, the generic fiber R¢[1/] is generically formally smooth of pure

dimension 3 + dy—p,. The representation 'Df|G@z defines a formally smooth point ¥y, of Spec E[[l /7| by [1,

Theorem D, Proposition 1.2.2]; let Spec Ry C Spec Ry be the Zariski closure of the irreducible component of
Spec Ry[1/7] containing yq.

Proposition 6.1.3. There exists an open set Y, C Spec Ry(O) containing ye, and a collection of submodules
Z; = Z;j(ye) C ZY(Gaq,, L/77) which are free of rank 34 8,=, over O/ for all j > 0, satisfying the following
properties.

(1) LetY,! be the image of Yy in Spec Ry(O/7™) and denote by W:fj : Y,fﬂ — Y.! the reduction maps for
n,j > 0. Then given jo > 0, there exists ng > 0 such that, for all n > ng and all 0 < j < jo, the
fibers of wrjl/fj are nonempty principal homogeneous spaces for Z;. '

(2) The natural O-module maps O/n? — O /i~ and O /7=t — O/ induce surjections Z; — Zj_1
and inclusions Z;_y — Z;.

(3) If pf|GQ[ is unramified, then Z; is the subspace of unramified cocycles, and Yy can be chosen so that
(1) holds with ng =1 for all jo.

Remark 6.1.4. We note that, although the open subset Y, C Spec Ry(O) is not uniquely determined by the
property (1) in Proposition 6.1.3, the submodules Z;(y,) depend only on y,. Indeed, if j is fixed, then for n
sufficiently large the fiber of Y,!, ; — Y, over y; (mod ") is the fiber of Spec R¢(O/n"7) — Spec R¢(O/n")
over ¥y (mod 7™), which depends only on y,, and this fiber determines Z;(y,).

Proof. The existence of Y; and Z; satisfying (1) and (2) is proved in [28, Proposition 4.7], so we consider
(3). Note ¢ # p by the hypothesis that pf|G@e is unramified. Let R, — R{™ be the quotient parametrizing
unramified deformations; then Ry"" is formally smooth over O of dimension 3, and it follows that R, = Rj}™.
The formal smoothness of R;™ then immediately implies that properties (1) and (2) are satisfied with
Z; = Z},.(Gg,, L/77) the space of unramified cocycles, Yy = Spec R;(O), and ng = 1 for all jo. O

unr

6.1.5. For all primes ¢ and all j > 0, let HL(Qg, L/77) be the image of the subset Z;(y,) C Z*(Qg, L/77) of
Proposition 6.1.3. Also let

Hs(Qe, L) = lim Hs(Qe, L/77).

J

Proposition 6.1.6. For all primes £, the quotient
H'(Q, L)

Hé‘ (va L)
is m-torsion-free.

Proof. The m-torsion of H'(Qg, L)/H%(Qy, L) is identified with the inverse limit of the kernels

HYQe, L/7?) =, HY(Qq, L/79t1h)
HY(Qq, L/77) - Hé(@e,L/Wj‘Ll)) ’

where 7, is the map induced by 7 : L/7/ — L/77*. Since Z;

K = ker (

y¢) contains all coboundaries,

(
ZYQe, L/7) w. ZY(Qq, L/wit1)
Ziwe) | Ziawo) )

Kj = ker (
So it suffices to show
(73) T ZNQo, L/77) 0 Zjsa (ye) = Z;(ye).

Now 7. Z4(Qu, L/77) N Zj11(ye) is contained in Z;4 1 (ye)[n?] = (O/m7)3+%=r and also contains Z;(y,) by
Proposition 6.1.3(2). By counting ranks, we see that (73) holds, as desired. O
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6.1.7. Now suppose ¢ is a j-admissible prime with sign €;, and let ¢, denote the unramified character of Gg,
sending Frob, to ¢,.

Recall from Definition 4.6.2 the uniquely determined subspace Fil(‘;sq T, C Tj; free of rank one over O /w7,
on which Gq, acts by xe,. We define

Fil;. L/x’ = Hom (TJ JFilf, T;,Filf, Tj) c L),
a free O/m7-submodule of rank one, and

Hoae,(Qq, L/77) = im (Hl(Qq,Fﬂ;eq L/n?) > Hl(Qq,L/Wﬂ')) _

As always the subscripts €, will usually be omitted when they are clear from context.
A representation p : Gg, — GLa(A), for any Z,-algebra A, will be called Steinberg if it is conjugate to a

representation of the form (é T) with * a ramified cocycle in H*(Q,, A(1)). We denote by Spec Rord

Spec R, the Zariski closure of the union of the irreducible components of Spec R,[1/x] that contain a point
corresponding to a Steinberg representation twisted by €,.

Proposition 6.1.8. Suppose q is j-admissible with sign ¢, and p, € Spec Rgffq (O/x") is a lift of Tj|ay,
(with any framing), for some n > j. Then for all r < j, the fiber of the reduction map

Spec Rord (O/7™*") — Spec Rord (O/7™)

over p, is a nonempty principal homogeneous space under

Zgrd,eq (Qq, L/7") :=ker <Z1(Qq,L/7TT) N HY(Qq, L/7") ) ’

Holrd,eq (Qq7 L/?TT)
which is free of rank 3 over O/n".

Proof. Without loss of generality, we may assume that Frob, acts on Tj via the diagonal matrix <Q(€)q €0>
q

By the explicit calculations in [68, Propositions 5.5, 5.6], Rgfgq is a power series ring O[X,Y, B] with

universal deformation
ord 1 X\ '/1 B\/1 X
py (o) =
q Y 1 0 1 Y 1

-G D) (5 63

where o is a generator of tame inertia and ¢ is a lift of arithmetic Frobenius. (We note this calculation
crucially uses ¢ Z 1 (mod p).) In particular, Spec Rord is formally smooth, and by the discussion in [28,

—_

§4.1, Lemma 4.5], the fiber of the reduction map in the proposition over p, is a principal homogeneous
space under a certain submodule Z of Z1(Q,, L/7") which is free of rank three over O/n" and contains all

coboundaries. It is also clear that the cocycles of the form ¢ — 0,0 — (8 8) are contained in Z!, and

these generate H! ;(Q,, L/7"). By comparing ranks, we find Z/. = Ord o (Qq, L/7"). O

6.1.9. Let N; denote the set of weakly admissible pairs {Q, e} such that each ¢|Q is j-admissible with sign
eg(q) (notation slightly different from (5.1.1)). If {Q,eq} € N; is a weakly admissible pair, we will consider
the (non-patched) Selmer groups

H'(Qy, L/7) H'(Qq, L/77)
Selo(Q, L/7?) == ker | HY(Q®V?/Q, L/n) — — L~ ,
€|11_V[ HS(QbL/Trj) qll_CI?Hord EQ(q (QII?L/WJ)
where S is the set of places dividing Npoo. We also have the dual Selmer group Selg(Q, L*[n7]) defined
using orthogonal complement local conditions.
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Finally, define, for any finite set of places ¥ containing all v|Npoo:

(74) T3, = ker (Hl(QE/Q,L*) =11 H1<@U7L*)> :

=
Proposition 6.1.10. There exists a finite set of places &, containing all v|Npoo, such that
113, = 0.
Proof. We claim it suffices to show that
(75) HYQ(Tp)/Q.L7) =0,
where this cohomology group makes sense because GQ(Tf) acts trivially on L" as det ps = X. Indeed, suppose
¥ is a finite set of places containing all v|Npoo, and ¢ € 111}, is nonzero. Then by (75), the restriction map
Hl(Qa Z*) - Hl(@(Tf)7Z*)
is injective, so c restricts to a nonzero homomorphism ¢’ : GQ(Tf) — L". Let ¢ ¢ 3. be a prime which is
totally split in Q(T'y) but not in the extension cut out by ¢’ (which is possible by the Chebotarev Density
Theorem). Then Resy ¢ # 0, hence the inclusion III5, \,y C I3, is strict. Since I3, is finite, iterating this
process produces a set ¥ such that IIL = 0.

We now show (75). If p,, ¢ Q(L), then the center of Gal(Q(T'y)/Q) contains elements that act by nontrivial
scalars on L, and (75) follows from inflation-restriction. So suppose that pp C Q(L). In particular, the
projective image G = Gal(Q(L)/Q) of p; has a cyclic quotient of order p — 1.

Since T’y is absolutely irreducible, and since every subgroup of PGLy(O/m) is naturally a subgroup of

PSLy(F,), a classical result of Dickson [73, Chapter 3, Theorem 6.25] implies that G is isomorphic to a
dihedral group, or A4, Sa, or As, or either PSLy(Fpn) or PGLo(Fpn) for some n. Because PSLy(Fy) is
simple for ¢ > 3, for G to have a cyclic quotient of order p — 1 requires that p = 3 and G is isomorphic to
either a dihedral group, or PGLy(F,n) for some n. (Recall here that Sy is isomorphic to PGL2(F3).) If the
order of G is prime to p, then (75) will hold automatically, so we may assume without loss of generality that
G is isomorphic to PGLa(F,») for some n.

Let G = Gal(Q(T¢)/Q(1p)) € SL2(O/7). The natural map G — G has kernel and cokernel of
cardinality at most 2, so, comparing with the classification in [73, Chapter 3, Theorem 6.17, Case II], we
conclude that GV contains a subgroup H isomorphic to SLs (Fpn) with index at most 2. Moreover, F,n is
a subfield of O/m and the embedding H — SL2(O/m) is GL2(O/m)-conjugate to the standard one by [73,
Chapter 3, Lemma 6.18]. In particular, H'(H,L") = H'(H,L) = 0 by [24, Lemma 2.48], and because H
contains a p-Sylow subgroup of G, HY(GM L") = 0 as well. This shows (75) because of the inflation-
restriction exact sequence:

0=H"(Q(n)/Q, (L") %wr) - HYQ(Ty)/Q,L") — H'(Q(Ty)/Qp,), L") = H (GY,L").
O

Theorem 6.1.11. Let f be as above, satisfying (TW). Suppose given a weakly admissible pair {Q,eq} € N;
and an integer k < j satisfying the following conditions:
(1) The map
Selg (L*[7*]) — Selo (L")
1s identically zero.
(2) For each £|Np, let no(¢, k) be a number satisfying the conclusion of Proposition 6.1.3(1) for jo =k,
and let No(k) = maxynp {no(¢,k)}. Then j —k+1> No(k).

Then there is an eigen-newform g of weight 2, level NQ, and trivial character, with a prime @4 of the ring
of integers of its coefficient field Og4, such that:

o The completion Oy, is a subring of O.
e There is a congruence of Galois representations (in some basis)

pr = pgp, (modml~FHY).

e The inertial types of pg,pg|G@z and pf‘G@z agree for all ¢|N with £ # p.
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° Pg,pg|G@,, has the same Galois type as pf|GQp and is potentially crystalline if and only if pf\G% 18.
e For all qQ, pg,pg\g% is a Steinberg representation twisted by the unramified character Frob, —
€Q(q)-
Proof. We will construct a Galois representation
T GQ — GLQ(O)
satisfying the following properties:
e 7 =p; (mod mi—kFL),
e detT = .
e Forall (1@, 7|g,, defines a point of Spec R,.

ord
2,eQ(q)”

Let us first show that the existence of the representation 7 is sufficient for the theorem. Since 7 is odd
and potentially semistable with distinct Hodge-Tate weights 0 and 1, we may apply the modularity lifting
theorem of [56, Theorem 1.0.4] (and see the main result of [75] for the case p = 3, using (TW)) to conclude
that 7 arises from a modular newform ¢, which is automatically of weight two and trivial character. Now
by modularity and [1, Theorem D, Proposition 1.2.2], T|GQ[ defines not only a point of Spec R, but a

e For all ¢|Q, T|G@q defines a point of Spec R

smooth point of Spec Ee for all ¢. Since the potentially crystalline locus of Spec Ep is a union of irreducible
components (cf. [44, Theorems 3.3.4, 3.3.8]), 7 is potentially crystalline if and only if p; is. By construction,
T|Gg, has the same Galois type as pf|c,, . Hence g and f have the same conductor at p by [66, Theorem 2.2].
For ¢ # p, the inertial type is constant on components of Spec E[[l /7], except possibly at the nonsmooth
points (count dimensions using [2, Theorems 3.3.2, 3.3.7], or see the calculations in [68, §5]); it follows that
7 has the same inertial type as py at all £1 @, and is Steinberg twisted by Froby — €g(q) for all ¢|Q. Since
for all ¢ # p, the ¢-part of the conductor of g is the conductor of the Weil-Deligne representation associated
to T|g,, by [13, Théoreme AJ, we see that g has level NQ.

