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Abstract. Cuspidal automorphic representations τ of PGL2 correspond to global long root A-parameters
for G2. Using an exceptional theta lift between PU3 and G2, we construct the associated global A-packet

and prove the Arthur multiplicity formula for these representations when τ is dihedral and satisfies some

technical hypotheses. We also prove that this subspace of the discrete automorphic spectrum forms a full
near equivalence class. Our construction yields new examples of quaternionic modular forms on G2.
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1. Introduction

The Langlands philosophy predicts that automorphic representations should be classified in terms of Galois
representations. More specifically, for a connected reductive group G over a number field F , Arthur [3, 4, 5]
has proposed a description of its discrete automorphic spectrum Adisc(G) in terms of global A-parameters

ψ : LF × SL2(C) → LG,

where LF denotes the conjectural Langlands group of F , and LG denotes the Langlands L-group of G. For
every place v of F , one expects to associate with ψv := ψ|LFv×SL2(C) a finite set Π(ψv) of representations of
G(Fv), and Arthur gives a conjectural formula for how representations whose component at v lies in Π(ψv)
contribute to the discrete automorphic spectrum. This is the associated global A-packet.

We focus on the case where G is the split simple group over F of type G2. Then LG = Ĝ(C), where Ĝ is
a simple group over C that is also of type G2. The possibilities for ψ|SL2(C) correspond to nilpotent orbits

in Ĝ, so when ψ|SL2(C) is nontrivial, there are four options:

• regular orbit : then ψ|LF
must be trivial, and the associated automorphic representations are trivial,

• subregular orbit : in this case, the Arthur multiplicity formula is completely resolved in [15] and [11],
• short root orbit : in this case, the Arthur multiplicity formula is completely resolved in [14],
• long root orbit : this case is the subject of our paper.
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Assume now that ψ|SL2(C) corresponds to the long root orbit. Then the centralizer of ψ|SL2(C) in Ĝ(C)
equals the subgroup SL2(C) associated with a short root in G2, so ψ|LF

corresponds to a tempered global A-
parameter LF → SL2(C). Under the Tannakian definition of LF , this corresponds to an irreducible cuspidal
automorphic representation τ of PGL2 over F . We henceforth use τ to index long root global A-parameters,
to avoid using the conjectural LF .

In this paper, we address the case where τ is dihedral (cf. §4.2). Write K/F for the associated quadratic
extension and χ : K×\A×

K → S1 for the associated character, where χ|A×
F
must equal the quadratic character

corresponding to K/F in order for the automorphic induction τ of χ to descend to PGL2.

For every place v of F , in §4 we associate with τv a finite set Π(τv) of representations of G(Fv), using
work of Alonso–He–Ray–Roset [2] when v is nonarchimedean. The set Π(τv) consists of one irreducible
representation {π+

v } when v splits in K or χ2
v = 1, and two irreducible representations {π+

v , π
−
v } otherwise.

Write Aτ (G) ⊆ Adisc(G) for the sum of all irreducible automorphic representations that are nearly equivalent
to (π+

v )v, i.e. whose component at v is isomorphic to π+
v for cofinitely many v.

Our first main result is the Arthur multiplicity formula for these global A-packets.

Theorem A (Theorem 4.2.(3)). Assume that

(1) L( 12 , χ) is nonzero,
(2) K/F is unramified at all places of F above 2,
(3) K is totally real and χ is totally even, i.e. χv(−1) = 1 for all archimedean places v of F .

Then we have an isomorphism of G(AF )-representations

Aτ (G) ∼=
⊕
(ϵv)

⊗
v

′ πϵvv ,(1.1)

where (ϵv)v runs over sequences in {±1} indexed by places v of F such that

• ϵv = +1 when v splits in K or χ2
v = 1,

•
∏
v ϵv = ϵ( 12 , χ

3).

Moreover,
⊗′

v π
ϵv
v is not cuspidal if and only if every ϵv equals +1 and L( 12 , χ

3) is nonzero.

Remark 1.1. In general, a global A-packet is a subspace of a near equivalence class, and this inclusion can
be strict [7, Theorem B]. However, in our setting Theorem A shows that this inclusion is an equality.

Remark 1.2. We expect Theorem A to hold without assumptions (1)–(3). In our paper, we explain how to
remove assumption (3) if we knew certain Howe duality results for exceptional theta lifts over archimedean
fields (Conjecture 4.5). Removing assumption (2) amounts to computing certain local root numbers over
2-adic fields (Remark 6.14). While we expect Theorem A to hold without assumption (1) if we replace
ϵ( 12 , χ

3) with ϵ( 12 , χ)ϵ(
1
2 , χ

3), our method crucially relies on assumption (1), as we explain below.

Let us discuss the proof of Theorem A. The non-cuspidal part follows from work of H. Kim [32] and Žampera
[57], so we focus on the cuspidal part. Since τ is dihedral, the associated global A-parameter ψ factors

through a subgroup SL3(C)⋊ Z/2Z of Ĝ(C), which is the Langlands L-group of PU3. The resulting global
A-parameter of PU3 is associated with certain cuspidal automorphic representations whose existence was
first observed by Howe–Piatetski-Shapiro [27, p. 315]. Hence Langlands functoriality suggests that we should
construct our global A-packet on G by lifting these global Howe–Piatetski-Shapiro A-packets on PU3. Indeed,

there is a dual reductive pair G×PU3 ↪→ G̃, where G̃ is the quasi-split adjoint group of type E6 with respect

to K/F . By using an analogue of theta functions for G̃, one obtains an exceptional theta lift θ between G
and PU3.

We now describe the Howe–Piatetski-Shapiro A-packets in more detail. For every place v of F , one can
associate with χv a finite set Π(χv) of representations of PU3(Fv): it consists of one irreducible representation
{σ+

v } when v splits in K, one irreducible representation {σ−
v } when PU3(Fv) is compact, and two irreducible

representations {σ+
v , σ

−
v } otherwise. By appropriately choosing the unitary group PU3, any sequence (ϵv)v as
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in Theorem A yields an irreducible cuspidal automorphic representation σ :=
⊗′

v σ
ϵv
v appearing inAdisc(PU3)

with multiplicity one. There is flexibility in choosing PU3, and for our arguments it will be important to
ensure that, when v is archimedean, PU3(Fv) is compact exactly when ϵv = −1; otherwise, the lift θ(σ) of
σ to G will vanish for local reasons.

Our next main result is that θ(σ) is isomorphic to
⊗′

v π
ϵv
v .

Theorem B (Corollary 5.9, Theorem 6.16). Assume that

(1) L( 12 , χ) is nonzero,
(2) K/F is unramified at all places of F above 2.

Then θ(σ) is cuspidal and nonzero. Moreover, if we assume that

(3′) for all archimedean places v of F , either Kv = C and PU3(Fv) is compact, or Kv = R × R and
χv : Rv→S1 satisfies χv(−1) = 1,

then θ(σ) is isomorphic to
⊗′

v π
ϵv
v .

Remark 1.3. Note that assumption (3′) is weaker than assumption (3). By using this when F is Q and K
is an imaginary quadratic field, Theorem B yields examples of quaternionic modular forms as considered
by Gan–Gross–Savin [12]. For the same reasons as in Remark 1.2, we expect Theorem B to hold without
assumptions (2) and (3′).

To prove Theorem B, we start by proving that θ(σ) is cuspidal. We relate the constant terms of θ(σ) to the

theta lift for a smaller dual reductive pair PU3 ×GL2 ↪→ M̃ , where M̃ is the Levi subgroup of the Heisenberg

parabolic of G̃. At places of F that split in K, this becomes a classical type II dual pair, so the resulting
mini-theta lift is well-understood by work of Mı́nguez [41].

Next, we turn to showing that θ(σ) is nonzero. We prove that generic Fourier coefficients of θ(σ) with respect
to the Heisenberg parabolic of G vanish if and only if certain torus periods of σ vanish. Because σ can be
described as a classical theta lift from U1 to U3, we can use a seesaw argument to express this torus period1

as a classical theta lift between two other 1-dimensional unitary groups. By work of T. Yang [56], the latter
is nonzero if and only if the associated local theta lifts are nonzero and a certain L-value is nonzero. We find
such a torus period by carefully analyzing certain local root numbers, using assumption (1), and appealing
to work of Friedberg–Hoffstein [9]. Altogether, this shows that θ(σ) is nonzero.

Finally, to prove that θ(σ) ∼=
⊗′

v π
ϵv
v , we use local-global compatibility to reduce this to Howe duality results

for local exceptional theta lifts and identifying θ(σϵvv ) ∼= πϵvv for all places v of F . When v is nonarchimedean,
the Howe duality results are due to Gan–Savin [20] and Bakić–Savin [6], and the identification θ(σϵvv ) = πϵvv
holds by construction. When v is archimedean, we use results of Loke–Savin [39] and Huang–Pandžić–Savin
[29], but they do not cover all cases; this is why we need assumption (3′).

By appropriately varying the unitary group PU3 and using Theorem B, we show that the left hand side of
(1.1) contains the right hand side. Our last main result implies the reverse containment, which concludes
the proof of Theorem A.