We now turn to the construction of 7. For each £1 @, let Yy be a set satisfying Proposition 6.1.3 for jo = k
with ng = No(k) for £|Np, and with ng = 1 if £ Np. Also let Y}, be as in Proposition 6.1.3 for all m > 1.
We will construct 7 as the inverse limit of representations

Tm : Go = GL2(O/7™),

compatible under reduction maps, with the following key property: for all m, Tm|(;Q lies in Y,! if £ 1 Q,
and Tm\g@q defines a point of Spec Rgrd((’)/ ™) if ¢|@Q. The representations 7, are constructed inductively,
but when constructing 7,,+1, we will allow ourselves to modify the representations 7,,_g+2,...,7m. (This
is the “relative” aspect of the construction.) Before we begin the construction, let us fix once and for all a
set 3 of places containing all v|NpQoo such that I = 0 (possible by Proposition 6.1.10). Our base case
is 7; = ps (mod 7). Suppose we have defined 7,,, for some m > j. For each ¢ € ¥, we may fix a local lift
Pm+1,0 Of 7'm|Gle with the following property: if £1 @, then p,,+1.¢ lies in YfH_l, and if £ = ¢|Q, then py,11 4
lies in Spec R‘;rd((’)/ﬂm“). This is possible by Propositions 6.1.3 and 6.1.8 and by the key property of 7,
(using m > j > Ng(k)). In particular, the obstruction to lifting 7,,, modulo 7™*! vanishes locally. By global
Poitou-Tate duality, the vanishing of I11} implies the vanishing of

er <H2(Q2/Q7L) — H HQ(QE/Q7L)> ’
vEX

so there exists a representation p,41 : Gg — GL2(O/mn™T!) which is unramified outside ¥ and lifts 7,.
Comparing pm+41,6 t0 ppm1 as lifts of Tm_k+1|GQ£ for all £ € X, their difference defines a collection of local

cocycles
@ "(Qq, L/ )
k
ex H (Qe, L/m )
Now, since pp,+1 lifts 7,,,, Propositions 6.1.3 and 6.1.8 imply that (¢,) has trivial image in

QZ L/T{'k 1)
@Hl Qg,L/Wk 1)

lex
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By the argument in [28, p. 3578], it then follows from the hypothesis (1) of the theorem that there is
a global cocycle ¢ € H'(Q, L/7*) whose localizations at £ € ¥ agree with (c;). Adjusting p,, 41 by the
cocycle ¢, we obtain a representation 7,11 with the desired key property. (Note that we are repeatedly
usingm+1—k > j+1—k > Ny(k) to apply Proposition 6.1.3.) We now redefine 7pn—g+2, ..., Tm to be the
reductions of 7,,11; since 7,41 is a lift of 7,,,_g1 by construction, the representations 7; with j <i < m—k+1
do not need to be redefined. This completes the inductive step of the construction, hence the proof of the
theorem. O

6.2. Patching adjoint Selmer groups.

6.2.1. Patched Selmer groups provide a convenient framework to produce weakly admissible pairs {Q,eq}
satisfying the conditions of Theorem 6.1.11. For this subsection only, we drop the condition from Defini-
tion 3.1.2 that Frobg has nontrivial image in Gal(K/Q), as no quadratic imaginary field is needed for the
discussion.

Suppose that q is an admissible ultraprime with sign ¢4 (in this modified sense). In the notation of (3.1.3),
we have the exact sequence of O[Frobg]-modules

0— Fﬂ;jeq Ty — Ty — Ty/ Fﬂ;eq Ty — 0,
and we define
Fily, L = Hom(Ty/Fily . Ty, Fily, Tr) C L
and

Hir ey (@, L) = im (H!(Qa, Fil.,, L) = H'(Qq. 1)) -

It is clear that, if q is represented by a sequence (g, )nen, then

Htljrd,eq (qu L) = IJLHU ({ngd,eq (Qq”’ L/Wj)}n€N> ’

where H! . (Q,,,L/77) is well-defined for all n such that g, is j-admissible with sign e,. We also define

ord,eq
Ord’eq (Qq, L) as the orthogonal complement of Hérd,eq (Qq, L) under the local Tate pairing. Note that, since
H'(Qq, L) is torsion-free by a direct calculation, H(l)rd,Eq (Qq,LT) and H!

ord,e,(Qq, L) are exact annihilators.
We will require the restriction maps

H'(Qq, L)
Hcl)rd,eq (Qq, L) N Hllmr(QQ’ L) 7

H'(Qq, LT)
ord €q (QWLT) N Hlllnr(Qqﬂ LT) '

As usual, we drop the subscript ¢4 when it is clear from context.

locg,e, : HY(Q,L) —
(76)

ooyl
locq@ :H (Q,LT)

6.2.2. Let S C Mg be the set of constant ultraprimes v for v|Npoo. For any {PQR, epqr} € N, we define the
Selmer structure (SE(Q),S UPQR) for L:

H{(Qe, L), v=/{eS,
Hcl)rd(QmL)v v=qecQ,
(77) Hie Qe L) = { HLy(Qq, L) + HL(Qa L), v=q € P,
Hoa(Qq, L) NH(Qq, L), v=q€R,
Hin:e (Qv, L), v SUPQR.

When P, Q, or R is empty, it is omitted from the notation.
Proposition 6.2.3. For all {Q,eq} € N,
dQ = I‘k@ SelS(Q) (L) = I‘ko SelS(Q)T (LT)
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Proof. For all primes ¢, Proposition 6.1.3 implies that

rko H§(Qr, L) = 3 + o= — tko (@Bl(Qg,L/wﬂ')> ,

J

where B(Qy, L/77) denotes the coboundaries; because L has rank three over O, we conclude
ko H3(Qy, L) = tko H*(Qq, L) + 8¢=p.

Since
rko Hird(@q» L) =rko HO(Qq» L) =1
for all q € Q, the claim results from Proposition 2.6.13. (]

In the language of patching, we can reformulate Theorem 6.1.11 as follows.

Theorem 6.2.4. Assume f satisfies (TW), and suppose given a pair {Q,eq} € N such that dq = 0. Fiz a
sequence {Qn,€q, } of weakly admissible pairs representing {Q,eq}. Then there is a sequence (defined for
F-many n) of eigen-newforms g,, of weight 2, level NQ,,, and trivial character, with a prime p,, of the ring
of integers O, of the coefficient field, such that:

The completion O, . is isomorphic to O.

The inertial types of py, e, |co, and pfla,, agree for all {|N with € # p.

Pgn g |G@p has the same Galois type as py and is potentially crystalline if and only if py is.

For all gn|Qn, pg,.e,, |G@‘1n is a Steinberg representation twisted by the unramified character Frob,, —

€Qn (qn)-
e For any fixed j, there is a congruence of Galois representations (in some basis)

Pf = Pgnp,, (mod )
for §-many n.
In particular, for fized j > 1 the maps
TQH = TN+7N7Q7L - O/ﬂ-J

of Remark 4.6.8 admit O-valued lifts for §-many n.
Proof. First observe that it suffices to construct such a sequence with O, a subring of O, since both
Oy,..0,, and O are integrally closed and E is generated over Q, by tr p(g) for g € Gg.

Since dq = 0, there exists some k£ > 0 such that the natural map
(78) Sels(q)i (LT/7*) — Selg(q)i (L)

is identically zero. (To see this, use Proposition 2.5.6 to conclude that the inverse limit over k of the
image of the map in (78) vanishes.) Also, Proposition 6.1.6 implies S is saturated as a Selmer structure
for L, and S(Q) is as well by a direct local calculation for q € Q. Proposition 2.6.12 therefore shows that
Sels(q)t (LT/m") = Sels(q)- (L*[7*]). Hence for F-many n, the maps

Selg, (L*[7*]) — Selg, (L")
are also identically zero. Since k is fixed independently of n, the theorem is now immediate from Theorem
6.1.11. ([l

6.3. Annihilating two Selmer groups.

6.3.1. Now fix an imaginary quadratic field K of discriminant prime to Np and a self-dual Selmer structure
(F,Sk) for the Gg-module Ty over O, where Sk contains all constant ultraprimes s with s|Npoo. For
our application of Theorem 6.2.4, we will want to choose {Q,eq} € Ns, such that dq = 0, and rq =
ko Selz(q)(Ty) = 0. In this subsection, we show that such a choice is possible (Proposition 6.3.6 below).
The proof is inspired by [15, §3.3], and begins with a series of lemmas. We note that the results of this
subsection crucially require the assumption from §1.5 that f not have CM.

Lemma 6.3.2. There exists an integer j that, for allm > 0,
™ HY(K(Ty)/Q, L/7") =« H (K (Ty)/Q, Lt /7") = 0.
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Proof. Let F = Q(up~) C K(Ty), and note that L and LT are isomorphic G p-modules. Since f is non-CM,
(L ® Q,)%F =0 by [61, Theorem 5.5] or [54, Theorem B.5.2], and so (L/7™)¢F = (LT /7™)¥F is uniformly
bounded in n.

The pro-p-Sylow subgroup of Gal(K(7T})/F) is a compact p-adic Lie group with semisimple Lie alge-
bra; hence, by [28, Lemma B.1], the cohomology H'(K(T})/F,L/w") = H'(K(Ty)/F, Lt/7™) is uniformly
bounded in n.

Now, by inflation-restriction, we have exact sequences

0— HY(F/Q,(L/7™)°") — HY(K(T})/Q, L/7") — H(K(Ty)/F,L/x"™),
0— H'(F/Q, (LT /z™)%") = H'(K(Ty)/Q, L' /z") — H'(K(Ty)/F, LT /"),

where the outer terms are uniformly bounded in n; the lemma follows. O

(79)

For the next lemma, we abbreviate L,, == L/7™, LI = LT/7™, and (as usual) T, == Ty/7™. Also, for
any torsion O-module M and element y € M, let ord(y) be the smallest integer ¢ > 0 such that 7ty = 0.

Lemma 6.3.3. There is a constant C, depending only on Ty, with the following property. Given cocycles
¢ € H(Q,Ly,), v € H(Q,L!)), and c1,c2 € HY(K,T},)° for some & € {+1}, and given an integer n > m,
there exist infinitely many primes q 1 Np such that all the cocycles are unramified at q and:

e ¢ is n-admissible with sign §.
ordlocg s ¢ > ord¢ — C.
ordloc) 519 > ordy — C.
ordlocg s c; > orde; — C fori=1,2.

In the second and third bullet points, loc, s and loc;(s are defined analogously to (76). Also H'(K,T;,)°
refers to the J-eigenspace for complex conjugation.

Proof. Let us first fix a complex conjugation ¢ € Gg and choose a basis for Ty in which c acts as (_05 g)

The restriction of the cocycles ¢, 9, ¢; to Gk (1,) may be considered as a homomorphism
h:Grr,) — L ® LT, & (Tp)?

compatible with the action of Gk ; let H be the image of this homomorphism. Let g, € Gi be an element
that acts by a scalar z # £1 on Ty, which exists by [61, Theorem 5.5] or [54, Theoerem B.5.2]; then we have:

H S(g: — 2)(9= — 2°)H + (9: — 2)(9: — VH + (9 — 2")(9: - DH
S (2= 1)(z2 = 1)(2 = 2) (70, (H) © 7y (H) @ 7z (H) )

where 7, are the projection operators. Now, since L ® Q, and L'® Q, are absolutely irreducible by loc.
cit., the natural maps E[Gk] — Endg(L ® Q,) and E[Gk]| — Endg(L' ® Q,) are surjective. Combining
these observations with Lemma 6.3.2 and inflation-restriction, we see that, for some constant C' depending
only on T, there exists v € Gg(r;) C G (r,) satisfying:

e The ((1) _01) component of ¢(y) has order at least ord ¢ — C.

e The (? 8) component of 1(v) has order at least ordy — C.

e The component of ¢;() in the § eigenspace has order at least ord ¢; — C, where i = 1, 2.
For the final item, we are using the elementary fact that a group cannot be the union of two nontrivial
subgroups, as well as the irreducibility of T'.

Since ¢(c?) = co(c) +d(c) = 0, ¢(c) lies in the —1 eigenspace for complex conjugation, whereas (é _01)

has eigenvalue 1; hence the component of ¢(¢y) has order at least ord ¢ — C'. Similarly, the (O O)

1 0
0 —1 1 0
component of 1(cy) has order at least ord ¢ — C.

Let F D K(T,) be the fixed field of the kernel of h. Then any prime with Frobenius ¢y in Gal(F/Q)

satisfies the conclusion of the lemma; cf. the proof of Lemma 3.3.11 for the assertions about c;. |
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Corollary 6.3.4. Suppose given a finite set of ultraprimes S’ C Mg containing the image of Sk, and
non-torsion cocycles:

s ¢ €H'(QY/Q,L);

o ¥ € H'(Q¥/Q, LT);

e c1,c0 € HY(KSx /K, T})° for some § € {£1}.
Then there exist infinitely many admissible ultraprimes q € S’ with sign 6 such that:

e locgs ¢ # 0.

° 10(3;61/1 #0.
o locqsc; #0 fori=1,2.

Proof. Fix an integer C' satisfying the conclusion of Lemma 6.3.3. Since ¢, 9, ¢1, and ¢y are all non-torsion,
we may choose an integer m > 1 such that ¢, ¥, ¢1, and ¢, have non-7¢-torsion images in Hl(QS//Q, L/7m™),
Hl(QS//Q, Lt/x™), and H (K55 /K, T,,), respectively. The rest of the proof is the same as that of Theorem
3.3.9, replacing Lemma 3.3.11 with Lemma 6.3.3. (|

We also require the following variant.

Lemma 6.3.5. Let ¢ € H'(Q% /Q, L) and ¢ € H' (K%% /K, T})° be non-torsion, where S’ C Mg is a finite set
containing the image of Sk. Then for any cocycle ¥ € Hl((@sl/@, L"), there exist infinitely many admissible
ultraprimes q ¢ S’ with sign ¢ such that locg s ¢ # 0, locq s ¢ # 0, and 10Cl75 1 =0.