Theorem C (Proposition 7.10). Assume that

(1) L( 12 , χ) is nonzero.

Then the cuspidal part of Aτ (G) lies in
∑

PU3
θ(σ), where PU3 runs over unitary groups associated with

3-dimensional Hermitian spaces for K/F , and σ runs over irreducible cuspidal representations in the global
Howe–Piatetski-Shapiro A-packet.

1A generalization of this torus period problem, both locally and globally, is studied in work of Borade–Franzel–Girsch–Yao–
Yu–Zelingher [8].
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To prove Theorem C, we study the lift θ(π) to PU3 of irreducible cuspidal subrepresentations π of Aτ (G).
First, we prove that θ(π) is cuspidal by relating its constant terms to the theta lift for the dual reductive
pair S3 ×G ↪→ S3 ⋉ Spin8 considered by Gan–Gurevich–Jiang [15]. By work of Gan [11], the latter yields a
near equivalence class not equal to Aτ (G), and we prove that this implies that θ(π) is cuspidal.

Next, we turn to showing that θ(π) is nonzero for some appropriately chosen PU3. It suffices to show that
certain torus periods of θ(π) are nonzero. We use a seesaw argument to express these torus periods as

an integral of π with θE(1), where θE denotes the theta lift for the dual reductive pair TE × SpinE8 ↪→ G̃
considered by Gan–Savin [19], and 1 denotes the constant functions on TE . Then, we prove a Siegel–Weil

formula for θE(1), which identifies it with the residue of a certain Eisenstein series on SpinE8 . By work of
A. Segal [49], integrating the latter with π yields the residue of a twisted standard L-function for π. We use
assumption (1) to show that this residue is nonzero. Altogether, this shows that θ(π) is nonzero.

Finally, local-global compatibility indicates that every irreducible subrepresentation of θ(π) is nearly equiva-
lent to

⊗′
v σ

+
v . Therefore the description of the discrete automorphic spectrumAdisc(PU3) given by Rogawski

[46, 47] implies that they lie in the global Howe–Piatetski-Shapiro A-packet. From this, we deduce that π
lies in the image of said global A-packet under θ.

Outline. In §2, we introduce ourG×PU3 theta lift. In §3, we gather facts about automorphic representations
of PU3 and compute certain torus periods of them. In §4, we state Arthur’s multiplicity formula for long
root A-packets on G, specialize to the case of Theorem A, and define the relevant local A-packets. In §5, we
prove that the images of Howe–Piatetski-Shapiro representations under θ are cuspidal. In §6, we prove that
they are nonzero, which completes the proof of Theorem B. In §7, we prove Theorem C, and we conclude by
putting everything together to prove Theorem A.

Notation. For an affine algebraic groupG over a number field F , write [G] for the quotient spaceG(F )\G(AF ).
When G is connected reductive, write A(G) for the space of automorphic forms of G as in [15, p. 228]; in
particular, A(G) is actually a representation of G(AF ). By an automorphic representation of G(AF ), we
mean a subrepresentation of A(G). When G is connected semisimple and ? lies in {disc, cusp, res}, write
A?(G) for the automorphic representation of G(AF ) given by the smooth vectors of L2

?([G]).

For nonarchimedean local fields F , we write ϖF for a choice of uniformizer. We normalize class field theory
by sending uniformizers to geometric Frobenii.

Acknowledgments. This work began at the 2022 Arizona Winter School, and we thank the organizers for
coordinating this event and providing a wonderful work environment. We are extremely thankful to Wee
Teck Gan for suggesting this problem, as well as for comments on an earlier draft. We also thank Wee Teck
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number HRZZ-IP-2022-10-4615, the second-named author was partially supported by UK Research and
Innovation grant MR/V021931/1, and the third- and fourth-named authors were partially supported by
NSF Grants #DMS2303195 and #DGE1745303, respectively.

2. The G2 × PU3 theta lifts

In this section, we introduce the main players of our paper: the dual pair G2 × PU3 inside the quasi-split
adjoint form of E6, as well as the associated (exceptional) theta lift. We set up the necessary notation and
recall the basic facts we will need. Nothing in this section is new.

2.1. Freudenthal–Jordan algebras. Let F be a field of characteristic 0, and let (J, ◦) be a Freudenthal
algebra over F in the sense of [34, §37.C]. Write NJ : J → F for the norm form, (−,−,−) : J3 → F for its
associated symmetric trilinear form, and TJ : J → F for the trace form. We use the non-degenerate bilinear
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form (x, y) 7→ TJ(x ◦ y) to identify J ∼= J∗. For any x in J , write x# in J for its adjoint in the sense of [34,
§38].