Proof. The proof of Lemma 6.3.3 also shows the following:

Claim. There is a constant C, depending only on T, with the following property. Given integers n > m and
cocycles ¢ € HY(Q,L/n™), c € HY(K,T},)°, and ¥; € HY(Q, LT/77) for j = 1,...,n, there exist infinitely
many n-admissible primes ¢ with sign ¢ such that all the cocycles are unramified at ¢ and:

e ordloc,5¢ > ord¢ — C.

. loc;é ;=0 for all j.

e ordlocysc>ordc—C.

Fix a prime C satisfying the conclusion of the claim. Since ¢ and ¢ are non-torsion, we may choose an inte-
ger m > 1 such that ¢ and ¢ have non-7C-torsion images ¢ and @ in H'(QS' /Q, L/7™) and H!(K5% /K, T,,),
respectively. Recall that ¢ and ¢ are the equivalence classes of sequences (¢, )nen, (Cn)nen With @, €
HYQ,L/7m™) and ¢, € H*(K,T,,), while ¢ is an equivalence class of sequences

(Yn,j)n,jen € 1&124 ({Hl(Qsﬂ/Q,LT/m)}neN) ’

where (S,)nen represents S’. For each n, choose ¢, ¢ S, as in the claim with ¢ = ¢,,, ¥; = ¥, ; for
j=1,---,n,and ¢ = ¢,. Let g € Mg be the ultraprime represented by (g, )nen, which is admissible with
sign 6. For fixed j, locy, 5%n,; = 0 for all n > j, i.e. for Fmany n, so locq® =0 (mod 7). Since this holds
for all j, we conclude locqi) = 0. We also have locq ¢ # 0 and locq ¢ # 0 by construction, so q satisfies the
conclusion of the lemma. There are infinitely many choices of each ¢, hence of q. O

Proposition 6.3.6. Assume f satisfies (non-CM), and suppose given a self-dual Selmer structure (F,Sk)
for Ty. Then there exists {Q, eq} € Ns, such that

rQ = dQ =0.
(Recall that rq = rko Selrq)(1}).)
Proof. Without loss of generality, by Corollary 3.3.13 we may assume that r; = 0; for if not, choose any
{Q, eq} € Ns,, with rq = 0, and then relabel F7(Q) as F.
We will show that, if d; > 0, we may find {Q, eq} such that rq = 0 and dq < dy; this clearly suffices
by induction. By Proposition 6.2.3, there exist non-torsion elements ¢ € Sels(L), 1 € Selg: (LT). Using

Corollary 6.3.4, choose any admissible q ¢ Sk with sign €q such that locq ¢ # 0, 10(:2;1/1 % 0. Then by
Proposition 2.6.13,

rko Sel(s, 1 (L") + rko Selse(L) = 2 + rko Sel(sayr (L) + rko Sels, (L).
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In particular, the images of the localization maps

c :SGISq(L) SN Hérd((@q, ) D unr(QQ’ )
g Selgq(L) H(];rd(QC{ﬂ ) N Hglnr((@m L) ord(QQ? ) N Hunr(@q7L)

and
IOCT : Sel(SQ)f (LT) s ord(Qq7 ) @ unr (QQ? LT)
g Sel(Sq)T(LT) H(l)rd(QCIaLT) n Hllnlr(QCIaLT) H(lnrd(QCHLT) N Htlmr(QmLT)

have total rank two. Hence the image in the ordinary part is zero for both maps, and dq < d;. Now,
Proposition 3.3.8 shows that rq4 = 1, and a generator ¢ € Selz(q)(Ty) has dqc # 0. In particular, ¢ has
nonzero component in the e, eigenspace for 7, because it is easy to check that 0q7c = €40q4c.

Now consider the set P of admissible ultraprimes s ¢ Si with sign e; = €4 such that locs ¢ # 0, which
is nonempty by Theorem 3.3.9. If, for any s € P, dgs < dq, then we may take Q = gs and complete our
induction step. For example, this will occur provided dq > 0, by Corollary 6.3.4 and the argument above;
so without loss of generality, dq = 0 and dqs = 1 for all s € P. By definition, we therefore have non-torsion
elements ¢(s) € Sels(qs) (L) and 9(s) € Sels(qs)t (L) such that locs ¢(s) and locs (s) are nontrivial.

Choose any s; € P, and then, using Lemma 6.3.5, choose so € P such that locs, ¢(s1) # 0 but locs, ¥(s1) =
0. By another application of Proposition 3.3.8, rq5,s, = 1, and a generator ¢’ of Selr(qs,s,)(T) again has
nonzero component in the eq eigenspace. We now use Corollary 6.3.4 to choose s3 € P such that locs, ¢’ # 0,
locs, ¢(s2) # 0, and locs, ¥(s1) # 0. Note that rko Selssiszss (q)(L) = 3 by another application of Proposition
2.6.13; up to torsion, ¢(s;) are generators. So to show that dgs,s,s, = dq, it suffices to show that the images
of ¢(s;) form a rank-three subspace of

3
HL (Qs,, L) +H! 4(Q,, L)
S = unr i) ord i)
(s

under the localization
8613515253 (q) (L)
8613515253( )(L)

By pairing ¢(s;) and 1(s;) for i # j and applying Proposition 2.6.10, we see that locs, ¢(s;) # 0 if and only
if locs; ¥ (s;) # 0. Hence, the images of ¢(s;) in S are of the form:

loc(¢(s1)) = (0, %, )

10C(¢(52)) = (Oa 0, *)7

10C(¢(53)) = (*7 ) 0)7

where * is nonzero and - may or may not be zero. This completes the proof since it shows dqs,s,s; = dq = 0
and we have rg,s,s, = 0 by Proposition 3.3.8. d

— S.

7. PROOF OF MAIN RESULTS: ANTICYCLOTOMIC MAIN CONJECTURES

7.1. Notation.

7.1.1. Let f, N, p, O, E, m, V§, T, and Wy be as in §1.5, and assume p is ordinary. We also fix a quadratic
imaginary field K in which p splits and suppose that N admits a factorization N = N*N~ as in (5.1.1).

For the next two sections, we depart from our earlier notation of (3.4.1), (5.2.1) and denote by K?3¢ the
anticyclotomic Z,-extension of K. Also let K¢ = KQ, where Qo /Q is the cyclotomic Z,-extension,
and Ko = KK, For ? = (), cyc, ac, let T'}, = Gal(K’ /K), so that 'y = I'Y° x T'3¢. We continue to
reserve the notation A for the anticyclotomic Iwasawa algebra O[I'3]. Recall from (3.4.2) the free rank-one
direct summand Fil;" Ty for each v|p, and let gr, Ty =T}/ Filt Ty. Also, for a topological O-module M, let
MY = Homp(M, E/O). Here and for the remainder of the text, the notation Home refers to continuous
O-module homomorphisms.

For a finite set ¥ of places of K, for ? = (), cyc, or ac, and for A the ring of integers of a finite extension
of Q, containing O, we will consider the Selmer group
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SelEgMA(f) = ker (Hl(K, Tr @0 A[T%]Y) — H HY(I,, Ty @0 A[T%]Y)

vgE
(80) vtp
< [[H' (L. gr, T ®0 A[[F}(]]V)).
v|p

Note that the canonical isomorphism O[I'%]Y ®o Hom(A, O) = A[l'%]Y induces an isomorphism
(81) Seli: o(f) @0 Hom(A, 0) = Selz: 4(f).

If ¥ is finite set of places of Q, let Xk be the set of places of K lying above an element of X; we shall abbreviate
Selifw A(f) = Seli’i A(f). In the anticyclotomic case, we also have the Selmer group Selr; (Wy), where

the Selmer structure is determined by (43) via the duality of (3.4.1). This Selmer group is related to (80)
by the following lemma.

Lemma 7.1.2. There is an exact sequence of A-modules:

0 — Selr; (W) = Selfac 0 — [ Hine (K2, Wy) ®0 Homo (A, O).
IN—

Here ¢ denotes twisting the A-action by the canonical involution defined by the inversion map on I'}¢.

Proof. Recall that W = (T7})". We may therefore identify W with (T ®o AY)* via (20).
Then by local Poitou-Tate duality, we have

Selyr: (Wy)" = ker (Hl(K,Tf®AV)—> Il 't T2 AY) x J] H (K., Ty @ AY)
vIN~—p v|N—

< [[H (K., Filf Ty @ A)V> .
v|p

Since the pairing on T} identifies gr, Ty with Home (Fil} Ty, O(1)), H'(K,,Fil} Ty ® A)V is canonically
identified with H'(K,,gr, Ty ® AV) under local duality, so we conclude

Selr: (Wy)" = ker (selggg,o(f) = [ HineKo. Ty @ AY) x [[ Hipo (Ko gr, Ty ®AV)>.
v|N- vlp

If v|p, then H} (K, gr,Tr @A) = H} (K, gr, T ®o OV) = 0; recall here that gr, Ty is unramified
with Frobenius eigenvalue o, # 1 in the notation of (5.2.3). Then the lemma follows from the identity
Hl (K, Tr@AY)=HL (K¢ W) @0 Home (A, O) for all /|N~, which holds because G, acts trivially on

unr unr
]

Remark 7.1.3. By [58, Proposition A.2], the sequence in Lemma 7.1.2 is also exact on the right, but this
fact will not be needed for our results.

For the proof of Theorem 7.2.1, we will also need:

Lemma 7.1.4. For ? = {),cyc, or ac, Tf is absolutely irreducible as a representation of G .

Proof. By Lemma 3.3.4, Tf is absolutely irreducible as a representation of Gk . In particular, for any finite
field k containing O/, the pro-p-group Gal(K’ /K) acts without fixed points on the set of G k7 -stable
k-lines of Tf ®0o /= k, so this set has cardinality a multiple of p. However, if G 2, stabilizes more than two
lines in Ty ®¢ /= k, then it acts by scalars, in which case it stabilizes a prime-to-p number of lines. So there

are no Gz -stable lines in Tf ®o/x k for any k, which proves the lemma. O
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7.2. A result of Skinner-Urban. The following result is deduced from the proof the Iwasawa main con-
jecture for modular forms [71].

Theorem 7.2.1 (Skinner-Urban). Let K be an imaginary quadratic field of discriminant prime to Np in
which p splits. Assume that pt 2N, that p is ordinary for f, and that:

e the mod o representation Ty is absolutely irreducible as an O[Ggl-module;
e N = NtN—, where every factor of N* is split in K and N~ is the squarefree product of an odd
number of primes inert in K.

Then
chary Sel}‘X(Wf)v C ()\(1))2
as ideals of A, where X(1) € A is as in (5.2.5).

Proof. Let A be the ring of integers of a finite extension of Q, containing O, that is large enough to satisfy
the hypotheses of [71, Theorem 12.7]. As in the proof of loc. cit., there exists a Hida family f of ordinary
eigenforms of tame level N and trivial nebentypus xf, parametrized by an integral domain I that is faithfully
flat over A, such that f, = f for a certain specialization ¢ : I —+ A. Let X be the set of rational primes dividing
Npdisc(K), and let a?}ZK € I[T" k] be the three-variable p-adic L-function constructed in [71, Theorem 12.6].
(In the notation of loc. cit., we are taking £ = 1, and (dist)¢ is satisfied because (Tf|7,)* = X @ 1, where X
is the mod p cyclotomic character.)

Let 1oy @ A[IY] — A be the specialization at the trivial character, which we also view as a map
A[lk] — A[I'%]. Comparing the interpolation properties of offZK and A(1) from [71, Theorem 12.6] and
[19, Theorem A], we conclude

. - 0 n-
(82) Lye 0 6(Z7) = A1)? - ] det (1= Frob, ' [T} ) - L8,
’L)G?K fap fap
vtp

where Qip and Qg - are the periods appearing in [71, Theorem 12.7] and [19, Theorem A], respectively,
and = denotes equality up to a unit in A[I'%]. (We write Q}ta instead of ij, as in [71], because these

periods are canonically associated to the p-stabilization of f, with U,-eigenvalue the number ¢, from (5.2.3).)
The ratio Qf,N*/(Q};p Q;ap) is a nonzero element of O, and it is described more explicity in §8.3 below.
Let us expand

(83) Lo =a+ a1 (7= 1) +a(v* =12+ -, oy € I[T'Y°],

where ¢ is a topological generator. For all height-one primes P C I[I'kx] which are pullbacks of primes
Peye CI[I'YY], and for any i > 0, (83) shows

(84) ordp .,Z}EK < ordp a.

Now consider the three-variable Selmer group Sel%w 4 (f) defined in [71, §3.3.10];® by the discussion in
[71, §3.3.11], using Lemma 7.1.4 and the fact that p splits in K to verify the hypotheses of [71, Proposition
3.7], we have

(85) char opr SeliwA(f)v Co (charmpK]] Sellz(x’A(f)v) .

The same argument as [71, Proposition 3.9] (replacing [71, Proposition 3.7] with its analogue for F' = KZ°)
shows that

char 4racy Sel?{gg,A(f)v C Leye (CharA[[FK]] Sel?&,A(fW) .
Combining this with (85) shows that

(86) char g[rac Seligg)A(f)v C leycod (charA[[pK]] Sel%wA(f)V) .

3The subscript A does not appear in loc. cit., because a choice of coefficient ring has already been made implicit. We include
it here to be consistent with (80).
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If P C I[T'k] is a height-one prime not pulled back from a prime Py, C I[I'Z°], then by [71, Proposition
13.6] and the discussion in §7.4 of op. cit., [71, Theorem 7.7] applies to show

(87) ordp £k < ordp charyr . Sel 4 (f)".
Combining (84) and (87) shows that
(88) () - charppp, SeliwA(f)v - (XEK)

for any of the «; in (83). Now we specialize both sides by 1cyc © ¢, using (86) and (82), to obtain

_ Q¢ n- a
(89)  Teye o @(a) - chargprae) Selieae 4 (f)Y C A(1)? - [ det (1 — Frob, ! |T§v) . Q?fT} - A[T%].
VEX K ap ap

vip

Note that Sel%: ac 4(f) is already known to be A[I'}]-cotorsion by Proposition 5.2.8, Theorem 3.4.9, and
Lemma 7.1.2. Hence by [58, Proposition A.2], we have

HY(K,, Ty @0 A[T%]Y) "
Hine (Ko, Ty @0 A[TE]Y) )

unr

char aqrae Selicae 4(f)" = charaprae) Selfae 4(F)" + [] chararae
vEEK
vip

By local Poitou-Tate duality, the local terms appearing above for v € Xk agree up to units with the ones in
(82), and it also easy to check that they are not identically zero. Hence from (89), we can cancel the local
factors to deduce

9] _
. f7N . A[[ aC]]
F — K
Q9

(90) Leye © ¢(v) - char araey Selfeae 4(f)Y € A(1)?

in A[I'%¢]. Finally, note that by (82) and the nonvanishing of A(1) (see Proposition 5.2.8), we may choose
a; so that Leyc 0 ¢(oy) # 0. Inverting p, descending coefficients to O using (81), and applying Lemma 7.1.2,
we have

(91) (chary Sel;:X(Wf)v)L C (A1))?

in A ® Q,. The action of ¢ can be removed by [19, Theorem B]. To upgrade (91) to a divisibility in A, it
suffices to note that A(1) Z 0 (mod p) by Remark 5.2.9.
O

Remark 7.2.2. (1) In §8 below, we will need the more refined observation that «; in (90) can be chosen
so that

Qs v
ord,; Leye 0 ¢(o;) = Z ord, (1 — %) + Z ord,(1+ ¢ — ag) + ord, #
YN-— £| disc(K) Sap ™ “fap
(Here we extend ord, to a valuation on A.) This follows from comparing the p-invariants in (82):
the p-invariant of A(1) vanishes, as noted in Remark 5.2.9; the local Euler factor at v| Nt is nonzero
modulo 7 by a simple calculation, using that such primes are not infinitely split in K3¢; the local
Euler factor at (|N~ is (1 —£72) = —7(1 — £?) because T§|g,, is a ramified extension of the form
<>g i ; and the local Euler factor at £|disc(K) is det(1 — Frob, ' |Ty) = £='(1 + £ — a;) because
T is unramified at £ and, if A is the unique prime of K above ¢, then Frob, is trivial in I'}.

(2) In [71, Theorem 3.26], the divisibility (88) is established without the factor of «;, but under the
additional assumption that Ty is ramified at all /N~. The presence of the extra factor o; means
that, in the generality of Theorem 7.2.1, (88) carries no information about specializations that do
not factor through 1.y o ¢.
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7.3. The Heegner point main conjecture. In this subsection, we prove the following main theorem.

Theorem 7.3.1. Let f be a non-CM cuspidal eigenform of weight two and trivial character, new of level N,
with ring of integers Oy of its coefficient field. Let o C Oy be an ordinary prime of residue characteristic p,
and let K be an imaginary quadratic field. Suppose:
e N = NtN~, where every factor of NT is split in K, and N~ is a squarefree product of primes inert
mn K.
e pt2N is split in K.
e The modulo o representation Ty associated to f is absolutely irreducible; if p = 3, assume that Ty
s not induced from a character of GQ(\/TS)-

Then, for all {Q,eq} € NYV7) such that K(Q) # 0, we have
I"kA Sel].-A(Q)(Tf) == CI‘kA Sel]:A(Q)*(Wf) =1

and
Sel}-A(Q) (Tf)

2
(~(Q) > nheQp

charp ((Sel}'A(Q)*(Wf)v)tors) = chary <

For all {Q,eq} € NV )+ such that A(Q) # 0,
I”kA Sel}-A(Q)(Tf) = crkA Selj:A(Q)*(Wf) =0

and
chary (Selz, @+ (Wy)Y) = (A(Q))? in A® Q,.
Under condition (sclr), the equalities hold in A.

Proof. Let (F,S) be the Selmer structure on Ty defined by (44) for ¢ = (T').* Now apply Proposition 6.3.6
to (F,S) to obtain a pair {Q,eq} € N, represented by a sequence {@Qy, g, } of weakly admissible pairs. Let
gn be the resulting sequence of newforms of level N@Q),, obtained from Theorem 6.2.4; g,, may only be defined
for F-many n. Without loss of generality, we assume that all ¢,|Q,, are inert in K.

Step 1. {Q,eq} € NV )+1,

Proof. By Proposition 3.4.5 and Nakayama’s Lemma, Selr(q)(Ty) = 0 implies Selr, (q)(Ty) = 0, which by
Theorem 3.4.9 and the nontriviality of (k, A) implies the claim. ]

Step 2. For any fized j, o
(AQ)) = (Ag, (1))  (mod =7, T7)

for §-many n.

Proof. We use the notations of §4.6 and §5.2. By definition, the image of A(Q) modulo (7/,77) is a map
Gal(K;/K) — O obtained, for §-many n, by evaluating a map F,, : Mg, — O(f)/m? of T%"-modules
at certain CM points, where O(f) is defined to be @ with T®»-module structure determined by f as in
Definition 4.6.2. Recall that the map F,, is chosen to be surjective after O-linearization and to factor
through O(f)/m7+¢ for the constant C' of Lemma 4.6.5, and that these properties uniquely determine F),
up to a scalar in O*. When g, has a sufficiently deep congruence to f, O(g,)/m+¢ = O(f)/x7TC as
T?»-modules, and the composite G, : Mg, — O(gn) — O(gn)/m therefore induces a unit multiple of F,,,
where G,, : Mg, — O(gy) is the quaternionic modular form associated to g, by the Jacquet-Langlands
correspondence. (Here O(g,) is O with T¢»-module structure determined by the Hecke eigenvalues of g,,.)
But by Remark 5.1.3, G,, is the very map whose evaluation at CM points is used to define A4, (1), and the
claim follows. (]

Fix j, and restrict to those §F-many n such that all ¢,|@, are j-admissible and inert in K. Then
HY(K,,,W¢[rl]) = HY(K,,,T;) @0 Hom(A, O) for all ¢,,|Q,, and we let

Hypg(Kq,, Wln7]) = Hypq(Kq, . T)) ®0 Hom(A, O)

O (&)

41t is easy to check that this is the same Selmer structure as defined in (72) with m = 1, but we omit the proof since it is
not needed for the main results.
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in the notation of (60). Define

selfA(Q")*(wf[wj]):ker(Hl(K,wf[ﬂj])% I H'UoWp) x [[H (Ko, Wy)
vINpQ 00 v|N

Il anwf |IH W
70 an % vy .
- |Qn (}rd qn> f 7T] ‘ Bt f))

v vip

(92)

Here, for v|p, gr, Wy = (gr, Ty ® AY)", which is a direct summand of Wy as a A[Gg,]-module. Also, by
[65, Corollary B.3.4], (92) coincides with

ker (Hl(K,Wf[ﬂ'jD% H Hl(Iy,Wf)X H Hl(Kvan)

vIN— n 0O v|N—
93) it KPQ Wf[ﬂ] \
qn> 1
<11 Hld L) HH Ko er, Wf))
U|Q'n or: n?

Step 3. For any fized j, Selx, (g, -(W¢ln’]) and Selr: | (Wy, [wﬂ]) are isomorphic as A-modules for §-
many n.

Here F,

gn,A Tefers to the Selmer structure for T, defined the same way as (43).

Proof. For §-many n, W¢[r/] is isomorphic to W, [77] as a A[Gk]-module, so it suffices to compare the
local conditions at all v|NpQ,. For v|N, using the first definition (92), we must compare the kernels

ker (H'(K,, W¢[n’]) — H'(K,, Wy)),

) ker (H'(K,, Wy, [r/]) = H' (K,,W,,)).

Suppose first that T]{“ # 0; then since Ty and T}, have the same conductor at v, Tgfrj # 0 as well, so both
Ttlcy, and Ty, |G, are Steinberg representations twisted by the same unramified character. One readily
checks that, for j sufficiently large depending on T¢|q, , Ty = Ty, (mod /) implies T |q, =Ty, |ck,; then
Wilak, = Wy, lax, s so the kernels (94) clearly coincide. On the other hand, if TJ{“ = 0, then WfGKv C WJI;J
is annihilated by 7 for some M > 0. The same is then true for W?f“ for §-many n. Since the kernels
n (94) are identified with WGK” /7 W?K'” and WS /miWSX | respectively, these kernels will coincide
provided Wy [r/tM] =2 W [7T]+M ], which occurs for F-many n.
For places v|p, it suffices to show that the kernels
(95) ker (H' (K., gr, Welr’]) — H'(K,,gr, Wy))
(96) ker (H'(K,,gr, Wy, [r']) = H'(K,,gr, Wy,))

coincide. Note that (95) is identified with (gr, W ;)%%v /7 (gr, W ;)9xv. If we put gr, Wy = gr, W [T] =
(gr, Ty)Y, this is just (gr, Wy)Gr /ﬂ'ijGK" since (gr, W¢)!v = gr, Wy, and likewise for (96). Since
Frob, acts on gr, Wy by o, # 1 in the notation of (5.2.3), (gr, W;)“%v is finite and hence identified with

(gr, Wy, )¢50 for F-many n. So the same reasoning as for v|N shows that (95), (96) coincide for F-many n.
Finally, for ¢,|Q., it suffices to compare the local condition

(97) ker (H(Kq,, Wy, [1']) = H (K,,,W,,))

with H.  (K,,, W¢[n7]) when g, is j-admissible. Let {e1,e2} be a basis for T}, with respect to which

€X
Tgn 0 €
Then a direct calculation shows that the kernel (97) is the image of H'(K,, ,e1 ® AV[r7]), which is the same

as the ordinary local condition for W under the isomorphism W ¢[r7] = W [77]. O

Gq,, has the form , with * ramified and ¢ the unramified local character Frob,, — €qg, (¢n)-

Step 4. For any fized j,
Fitta Selz, (q)-(Wy)" = Fitta Selz:  (W,,)¥  (mod 77, T7)

for §-many n.
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Proof. Since Fitting ideals are stable under base change, it suffices to show

(98) Fitta Selz, - (Wy)[r?, 771" = Fitts Selz: (W, )[?, T7]".

Recall that Tf has no Gi-fixed points by Lemma 3.3.4. Hence Lemma 2.4.12 applied to the short exact

sequences 0 — W ¢[r7] — W L W; —0and 0 = Wy[T7, 7] — W [r7] EAN W ¢[n7] — 0 shows that
Selr, @ (Wy)[r?, T7] = Selz, @)« (W [m'])[T7] = Selz, q)- (W[r’, T7)),

and likewise for g,,. So it suffices to show that

(99) Fitta Selz, (q)-(Wy[n?, T’])" = Fitts Selz: (W, [77])[T7]

for §-many n. Unraveling the definition of the patched Selmer group, and again using Lemma 2.4.12, we
find that

Selz, @y (Wslr?, TV]) = U ({Selz @)+ (Wylr!, T}, oy )

— U ({Selzy o) (Wil DIT]}, oy )

where the Selmer structure Fy(q,)- for W[r?,T7] is induced by the local conditions in (93), so Step 3
implies (99).
O

Step 5. Conclusion of the proof.

For §-many n, N~Q, is the squarefree product of an odd number of primes inert in K. By Theorem
7.2.1, for such n we have:

(100) Fitts Selz: (W, )" C (Ag, (1))* C A.
By Steps 2 and 4, (100) implies that
(101) Fitty Selz, () (Wy)" C (A(Q))* C A.

Since the characteristic ideal of any A-module is the smallest divisorial ideal containing the Fitting ideal,
(101) implies

(102) char Selx, (- (W)Y C (A(Q))? C A.

Combining with Theorem 3.4.9 completes the proof.
O

Corollary 7.3.2. Under the hypotheses of Theorem 7.3.1, if additionally v(N—) is even, then the Heegner
point main conjecture holds for f in A ® Qy,; that is, there is a pseudo-isomorphism of A-modules:

for some torsion A-module M, and

char w — char
() = 0

as ideals of A ® Q,. Under condition (sclr), the equality holds in A.

Corollary 7.3.3. Under the hypotheses of Theorem 7.3.1, if additionally v(N ™) is odd, then the anticyclo-
tomic main conjecture holds for f in A ® Qy; that is, there is a pseudo-isomorphism of A-modules:

Sel;X(Wf)V ~MeM

for some torsion A-module M, and
(A(1)) = charpa (M)
as ideals of A ® Q,. Under condition (sclr), the equality holds in A.