Let K be a quadratic étale F -algebra.

Example 2.1. Let B be a 9-dimensional central simple algebra over K, and let ι : B → B be an involution
of the second kind for K/F . Then the subspace J ⊆ B of ι-fixed points is naturally a Freudenthal algebra
over F [34, p. 513]. Write G′

J := Aut(J)◦ for the connected automorphism group of J over F .

When B is isomorphic to M3(K), our ι is of the form x 7→ e txe−1 for some invertible Hermitian matrix e
in M3(K). Note that x 7→ xe identifies J with the subspace h3 ⊆ M3(K) of Hermitian matrices, and under
this identification,

• the identity in J is e,
• x ◦ y is given by 1

2 (xe
−1y + ye−1x),

• NJ(x) is given by det
(
xe−1

)
,

• TJ(x) is given by tr
(
xe−1

)
,

• x# equals det
(
e−1

)
e adj(x)e, where adj(x) denotes the adjugate matrix of x.

Moreover, G′
J corresponds to the projective unitary group PU3 over F associated with the Hermitian space

induced by e, where g in PU3 acts on h3 via x 7→ gx tg.

Without changing the Hermitian space induced by e, we may assume that e lies in M3(F ). Then te = e,
and x 7→ x induces automorphisms c of G′

J and J over F such that the full automorphism group Aut(J) of

J over F is given by G′
J ⋊ cZ/2 [34, p. 515].

2.2. A quasi-split adjoint form of E6. Using J , one can construct a Lie algebra g̃J over F as follows. As
an F -vector space, set g̃J := (sl3 ⊕ lJ)⊕ (V ⊗ J)⊕ (V ∗ ⊗ J∗), where V denotes the standard representation
of sl3 over F , and lJ denotes the Lie subalgebra

lJ := {a ∈ End(J) | (ax, y, z) + (x, ay, z) + (x, y, az) = 0 for all x, y, z ∈ J} ⊆ End(J).

For a complete description of the Lie bracket in g̃J , consult [48, p. 138]. Recall from [48, p. 178] that

• When J is 1-dimensional over F (i.e. isomorphic to F ), g̃J = g̃F is split of type G2,
• When J is 3-dimensional over F (i.e. isomorphic to a cubic étale F -algebra E), g̃J = g̃E is the

quasi-split form of D4 with respect to J over F .

Henceforth, assume that J is of the form considered at the end of Example 2.1. Then g̃ := g̃J is the quasi-
split form of E6 with respect to K over F [48, Proposition 7]. In particular, g̃ depends only on K, and its

connected automorphism group G̃ := Aut(g̃)◦ is the quasi-split adjoint form of E6 with respect to K over F .

2.3. Dual pairs in G̃. We will consider the following semisimple subgroups of G̃. The natural action of

Aut(J) on g̃ induces an injective morphism G′
J ↪→ G̃ of groups over F , and the image of the Lie algebra g′J

of G′
J under this map equals {a ∈ lJ | a(e) = 0} ⊆ g̃.

Write g for g̃F , and write G := Aut(g) for its automorphism group over F . By §2.2, G is the connected
split simple group of type G2 over F . Now [19, Proposition 6.2] shows that the inclusion g ⊆ g̃ induces an

injective morphism G ↪→ G̃ of groups over F .

By looking at the Lie algebras, one checks that the images ofG andG′
J in G̃ are mutual connected centralizers.

Since G and G′
J are both adjoint, this yields an injective morphism G×G′

J ↪→ G̃ of groups over F . This is
our main dual pair of interest.

2.4. Root spaces and simple roots. The inclusion sl3 ⊆ g induces an injective morphism SL3 ↪→ G of
groups over F . Write T for the diagonal maximal subtorus of SL3, whose image in G is also a maximal
subtorus. For any root δ of G with respect to T , write nδ (respectively ñδ) for the associated subspace
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of g (respectively g̃). Similarly, write Nδ (respectively Ñδ) for the associated unipotent subgroup of G

(respectively G̃) over F , which we identify with nδ (respectively ñδ) as varieties over F via the exponential

morphism. Because G′
J commutes with G, we see that conjugation by G′

J preserves Ñδ.

These root spaces are computed as follows [19, §6.3]. When δ is a long root, we have nδ = ñδ = ⟨eij⟩, where
1 ≤ i ̸= j ≤ 3 and eij denotes the standard basis vector in sl3. When δ is a short root, then nδ equals either
⟨ei ⊗ e⟩ or ⟨e∗i ⊗ e∗⟩, where 1 ≤ i ≤ 3 and ei denotes the standard basis vector in V . Moreover, ñδ equals
the corresponding ei ⊗ J or e∗i ⊗ J∗. In particular, we identify ñδ with J when δ is a short root, and for any
root δ we identify nδ with F .