Corollary 7.3.4. Under the hypotheses of Theorem 7.3.1, the bipartite Euler system

(K:(lv ')a )‘(17 ))
of Remark 5.3.14(1) is nontrivial.
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Proof. Keep the notation of the proof of Theorem 7.3.1. By Proposition 3.3.6, Selrq)(W}) is finite. Since
HY(KQS /K, W) [T] = HY(KQS/K,W;) by Lemmas 2.4.12 and 3.3.4, the cokernel of Selzq)(Wy) —
Selr, ()« (Wy)[T] injects into

(103)

HY(K,, W) HY(K,, W) )
[ ker : = ’ - 11 ker(Hl (K., T7)Y — HL o (K. T)V>.

1 K. W 1 K W FQ\Bv, Lf Fa(Q) vy Lf
vesuQ (H )< v f) HfA(Q)*( v f) vesuQ *

We claim (103) is finite: indeed, the natural map H o\ (Ky, Ty) = Hlxq) (K, Tf) is surjective forv=q € Q
or for v = v with v| N~ by the discussion in the proof of Proposition 3.4.5, and has finite cokernel for all
other v € S by [37, Lemma 2.2.7]. Hence Selz, q)-(W)[T] is finite as well, which implies

charA SelfA(Q)*(Wf) ¢ (T)
Theorem 7.3.1 then shows (A(Q)) ¢ (T), hence A(1,Q) # 0 by Remark 5.3.14(2).

8. PROOF OF MAIN RESULTS: KOLYVAGIN’S CONJECTURE AND p-CONVERSE THEOREM

8.1. Nonvanishing of (k(1,:),A(1,-)) and p-converse theorem. In this section, we shall prove the fol-
lowing theorem:

Theorem 8.1.1. Let f be a non-CM cuspidal eigenform of weight two and trivial character, new of level N,
with ring of integers Oy of its coefficient field. Let p C Of be a prime, and let K be an imaginary quadratic
field. Assume:
e N = N*N~, where every factor of NT is split in K, and N~ is a squarefree product of an even
number of primes inert in K.
o The residue characteristic p of p does not divide 2N disc(K). -
e The modulo g representation T’y associated to f is absolutely irreducible; and if p = 3, Ty is not
induced from a character of G /=3)-
e Ifp is inert in K, then there exists some prime {o||N.
o Ifa, is not a p-adic unit, then there exist primes 4;||N fori=1,2 (possibly with {1 = {3) such that
_ _G _
T'tla,, is ramified fori=1,2 and Terl = (Tf®XK)G
of Gqg associated to K.
Then (k(1,-), A(1,-)) is nontrivial.

Y2 =0, where x i 1is the quadratic character

8.1.2. If p is split in K and p is ordinary, then Theorem 8.1.1 is simply Corollary 7.3.4. In the inert or non-
ordinary cases, the anticyclotomic main conjecture is currently not known in full generality; however, since
all we are interested in is specialization at the trivial character, we are able to nonetheless prove Theorem
8.1.1 by combining cyclotomic main conjectures for quadratic twists of f.

Corollary 8.1.3. Let f, p, and K be as in Theorem 8.1.1. Then
rko Sel}'(Tf) =1 <= L/(f/K, 1) 75 0.
Here, (F,S) is the Selmer structure for the Gx-module Ty defined by (72) with m = 1.

Proof. If v(N ™) is odd then rko Selz(TY) is even by Theorem 3.3.14 and Theorem 8.1.1, and L'(f/K,1) =0
by root number considerations.

So without loss of generality, we may assume v(N ) is even. Then by Remark 5.1.3, x(1,1) € Sel#(T%) is
the Kummer image of the classical Heegner point yx € Af(K); in particular, by the Gross-Zagier Theorem
of [79, Theorem 1.2.1], x(1,1) # 0 if and only if L'(f/K,1) # 0. On the other hand, x(1,1) # 0 if and only
if rko Selz(Ty) = 1 by Theorem 3.3.14 and Theorem 8.1.1, and this gives the corollary. O

Before completing the proof of Theorem 8.1.1 in §8.6 below, we first give another application, to the
nonvanishing of Kolyvagin classes.

8.2. Kolyvagin’s conjecture.
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8.2.1. Assume the condition (disc) from (5.3.1).
For any m € K and any {Q, eq} € Nsum, define the m-transverse Selmer ranks

(104) "m(Q) = ko Selz(m,q) (T7)
where =+ refers to the 7 eigenvalue +1 for a generator 7 € Gal(K/Q); note that this is well-defined because

the local conditions defining F(m, Q) are all 7-stable. When Q = 1, we simply write r=. When m = 1, the
i are the classical Selmer ranks of f.

Proposition 8.2.2. Fiz m € K, and let | € m be Kolyvagin-admissible. Then for all {Q,eq} € Nsumi, and
for each 6 € {£}, either:

o 10(Q) =13(Q) — 1, loc] (Selr(m,q) (T4))? # 0, and &) (Selz(m,q)(T7))? = 0.
o 10(Q) =73(Q) +1, loc] (Selr(m,q) (T4))? = 0, and 8 (Selx(m,q)(Ty))° # 0.

Proof. If F'(m,Q) = F(ml,Q) + F(m, Q) and F(m,Q) = F(ml,Q) N F(m, Q), then we have a T-equivariant
exact sequence

0— Sel]:l(m’Q)(Tf) — Sel]:l(m)Q)(Tf) — HI(K|,Tf),
where the image of the final arrow has O-rank two and is self-annihilating under the local Tate pairing by
Propositions 2.6.10 and 2.6.13. Since the Tate pairing of two classes with opposite 7 eigenvalues is necessarily
zero, the proposition follows as in the proof of Proposition 3.3.8. |

Lemma 8.2.3. Suppose given elements ¢ € H (K, Tf)i, Then there exists a Kolyvagin-admissible ultra-
prime | such that

40 = locﬁtci # 0.
If (sclr) holds for Ty, then the same is true for elements ¢* € HY(K, Ty /m7).

Proof. The proof of Theorem 3.3.9 applies almost verbatim, except that in the proof of Lemma 3.3.11 we
will have two homomorphisms

¢:ﬁ: € HomGK (GLv Tf):ta
and we must choose g € G, so that ¢°(g) has nonzero component in the 7 eigenspace of sign € for both
choices € (unless ¢¢ is itself 0); for each ¢, this condition is satisfied outside a proper subgroup of G, so
indeed there exists g € G such that both conditions are satisfied. With this modification, the rest of the
proof applies unchanged. O

Lemma 8.2.4. Suppose that the bipartite Euler system (k(1,-),X(1,-)) of (5.5.12) is nontrivial. Then, for
allm e K, (k(m,),A\(m, ")) is nontrivial.
In particular, for allm € K and {Q, eq} € Nsum:
ko Selp(m,q)(Ty) =v(N7)+1 (mod 2);
and
k(m, Q) #0, v(N7)+|Q| even

rko Sel]_‘(m’Q)(Tf) <1 << {)\(m7Q) £0, v(N7)+|Q] odd.

Proof. Recall that, for fixed m, the pair (k(m,-), A(m,-)) forms a bipartite Euler system with parity v(N ™)
for the self-dual Selmer structure (F(m),SUm) on Tt. We will prove that, for any ml € K, if (k(m,-), A(m, -))
is nontrivial then so is (k(ml,-), A(ml,-)); this suffices by Theorem 3.3.14.

Choose {Q,eq} € Ngfﬁl )1 such that Selx(m,q)(Ty) = 0; this is possible by Corollary 3.3.13. By Propo-
sition 8.2.2, we may choose a nonzero

de Sel}‘(m|7Q) (Tf)

Applying Theorem 3.3.9 to d, let q be admissible with sign ey such that g ¢ Q U ml and locqd # 0. By
Proposition 3.3.8 for the Selmer structures F(m,Qq) and F(m,Q),

(105) I'ko Sel]:(qu)(Tf) =1.

Hence, by hypothesis, x(m, Qq) generates Selr(m,qq) (1) up to finite index, and in particular 9qx(m, Qq) # 0.
Now, taking the sum of local pairings and using Proposition 2.6.10,

(106) 0="> (d,x(m,Qq))y = (d, 5(m,Qq))s + (d, £(m, Qq))q.

\
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Since the latter pairing is nonzero by construction, the former is as well, and so Resjk(m,Qq) # 0. By
Proposition 5.3.13(1), x(ml,Qq) # 0 as well, which completes the proof. O

8.2.5. For any m € K, define the vanishing order of the Kolyvagin system at m:

_ {min{|n| :mn € K, A(mn,1) # 0}, v(N~) odd,

(107) min {|n] : mn € K, k(mn,1) # 0}, v(N7) even.

Theorem 8.2.6. Assume (disc). If (k(1,-),(1,-)) is nontrivial, and in particular under the hypotheses of
Theorem 8.1.1, we have for all m € K:

e Ifv(N7) is odd, then vm = max {ri,r} and ey = (— 1)T$+|m|.
e Ifu(N7) is even, then vy = max {rj,rn} —1 and €7 - (—1)IM+m+1 s the T-eigenvalue of the larger
e1genspace.

Proof. For ease of notation, let § = 0 if ¥(N7) is odd, and 6 = 1 if »(IN7) is even. Suppose given mn € K
such that A(mn,1) or x(mn, 1) is nontrivial; then

rk@ Self(mn)(Tf) =0

by Lemma 8.2.4. In particular, the kernel of the localization map

Sel}-(m) Tf @ unr K|,Tf

l€n

has rank at most 8. It follows that max {r},r} — & < v,. We now show that equality holds by induction
on max {r},r}. If max{r},r.} <4, then Lemma 8.2.4 implies vy, = 0 = max {r},r} — 4.

Now suppose that max {rf,r-} > &, and let € be the sign of the larger value of r (choose either if
they agree) If r,¢ > 0, then by Lemma 8.2.3 and Proposition 8.2.2, there exists | € K not in m such that
rE — 1. In this case, max {r,r} = max{r,r} — 1. Hence (by the inductive hypothesis)

ml_
Vm < Vm|+1:max{rm|,rm|} —5+1:max{rnf,r;} — 4.

Since we have already shown the opposite equality, this completes the inductive step under the assumption
rm > 0.

If on the other hand r ;¢ = 0, then r¢, > § + 2, since r} +r, = 4§ (mod 2) and we have assumed r¢, > 4.
Then by Lemma 8.2.3 and Proposition 8.2.2 again, we may choose | € K such that r5, = 7, — 1, while
necessarily rf =1 <6+ 1 < 7. Hence max {r},, 7} = r5, — 1, and the same argument as above again
completes the inductive step.

Finally, we consider the parity assertions of the theorem. If ¥(N7) is even, i.e. if § = 1, then the Selmer
ranks r& are always distinct by Lemma 8.2.4. As we pass from m to ml in the inductive step above, the
sign of the larger eigenspace is preserved, and vy + |m| = v + |ml|. It therefore suffices to show that
€f- (—1)Iml+m+1 g the eigenvalue of the larger 7 eigenspace when vy, = 0, i.e. when x(m, 1) # 0. In this case
it follows from Proposition 5.3.9.

When v(N ™) is odd, then whenever A\(mn) # 0, Proposition 5.3.9 implies that e; = (—1)I™!. Hence

€ = (_1)um+\m| — (_1)max{r:§,r;}+|m\’

which proves the claim since 7+ have the same parity when v(N7) is odd.
O

8.2.7. It remains to relate the nonvanishing of the patched Kolyvagin classes to the nonvanishing of their
unpatched analogues. For this, recall the notation of Definition 5.3.4, and let m be a squarefree product of
primes inert in K. If v(N7) is even, let ¢(m) € H'(K,Ty/I) be the class ¢, y,,)(m,1); if v(N7) is odd,
let A\(m) € O/I, be the element \,_(;,.y(m,1).

The classical vanishing order, generalizing Kolyvagin’s original definition, is defined as:

L min{v(m) : A(m) #0}, v(N7) odd,
(108) classical {mln {l/(m) : C(m) 7& 0}’ V(N_) over.

Corollary 8.2.8. Assume (disc). If (k(1,-), A(1,-)) is nontrivial, and in particular under the hypotheses of
Theorem 8.1.1, Velassical 45 finite. If (sclr) holds for f, then Veassical = V1, and in particular:
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o Ifv(N7) is odd, then Velassical = Max {rf, rf} and 17 = €f2_1 (mod 2).

o Ifu(N7) is even, then Velassical = Max {rf‘, 1"1_} —1 and ey - (—1) T ¥emssical s the larger T eigenspace.

Proof. The finiteness of the classical vanishing order is clear by construction: if a patched Kolyvagin class
or element is nontrivial, then infinitely many of the classical Kolyvagin classes or elements defining it are
nontrivial. This also shows Vejassical < v1. We will check that equality holds under the condition (sclr).
Suppose first (N ~) is even. Given some nonzero ¢;(m, 1), one may show as in [50, p. 309] that there
exists a sequence of squarefree products m,, of primes inert in K with v, (I, ) — 00, v(my,) = v(m), and
¢j(mp,1) # 0. (In [50], additional hypotheses are put on the image of the Galois action, but the argument
goes through under (sclr) by arguing as in Lemma 8.2.3.) In particular, the sequence (my)nen defines a
nonzero x(m, 1) witnessing 11 < Velassical-

Now suppose that v(N7) is odd, and that A\;j(m, 1) # 0 where v(m) = Velassical. We choose an auxiliary
ultraprime q € Mg (with either sign €q) such that Froby € Gg is a complex conjugation, represented by a
sequence (¢n)neny where without loss of generality each g, is inert in K and j-admissible with sign ¢;. By
the non-patched analogue of Proposition 5.3.13(2), we have ¢;(m, ¢,) # 0 for §-many n. Then once again,
the argument of [50, p. 309] shows that there exists a sequence of squarefree products m,, of primes inert
in K with g, { my, v(my) = v(m), ve(lm,) — oo, and ¢;(mp, ¢n) # 0 for F-many n. We therefore obtain
a nonzero patched class x(m,q) with [m| = Vejassical. By Lemma 2.4.13, locq Selz(m,1)(Ty) = 0. Hence by
Proposition 3.3.8, we have 0qk(m,q) # 0, so A(m, 1) # 0 by Proposition 5.3.13(2). This shows v1 < Velassical
and completes the proof.

([l

The rest of §8 is dedicated to proving Theorem 8.1.1, culminating in §8.6 below.
8.3. Comparing periods.

8.3.1. Let f, p, N, O, E, m, V§, T¢, and Wy be as in §1.5. For any factorization N = Ny Ny with N
squarefree and coprime to Ny, let m C Ty, n, be the maximal ideal associated to f and p; recall from
(4.2.1) that T, n, is the No-new quotient of the full cuspidal Hecke algebra of level N.

8.3.2. There are two natural periods that appear when studying special values of L-functions for f, cf.
the discussions in [58, §2] and [76, §2]. For any factorization N = NjNs, where Ni and N» are coprime,
let 7 @ Ty, Nym ®z, O — O be the map defined by the Hecke eigenvalues of f. The congruence ideal
n¢(N1, N2) C O is defined as

(109) T (AnnTNl,Nz,m ®Z,,O(ker 7rf))'

If ny (N1, N2)o € Oy () generates 1y (N1, No), then Hida’s canonical period, well-defined up to a p-adic unit,
is given by:

B T/f(Nv 1)0 ’
where (f, f) is the Peterson inner product. Also define ij to be the periods of [71, §3.3.3] for f, and recall
the periods Qi from the proof of Theorem 7.2.1 when g is ordinary. Then Q4" is related to Qi and Qf

(110) Q;.an _ (fa f)

by the following:

Proposition 8.3.3. We have Q" = Q;{Q; up to p-adic units. If  is ordinary, then in addition Q3" =
Qj{ Q. up to p-adic units.
*p p

Proof. The first claim follows from [76, Remark 2.7]° or [72, Lemma 9.5], whose proof does not need the
assumption in op. cit. that p||N. Now suppose @ is ordinary. By [71, Lemma 12.1] combined with [36,
(4.7)], we have
+ - 2 (f’ f)
Qfap Qfap (1—a3) 0 (Np, 1)
up to p-adic units, where ny(Np,1) is the congruence ideal for f,, viewed as an eigenform of level T'g(Np).
The argument in [25, p. 388] shows that 1;(Np,1) = (a2 — (p + 1)*)ns(N,1). On the other hand, since

5To check that the two definitions of Q%" in [76, Remark 2.7] coincide, one can argue using [36, Theorem 6.6].
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o +p/oy = ap, we have a2 — (p+1)? = (a2 —1)(1—p?/a2), where the second factor is a p-adic unit. Hence

QJr

K Q; = ij‘" up to g-adic units, which completes the proof. O
“p *p

8.3.4. If N = N1 N; where Ny is squarefree with an odd number of prime factors, then the f-isotypic part
of the Hecke module Of[Xn, n,](p) is free of rank one over Oy ); let ¢f N, be a generator. For each
x € XN, N,, recall that « is an isomorphism class of oriented Eichler orders; let Aut(x) be the automorphism
group of any representative (automorphisms in the sense of (4.4.1)) and set e(x) = # Aut(z). Let (-,-) be
the diagonal pairing on Z[X n, n,] with weights e(x), and extend (-, -) O-linearly to a pairing on O ;[ XN, n,]-
Gross’s period is defined (up to g-adic units) by:

(111) Qfn, = M

(Pf,N2s PF.N2)
This period is the same one from [19, Theorem A] that appeared in the proof of Theorem 7.2.1, and occurs
naturally in anticyclotomic Iwasawa theory due to Gross’s special value formula. In particular, for the central
values, we have:

Proposition 8.3.5. Let K be an imaginary quadratic field of discriminant prime to Np, and suppose that
N = N1 Ny where all factors of N1 are split in K, and N is a squarefree product of an odd number of primes
inert in K. Then L(f/K,1) € Frac(Oy) - Qf n, and the element A\(1) € O constructed in (5.3.12) satisfies:

L(f/K,1
(112) L(f/K.1) = \(1)?
Qf7N2
up to p-adic units.
Proof. This is well known, but details can be found in [12, Theorems 1.2, 1.8]. O

8.3.6. For any /|| N, let ¢;(¢) be the maximal exponent e such that T /7° is unramified as a representation
of GQ[.

Theorem 8.3.7. If N = N1 Ny where N5 is the squarefree product of an odd number of primes not dividing
Ny, and if £o]|N is any prime, then

Q)
D er(O) = (N2 +2)ey (b)) < ordy, gt < D e (€) +2¢5 (o).
¢|Na f €N

Proof. By definition, we have
Qf»Nz _ nf(Na ]-)0

Q;an <<Pf,N2,<Pf,N2> ’
so the theorem follows from Theorem A.3.6 of the appendix. O

8.4. Ordinary cyclotomic Iwasawa theory.

8.4.1. In this subsection, we assume g is a prime of good ordinary reduction for f. Let Qu/Q be the
cyclotomic Z,-extension, and let g = Gal(Qoo/Q). Let Fil;' Ty C Ty be the unique Gg,-stable line on

which I, acts by the cyclotomic character, and let gr, Ty = T/ Fil;L Ty. For the ring of integers A of a finite
extension of @, containing O and a finite set ¥ of finite places of @, we consider the cyclotomic Selmer
group, analogous to (80):

Sely_ a(f) = ker <H1(Q,Tf ®o Ao ]Y) — H HY(I,, Ty ®0 A[Tq. 1Y)
(113) tg20{p)
<H Ty, Ty S0 AT, 1) ).
We shall abbreviate Ag_ = O[q.]. Let L¥(Qx, f) € Ag.. be the S-imprimitive cyclotomic p-adic L-

function denoted £?ﬁw in the notation of [71, §3.4.4], with ¢ = 1.
Kato has proven one direction of the main conjecture in this setting [40, Theorem 17.4]:
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Theorem 8.4.2 (Kato). Let f be a modular form of weight two, level N, and trivial character, and o C Oy
a prime of good ordinary reduction with odd residue characteristic. Then Sel(%wo(f) is Ag_, -cotorsion and

Lp(Qoo, f) C charp, Sel(%wo(f)v

Under stronger conditions, Kato additionally proved that the inclusion holds in Ag_ . For the opposite
direction of the main conjecture, we deduce the following result from the work of Skinner-Urban [71]. In
the proof, we shall freely use the notations from the proof of Theorem 7.2.1. In particular, for any A, let
Leye : A[Tg.. ] — A be the specialization at the trivial character, which is consistent with our earlier notation
since I'g__ is identified with T'}° for any quadratic imaginary field K.

Theorem 8.4.3. Let K be an imaginary quadratic field of discriminant prime to Np in which p splits.
Assume that p is ordinary for f, that pt 2N, and that:
e the mod o representation Ty is absolutely irreducible as an O[Ggl-module;
e N = N; Ny, where every factor of Ny is split in K and N is the squarefree product of an odd number
of primes inert in K.

Then there exists a finite extension of Q, containing O, with ring of integers A, and an element o € A[l'g_ |
such that

Qf N,
ord, Lege(a) = ord, Qf?an + ) orde(1- %) + Z ord, (1 + £ — ay)
£|No £| disc(K)

and

(@) - chary, _ Sel?  o(f)Y - chara,_ Sel)  o(f @ xx)¥ C (Lp(Qoo, £))(Lyp(Qoos f @ xK))
in A[[FQOOH.

Proof. Let ¥ be the set of rational primes dividing Npdisc(K), and recall the divisibility established in the
course of the proof of Theorem 7.2.1 for the characteristic ideal of the 3-variable Selmer group:

(114) (vi) - charypr, ] Seliva(f)v C (XEK)
in I[T' k], where, by Remark 7.2.2(1) and Proposition 8.3.3, a; € I[I';Y°] may be chosen such that
ordy Leye 0 ¢(a;) = ordy (Qf’NZ/Q;i“”) + Z ord, (1 — %) + Z ord, (1 + ¢ — ay).
o, ] dise(K)

Let a == ¢(«;) for such a choice of ;. Combining (114) with (85) we have a divisibility

() - chargry_J S(eIIE(XHA(jF)v C o (XEK) .
in A[T'k]. Now, by Lemma 3.6, Proposition 3.9, and §3.4.6 of [71] — using Lemma 7.1.4 and that p splits in
K to check the hypotheses of Proposition 3.9 in loc. cit. — the preceding divisibility yields
(115) () - charagrg g Selg_ 4(f)" - charag, jSelg 4(f @ xx)" C (L (Qoo, /)) (L} (Qoo, f © XxK))-
Then by [71, Lemma 3.13(ii), Proposition 3.14], we obtain the imprimitive divisibility

(116) (@) - char gp,_ 7 Sel(%oo,A(f)V -chargr, Sel(%wA(f @ xK)" C (Lp(Qoos £))(Lp(Qoo, f @ XK))-

By the cyclotomic analogue of (81), we can replace the characteristic ideals on the left hand side with
their analogues over O, which gives the theorem. ]

8.4.4. Let Vy =Ty ® Q, and let H}c (Qp, Wy) C H'(Qp, Wy) be the image of the Bloch-Kato local condition
H}(Qp, Vy) under the natural map H'(Qp, Vi) — H'(Qp, Wy). Then we consider the Q-Selmer group

H' (@, Wy)

(117) Sel(Q, Wy) = ker | H'(Q, W;) — HHl(Qz,Wf) X HHQ, Wy)

L#£p

This definition also makes sense without the assumption that p be ordinary. However, in the ordinary case,
we have:
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Proposition 8.4.5. Let a, be as in (5.2.3). Then

ordy Teye (charAQm Seld o f)V) =lgo Sel(Q, Wr) + Y 180 Hypne (Qe, Wy) + 201d, (1 — a).
N
Proof. By Theorem 8.4.2 combined with [71, Proposition 3.13(i)], Seléomo(f) is Ag,,-cotorsion for all finite
sets of primes X.. Then by [71, Proposition 3.20], Seléwo (f)Y has no pseudo-null submodules for a sufficiently
large finite set of primes ¥.. By the same argument as [30, Proposition 4.14], this implies that Sel(%x,o( Y
contains no pseudo-null submodules as well. Hence
(118) ordy Leye(chary, _ Seld)  o(f)Y) =lgo Seld,_ o(f)IT],

where T'= v — 1 € O[I'g_. ] for a topological generator v € I'g_, .
Now note that, by the same reasoning as in the proof of [40, Lemma 17.9],

(119) H}(Qp, Wy) = im (H{(Qp, Fil¥ Ty ® Q) — H'(Qp, Wy)) .
In particular, H }((@p, W) lies in the kernel of the natural map

Hl(QP7Wf> - Hl(Qp,grpr),

and hence also in the kernel of the map H'(Q,, Wy) — H'(I,,gr, Ty ® Ag..-)
Then by the arguments of [30, Lemma 4.3, Lemma 4.6], we have

lgo Selgy_ o (£)T] = 1go Sel(Q, Wy) + Z Igo ker (H(Qq, Wy) — HY(Qe, Ty @ Ag_))
L#p

(120)
+1g o ker <

Hl((@pv Wf)
H}(va Wf)

For the kernels at ¢ # p, note that the map H' (I, Wy) — H' (I, Ty ® Ag_ ) is injective. Indeed, its kernel
is identified with

— H1(1p7grpr ®Aém)> .

(Tf X A(\éoc )Ié /T(Tf & A(\ém)lz
by the long exact sequence associated to multiplication by T'on Ty @ Ag_, and (Ty ® Aéw)lf is T-divisible
because £ is unramified in Q.

On the other hand, H},,(Q¢, Ty ® Ag_) = 0 by [58, Remark 3.1]. So the terms for £ # p in (120) coincide

with
lgO 'I:Iinr((@Z7 Wf>7
which vanishes for £t Np.

For the term at p, note first that, if A is the associated GLo-type abelian variety to f as in Remark
5.1.3, then H} (Qp, Wy) coincides with the image of the local Kummer map Af(Q,) — H}(Qp, Wy) by [4,
Examples 3.10.1, 3.11]. Then the argument of [30, Lemma 3.4], which is readily adapted to the case of
G Lo-type abelian varieties, shows that the the term at p is 21g, HO(Qp,grp W) = 2ord.(1 — «p), which

completes the proof.
O

8.4.6. Denote by u(f) the p-invariant
(121) p(f) = ord, (char,\Qoo Sel%mﬁo(f)v> < 00.

From Theorem 8.4.3, we obtain the following weak form of the BSD formula for f.
Corollary 8.4.7. Let f and K be as in Theorem 8.4.3. Then we have

L(f 1 0
ord, (f.’l,_ ) < lg(’) SGI(Q,Wf) +,lt(f ®XK) +ord, fiN2
Qf Q(}an
+Zordw(1—€2) + Z ord;(1+¢— ay)

£|Ny £] disc(K)

+Zlg0 Hlllnr((@lv Wf)
(N



74 NAOMI SWEETING

Proof. The divisibility in Ag,, ® Q, from Theorem 8.4.2 applied to the quadratic twist f ® xx can trivially
be upgraded to a divisibility in Ag_ by inserting a p-invariant:

(122) ()" &X) (L (Quo, f ® xx)) C charp_ Seld)  o(f ® xx)".

By Theorem 8.4.3, we also have
(123) (@) - chara, _ Sel® o (f)" - chara,_ Sell)  o(f ® xx)¥ C (Lp(Qocs f)) - (Lp(Qos, f @ XK ))-
Combining these two equations, we have

() - (p)“(f‘g’x’() -chary, Sel%w@(f)v -chary, Sel(%wo(f ®xK)"

(124) )
C (Lp(Quo, f)) - charp, SelQW’O(f ®xK)".

Since characteristic ideals are divisorial and charp,__ Sel(%wo( f®xK)¥ # 0 by Theorem 8.4.2, we obtain

(125) (@) - ()& chary,  Seld)  o(f)" € (Lp(Qoos f))-

We now specialize both sides at the cyclotomic character and obtain

(126) ordy Teye(a) 4 p(f ® xx) + ordy Teyc(chara, Sel(%w@(f)v) > ordy Leye(Lp(Qoo, f)).

Combining Proposition 8.4.5 with the interpolation formula for L,(Q, f) in [71, §3.4.4] and the formula
for ord,; Leyc(cr) in Theorem 8.4.3, (126) gives the corollary.
O

The following lemma will be needed to control p-invariants in our application of Corollary 8.4.7.

Lemma 8.4.8. Continue to fix f as above, and let g be another Hecke eigenform of weight two and trivial
character, new of level M, with Oy the ring of integers of the number field generated by the Hecke eigenvalues
of g. Suppose given a good ordinary prime o, C Oy such that Oy, is isomorphic to O, and let T, be the
corresponding O|Ggl-module. If T,/m? =2 Ty /77 for some integer j > u(f), then u(f) = pu(g).

Proof. A direct calculation shows that the p-invariant of H'(Qg,Tf ® Ag_) vanishes for all £. Hence pu(f)

is also the p-invariant of chary, Selémo( f)V for any finite set of primes ¥, and likewise for g.
If ¥ contains all primes dividing N M, then it is not difficult to check using Lemma 2.4.12 that

(127) Selg... o (/)] = Selg_ o(9)[n]

as Ag, -modules. Let My and M, be the Pontryagin duals of Selgwo(f) and Seléwo(g), respectively, and
let P = (p) C Ag... Then we have an isomorphism of Ag_ -modules

My /%7 =~ My /P
Since pu(f) = 1g My ¢y < j, where (B) denotes the localization,
(128) My, o) /%7 = My 30/ B~
as Ag__ (p)-modules, which implies the same for g. Therefore Mgmg)/‘ﬁj = M, (), 5O

lg My () = 1g My () /B = lg My o) /B = 1g My (),

as desired. O

8.5. Non-ordinary Iwasawa theory. In this section, we continue the notation of (8.3.1), and no longer
assume that p is ordinary for f. However, still let Qo and Ag_, be as in (8.4.1).
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8.5.1. For an integer ¢ > 0 and M = W; or T}, write

(129) HY(Z[1/p], M) :=ker | H(Q, M) — [[ H'(Ie, M)
L#p
and
1 Hl P M
(130) H}(Z[1/p], M) := ker (H (Z[1/p], M) — H}EgpMD :

where H}(Qp, Wy) is as in (8.4.4), and H }(Qy, Ty) is the kernel of the map H'(Qp, Ty) — H'(Qyp, Vi)/H(Qyp, V).
The next proposition is a corollary to the motivic form of the cyclotomic main conjecture proved in [29].

Proposition 8.5.2. Suppose that © is not an ordinary prime for f, and that there exists £||N such that
. . =G
Plag, is ramified and Ter =0. Then

L(f.1)
o

ord, =lgp H}(Z[l/p],Wf).

Proof. Let z(f) € HY(Z[1/p], T ® Ag..) ® Q, be the subspace defined by Kato in [40, Theorem 12.5]. In
fact, z(f) lies in H*(Z[1/p], Tf ® Ag..). In [40, Theorem 12.5(4)] this is asserted under a stronger condition,
but the proof only uses that any two Gg-stable O-submodules of Ty ® Q,, differ by a scalar; this holds under
the assumption that T'; is absolutely irreducible, cf. [69, Lemma 2.1.1].

Let z(f) € HY(Z[1/p], T¢) be the image of z(f) under the specialization map

HY(Z[1/p], Ty ® Ag..) — H'(Z[1/p], T§)
induced by 1ey.. By [29, Theorem 1.7, Proposition 3.20],% we have

HY(Z[1/p], Ty)
(/)
Note that it is to apply [29, Theorem 1.7] that we have assumed the existence of a prime ¢ as in the

proposition.
Now by [40, Proposition 14.21(2)], (131) is equivalent to the desired formula, which completes the proof.

(131) lgo =lgop HQ(Z[l/p]an)-

|
Corollary 8.5.3. Under the assumptions of Proposition 8.5.2, we have
L(f1
ord, (Qf_,_ ) < lg(’) Sel(@7 Wf) + Z 1g(9 H&nr(@fa Wf)
f (N
Proof. By definition, we have an exact sequence
(132) 0 — Sel(Q, Wy) = H}(Z[1/p], Wr) = [ Hunr(Qe, Wy),
oN

so the inequality is immediate from Proposition 8.5.2. (]

Remark 8.5.4. In fact, the inequality in Corollary 8.5.3 is sharp: without loss of generality, we may assume
Sel(Q, Wy) is finite, and then [30, Proposition 4.13] implies that (132) is exact on the right as well.

5When consulting the preprint [29], the reader may find it helpful to note that the divisibility
HY(Z[1/p], Ty ® Ag,.)
z(f)

of [40, Theorem 12.5(4)] holds — even without inverting p — under the assumptions of Proposition 8.5.2. The reasons for this
are explained in detail in [69, p. 188]. Although the discussion in [69] is in the ordinary context, the same remarks apply here.

charpg C charpg,__ H? (Z[1/p], T @ Ag.,)
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8.6. Proof of Theorem 8.1.1. By Corollary 7.3.4, we may assume without loss of generality that we are
not in the split ordinary case; so by the assumptions in Theorem 8.1.1 we can fix once and for all a prime
{||N. In the ordinary case, fix as well an auxiliary quadratic imaginary field F', not contained in K (7),
such that ¢y is inert in F' and every other factor of Npdisc(K) is split in F. Let (F,S) be the Selmer
structure of (72) with m = 1.

As in the proof of Theorem 7.3.1, apply Proposition 6.3.6 and Theorem 6.2.4 to obtain some {Q,eq} € N,
represented by a sequence of weakly admissible pairs {@Qy,, g, } as in Remark 4.6.8, and a resulting sequence
of newforms g, of NQ,; in the ordinary case, we make sure to choose each q € Q such that Frobq has
trivial image in Gal(F/Q), which is clearly possible. The choice of {Q, eq} from Proposition 6.3.6 includes
the condition that Selr(q)(7y) = 0. We claim that A(Q) # 0, for which — by the same reasoning as Step
2 of Theorem 7.3.1 — it suffices to show ord, Ay, (1) is uniformly bounded for §-many n. Combined with
Proposition 8.3.5, we wish to show

L(gn/K,1) <

(133) ord, <
an N=Qn

Cy

for some constant C; depending only on f, p, £y, F, and K, and for §-many n.
We first claim that, for a constant Cy depending only on f, g, ¢y, and F, we have the inequality

L 1
(134) ord, % <lgp Sel(Q, W,, ) + Z lgo Hin(Qe, W,,) + Co.
In {NQn

In the non-ordinary case, this is immediate from Corollary 8.5.3. In the ordinary case, we have to bound the
extra terms appearing in Corollary 8.4.7 for g, and F, i.e.

Q
(135) #(gn ® Xr) +ordy e Forda (1= £3) + D ords(1+£ — ar(ga)).
gn £| disc(F)

Qyn,fo

The p-invariant term is equal to u(f ® xp) for F-many n by Lemma 8.4.8; the term ord, Geans is bounded

by 3cg, (o) by Theorem 8.3.7, which coincides with 3c¢s(¢) for F-many n. Finally, for g;ny £] disc(F),
1+ ¢ —ae(f) # 0 by the Weil bound, so for F-many n ord,(1 + £ — a¢(f)) = ordz(1 + £ — a¢(gn)). This
proves (134). The exact same reasoning applied to f ® xx and g, ® xx shows there exists a constant Cs,
now depending on f, g, {y, F, and K, such that

L(gn D XK, 1)

(136)  ordy = <lgo Sel(@ Wy, @ xx) + Y 180 Hine(Qi, Wy, @ xx) + Cs

In®XK {NQn
holds for §-many n. By [72, Lemma 9.6] (whose proof does not require the assumption in op. cit. that
p||N), Q;rn@XK coincides with Qg_ up to a g-adic unit; in combination with Proposition 8.3.3, we have
(137) Qg oxic Y, = X"

Let Fg, be the Selmer structure for the G x-module W, which is dual to the analogue for g, of (72) with
m = 1. By Shapiro’s lemma (and comparing the definitions (72) and (117)), we also have

(138) Selr, (Wy,) = Sel(Q,W,,) ® Sel(Q, W,, ® xk).
Then combining (134), (136), (137), and (138), we have
L(gn/K, 1
(139) ord, % <lgp Selr(Wy,) + Z g HY, (K, Wy ) +C2+Cs
gn 7)‘NQ71,

for F-many n. Now note that, for all v|N, lgn, HL, (Ky, Wy,) = lgo H, (Ky, W) < oo for §-many n;
on the other hand, using the explicit form of T, n|G@q, from the end of Step 3 of Theorem 7.3.1, we have
lgp HYp(Ky, , Wy,) = cg,. (qn) for all ¢,|Q,. So (139) becomes

L(gn/K,1)

140 dx

<lgp Sel]:gn (Wgn) + Z Cq,, (gn) +Cy
qlen

for §-many n and for a constant C4 depending on f, p, ¢y, F', and K.
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Now by Theorem 8.3.7, (140) becomes

L(gn/K, 1)

141 ord,
(141) Q.

<lgo Selr, (Wy,) = > g, (0) + (W(N~Qn) + 2)cg, (L) + Ca.
¢N-

Again using that ¢, (¢) = ¢;(¢) for F-many n and for all £||NV, (141) becomes

L(gn/K,1)
gn N~

(142) ord, <lgp Sely, (Wy,) +Cs
for F-many n and for a constant C5 depending on f, g, £y, F', and K.

Now arguing as in in Steps 3 and 4 of the proof of Theorem 7.3.1, but replacing the local arguments at
v|p by [32, Lemma 7] combined with [60, Théoréme 3.3.3], we find

(143) #Selr, (W, )[n'] = # Selzq)(Wy)[n’]

9n

for any j and for §-many n. Since Selr(q)(Wy) is finite by Proposition 3.3.6(3) and the choice of Q, it follows
from (143) that # Selr, (Wy, ) = # Selrq)(Wy) for F-many n.
In conjunction with (142), this shows (133) and completes the proof.

APPENDIX A. DEGREES OF MODULAR PARAMETRIZATIONS AND CONGRUENCE NUMBERS

A.l. Overview. Let f, p, N, O, E, w, V¢, Ty, and Wy be as in §1.5, and keep the notation of §8.3. In this
appendix, we extend the results of [41, §3.2] and [64] on the degrees of modular parametrizations associated
to f. There are two directions in which we must generalize their work: first to allow general coefficient rings
O, and second to not require that N be squarefree, at the cost of an error term in the final result.

In [64], it is assumed that O = Z; in [41], this hypothesis is relaxed to the assumption that O is absolutely
unramified and generated over Z, by the Hecke eigenvalues of f (whereas in general the Hecke eigenvalues
only generate a finite-index subring of O). In [58, §6], the results are stated for general coeflicients with N
squarefree, but some of the proofs are incomplete as written.

The ultimate goal of this appendix is Theorem A.3.6 below, which is crucially used in §8. If N is squarefree,
then there exists a prime ¢||N such that Tﬂgw is ramified, in which case the error terms in Theorem A.3.6
can be chosen to vanish and we recover the statement of [58, Theorem 6.8].

A.2. Constructions and notations.

A.2.1. Recall the abelian variety Ay from Remark 5.1.3, and fix an isomorphism End(As) = Oy. Since the
Go-module Af|[p] is absolutely irreducible, we can choose a polarization A : Ay — AY such that the induced
map on p-adic Tate modules is an O-linear isomorphism

At Ty Ay = T, AY.

(Note that the Rosati involution associated to A is trivial since, as f has trivial central character, Oy is the
ring of integers of a totally real field.)

For a factorization N = N;Ns, where Ny is the squarefree product of an even number of primes not
dividing Ny, we choose a Hecke-equivariant map &y, n, : JVV2 — A ¢ such that the image of the induced
map T,,JVNN2 — T, Ap — T, Ay is not contained in pT,A¢. (Recall from (4.3.1) that JN2 denotes the
Jacobian of the Shimura curve Xy, n,.)

A.2.2. For the rest of this subsection, abbreviate J := JN1:N and ¢ = &y, n, for some factorization N =
NNy as above. If m C Ty, n, is the maximal ideal associated to f and g, let
(144) §e 1 Tnd ®7, O — T,Af
be the natural map, with T,,J as in (4.2.2). Let d(O) be the different of O/Z,, so that the modified trace
pairing
(145) tr'(z,y) = tro/z, (ﬁ_d(o)xy)
defines an isomorphism
O :—) Homzp (O, Zp).
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We then define the O-linear pullback map
£ TPA}/ — Homgz, (O, TwJ) = 5 T.J ®z, O
(146) trf—
xa = (& (axa)).

The composite

(147) T, Ap 25 T, AY 25 Tod ®z, 0 25 T, A
is O-linear and Gg-equivariant, hence is given by multiplication by some element of O; let
5(N1, Nz) cO

be the ideal generated by this element. Since tr’, A, and & are all well-defined up to p-adic units, 6(Ny, N2)
is independent of the choices made to define it.
A.2.3. For any fHN, set Xg(Af)o = Xg(Af)@@f 0, XZ(A}/)(’) = Xg(Af)@of O, and Xg(J)O = X[(J)m@)zp 0,
with notation as in (4.1.1) and where m denotes the m-adic completion. Let (-,-}4 and (-,-); be the mon-
odromy pairings on Xy(A}) x X¢(A) and X,(J) x Xy(J), respectively, using that .J is canonically principally
polarized.

Then we define (-, -) ;0 to be the O-valued pairing on Xp(J)e linearly extending (-,-),, and define

(V4,0 X(A)o x Xe(A)o — O
by
tr' "N (za,ya)a,0(@) = (aza,ya)a = (T4, 094) 4.
Repeating the construction of (A.2.2) on the level of character groups, we obtain O-linear maps

f* : Xg(.])o — Xg(A\;)@

and

g* : Xg(Af)@ — Xg(J)o.
These maps can also be obtained functorially from (144), (146) by identifying the O-modules XZ(A}’)@,
Xe(Af)o, and Xy(J)o as the maximal O-submodules of Tj, Ay, TpAJvc7 and Ty, J ®z, O, respectively, on which
the Gg,-action is unramified and Frob, acts by ¢ times a root of unity, cf. the diagram on [20, p. 318]. In
particular, for each ¢ the composite

A" £ Ex

(148) Xi(AY)o == Xe(Ap)o — Xi(J)o == Xi(A})o
is multiplication by a generator of 6(Ny, Na).
Lemma A.2.4. For any {||N, the map & : Xo(J)o — Xg(AJY)@ 18 surjective.
Proof. Let B C J be the image of A}/ under the dual map

v Ajvc — J,
so that ¢V factors as

A} BB J
with ¢ an isogeny. By [21, Theorem 8.2], the natural map X;(J) — Xy(B) is surjective, so the image of &,
is identified with the p-adic completion of

X = Z (poa)*X(B) C Xy(AY).
acOy

View X, Xg(A}/), and X, (B) as constant group schemes over Fy. By the discussion preceding [21, Theorem
8.6], there is a canonical inclusion

(149) ker <Hom(Xg(AJVc), G,) 2, Hom(/’\,’g(B),(Gm)) Ckerpoa
for all a # 0 in Of. On the other hand, by duality, we have

(150) Hom(Xg(A}/)/X7 Gm) = Naco, ker (Hom(Xg(Ay), Gm) (W—a)*> Hom(Xg(B),Gm)> ,
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so by (149) it suffices to show

(maeof kerpo a)p =0.
This follows from the choice of &, so the lemma is proved. O
A.2.5. For any /||N, let X(J)o[f] C X¢(J)o denote the maximal f-isotypic subspace for the action of the

Hecke algebra Ty, n,m ®z, O. By construction, the map £* : Xy(Ay)o — A¢(J)o has image contained in
Xe(J)o[f]- Then Lemma A.2.4 has the following corollary.

Corollary A.2.6. There is an isomorphism of O-modules
X(Dolf]
& X(Af)o
Proof. Consider the following commutative diagram with exact rows:

0 —— X()o 2% Home (Xe(J)0,0) — By(J)m @z, O — 0

(151) lg* l& l

0—— Xg (9 *> HOmo(Xg(Af)o,O) —_— q’g(Af) ®of O ——0.

~ coker (P¢(J)m @z, O — ®4(Af) ®o, O).

Here, the exactness of the rows is immediate from [34, Théoréme 11.5], and the commutativity results from
the definitions of &, and £* along with the functoriality of the monodromy pairing. By Lemma A.2.4, the
first vertical map is surjective, so the snake lemma induces an isomorphism

coker £ ~ coker (®¢(J)m @z, O = P(Af) ®o, O) .
On the other hand, since Xy(J)o/Xe(J)o[f] is O-torsion-free,
coker £* = coker (Hom(Xy(J)o[f], O) = Homo (X (Af)o, O)),

which in turn is isomorphic to Xy(J)o[f]/§*Xi(Af)o since both Xy(J)o[f] and Xy(Af)o are free of rank
one over O. 0

A.3. Tamagawa factors and the method of Ribet-Takahashi.

A.3.1. For any {||N, let cy(£) be as in (8.3.6). By the same argument as [41, Proposition 3(1)], ®¢(Ay) ®0, O
is isomorphic to O/cs(¢) as an O-module.

Proposition A.3.2. Suppose N = Ny N where Ny is the squarefree product of an even number of primes
not dividing N1. Then:

(1) For all primes ¢|Ny, we have
ordy, (©f Nyes P f,Nye) = ordg, 6(N1, No) — cr(£).
(2) There is a constant ¢(N1, Na) such that 0 < c¢(Ny, N2) < mingn, cy(€) and, for all primes £|Na,
orde, (@ N, /0> P f, N, je) = 0rdg 6 (N1, N2) + ¢ (€) — 2¢(N1, Na).
(8) For any pair of distinct primes £y, {y dividing No, we have

§(N1£103, No /1 4s) _
0(N1, No)

Proof. For any ¢||N, we have the identity of ideals of O:
(€, 3 Xe(Ap) s Sy N, Xe(Ap)0) gvive 0 = (€81 Vo €y, Xe(Af) 0, Xi(Af)o) a0
= 6(N1, Na)(Xe(Af) o, Xe(Af)o) a0,
where the first identity comes from the commutativity of the diagram (151). Write
(N1, Na, £) = g coker (R (JVN2) 0 @7, O = 4(A) ®o, O).
Then using Corollary A.2.6 and the exactness of the bottom row of (151), we obtain from (152)
(153) 2¢(Ny, Ny, £) + ordy, (Xe(JNN2) o [f], X (TVN2) o[ f]) 1.0 = ord,, (N1, Na) + ¢ (€)

ord, cr(l1) + cg(la) — 2¢(N1, Na).

(152)
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Now suppose £|N;. By the results of [63, §3] (which are stated for modular curves but apply to Shimura curves
as well with the obvious modifications), X;(J"1""2),, is Hecke-equivariantly isomorphic to Z[Xy, /¢, nye)m:
and this identification is compatible with the natural pairings. Hence

(X (TN o [f], Xe (TN N2 o [ g0 = (0N, 01, Noe)-

On the other hand, since m is non-Eisenstein, ®,(JV:V2), = 0 by [63, Theorem 3.12], so ¢(N1, Nz, £) = c¢(¢).
So in this case (153) becomes (1) of the proposition.

For ¢|Na, the results of [63, §4] show that X,(J™V2), is Hecke-equivariantly isomorphic to a submodule
of Z[X n,e,n, /Z]m containing ¢y n, /¢, again compatibly with the natural pairings, so we conclude
(154) ordg,<gpf7N2/£, @f,Ng/€> = OI'dp (S(Nl, NQ) + Cf(g) - 2C(N1, NQ, g)

We have ¢(N1, No, £) < ¢f(£) by definition, so to prove (2), it suffices to show that ¢(N1, N3, ¢) is independent
of ¢|Na; the common value will be defined to be ¢(N1, No). Write ¢; = ¢; since Na has an even number of
prime factors, we may choose a prime ¢3|Na/¢;.

Applying part (1) of the proposition to Ny¢1fy, No/l1f5, and the prime ¢, we find

(155) ord@<<pf}N2/gl y ‘Pf,Nz/Zl> = OI‘d@ 5(N1£1€2, Ng/flfg) — Cf(ég).
Then comparing (154) and (155), we have
OI‘dKJ 5(N1€1€2, N2/€1€2) — OI‘dS,J (S(Nl, NQ) = Cf(fl) =+ Cf(ég) — 2C(N1, Ng,fl).
This expression is symmetric in ¢; and f2, so ¢(Ny, Na, 1) = ¢(Ny, Na, ls) for all primes ¢1, {2| Ny, which
completes the proof of (2) and also shows (3). O

Corollary A.3.3. Suppose N = N1 N> where Ny is the squarefree product of an even number of primes not
dividing Ny. Then for any £o|Na,

(N, 1)
elzN:Zcf(é) — v(N2)ey(by) < ordy, SN, Vo) < ZIXN; cr(0).

Proof. This is immediate from repeatedly applying Proposition A.3.2(3), not choosing ¢ as one of the primes
{1, 05 until the last step. O

A.3.4. Proposition A.3.2 and Corollary A.3.3 are two of the three ingredients we need for the final comparison
of periods. The third is below.

Lemma A.3.5. Let {y||N be a prime. Then we have
ord, 6(N, 1) > ordg, ns(N,1) > ord, §(N, 1) — cy(4o).
Proof. The composite

. . 3% A
(156) TV @, O 00 T Ay 25 ToAY 200 T gV @y 05 T gV @y O
is O-linear and equivariant for the full Hecke algebra (because the Rosati involution on Ty ; C End(JN:!) is
conjugation by the Atkin-Lehner involution wy, cf. [35, Lemma 5.5]). Since Ty, J™V'! is free of rank two over
Twn,1,m by Proposition 4.2.3, and since the residual representation associated to m is absolutely irreducible,
we conclude W EN 1 AN, 1, =y for some y € Tn 1w ®z, O. Then

EN1WNEN1AEN 1« = EN 1Y = TEN 16N 1 AEN 145

so m¢(y) generates 6(N, 1), cf. (A.2.2). On the other hand, y lies in the annihilator of ker 7y since yz = m¢(2)y
for all z € Ty 1,m ®z, O. This shows (N, 1) C 7y(N, 1), so ord, §(N,1) > ord, 1y (N, 1).

For the other inequality, note ordg, 7y (N, 1) > ordg, ns(N/lo, L) since Tyygy 0.m @z, O is a quotient of
Tn1m ®z, O. By [24, Lemma 4.17], we also have

Ord@ nr (N/£07 EO) > Ord§3<50.f,507 ‘pf7fo>7

which is equal to ord, §(N, 1) — c¢(¢o) by Proposition A.3.2(1). So indeed ordy, n¢(N,1) > ord, (N, 1) —
cy(bo). 0
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Theorem A.3.6. For any factorization N = N1 Ny where Ny is the squarefree product of an odd number of
primes not dividing N1, and for any prime {y||N, we have

» . ord V1)
Zcf(f) ( (NQ) +2) f(go) < dp <<,0f7N27<)0f»N2>

< 3 es () + 2¢4(6o).

Z‘NQ Z‘N2
Proof. By Lemma A.3.5, it suffices to show
5(N,1
(157) > ep() = (1(N2) + 1)eg(b) < ord,, _oMD <> ep(l) + 2¢5(k).
o~ (prmes prma) — i

Suppose first that £y|N2. If £y = Na, then Proposition A.3.2(1) proves (157). So assume without loss of
generality that there exists a prime g|N2 with ¢ # ¢y. Then by Proposition A.3.2(1), we have

Niq, N-
(158) ord,, 76( 19, N2/q) =cs(q),
(@f.N2» PF.N)

and since {y|N2/q Corollary A.3.3 shows

5(N, 1)
(159) Z|Nz2/q cr(l) —v(Na/q)cs (o) < ordg, SNig NaJd) < [sz/q cr(0).

Combining (158) and (159) yields (157), in fact with stricter bounds.
Now suppose £o|N1. Then by Proposition A.3.2(2), we have

d(N1/lo, Nako)

160 —cr(ly) < ord
(160) (o) ¥ (@5 Ny PF N,

S Cf(éo).

Moreover, Corollary A.3.3 shows

(161) EZ ¢r(6) = v(Nabo)es (b) < ord,, (m <3 ).
[N2Lo £|N2to

Combining (160) and (161) completes the proof of (157). O
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