We fix simple roots {α, β} of G with respect to T such that nα = ⟨e2 ⊗ e⟩ and nβ = ⟨e12⟩.

2.5. Heisenberg parabolics. We describe the Heisenberg parabolic of G̃ as follows. Write n3 ⊆ sl3 for

the subalgebra of strictly upper-triangular matrices over F . Write P̃ for the parabolic subgroup of G̃ that

admits a Levi factor M̃ with Lie algebra equal to (t⊕ lJ)⊕ (e2 ⊗ J)⊕ (e∗2 ⊗ J∗) and whose unipotent radical

Ñ has Lie algebra ñ equal to

n3 ⊕ (e1 ⊗ J)⊕ (e∗3 ⊗ J∗) = ñβ ⊕ ñα+β ⊕ ñ2α+β ⊕ ñ3α+β ⊕ ñ3α+2β

[19, §6.4]. Note that the center Z of Ñ has Lie algebra z equal to ñ3α+2β , and the quotient Ñ/Z is also

abelian. Hence the exponential morphism Ñ/Z ∼= ñβ ⊕ ñα+β ⊕ ñ2α+β ⊕ ñ3α+β is an isomorphism of groups

over F . We use the Killing form to identify (ñ/z)∗ with X̃ := ñ−β ⊕ ñ−α−β ⊕ ñ−2α−β ⊕ ñ−3α−β .

Under our identifications from §2.4, X̃ corresponds to F × J × J × F . Note that M̃ naturally acts on X̃.
Write Omin for the M̃ -orbit of (0, 0, 0, 1) in X̃, which is a locally closed subvariety of X̃ over F .

Proposition 2.2 ([19, Proposition 8.1]). The orbit Omin equals the locus of (a, x, y, d) in X̃ such that

(a, x, y, d) ̸= 0, x# = ay, y# = dx, and l(x) ◦ l∗(y) = ad for all l in LJ(F ),

where LJ ⊆ GLJ is the subgroup of linear maps that preserve NJ , and l
∗ denotes the dual action.

We similarly describe the Heisenberg parabolic of G as follows. Write P for P̃ ∩ G, which is a parabolic

subgroup of G that admits a Levi factor M := M̃ ∩G. Note that we have a unique isomorphism GL2
∼→M

that sends strictly upper-triangular matrices to Nα, which we use to identify M with GL2. The unipotent

radical N of P equals Ñ ∩G and hence has Lie algebra n equal to

n3 ⊕ (⟨e1 ⊗ e⟩)⊕ (⟨e∗3 ⊗ e∗⟩) = nβ ⊕ nα+β ⊕ n2α+β ⊕ n3α+β ⊕ n3α+2β .

Note that the center of N equals Z. As above, the exponential morphism N/Z ∼= nβ⊕nα+β⊕n2α+β⊕n3α+β
is an isomorphism of groups over F , and the Killing form identifies (n/z)∗ with

X := n−β ⊕ n−α−β ⊕ n−2α−β ⊕ n−3α−β .

Write p : X̃ → X for the map obtained by dualizing n/z ↪→ ñ/z.

Lemma 2.3. Under our identifications in §2.4, p corresponds to the map

id×TJ × TJ × id : F × J × J × F → F × F × F × F.

Proof. When K is split, this is [17, (4.7)]. The general case follows by Galois descent. □

Finally, note that P̃ ∩ (G×G′
J) = P ×G′

J .
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2.6. Other parabolics. Identify gl2 with the subalgebra of sl3 consisting of matrices concentrated in the

upper-left 2 × 2 and lower-right 1 × 1 entries. Write Q̃ for the parabolic subgroup of G̃ that admits a Levi

factor L̃ with Lie algebra equal to gl2 ⊕ lJ and whose unipotent radical Ũ has Lie algebra

(⟨e13, e23⟩)⊕ (⟨e1, e2⟩ ⊗ J)⊕ (e∗3 ⊗ J∗) = ñα ⊕ ñα+β ⊕ ñ2α+β ⊕ ñ3α+β ⊕ ñ3α+2β

[19, §6.5]. Write Q for Q̃∩G, which is a parabolic subgroup of G that admits a Levi factor L := L̃∩G. Note
that the injective morphism of groups GL2 ↪→ SL3 induced by gl2 ⊆ sl3 yields an isomorphism GL2

∼→L.

The unipotent radical U of Q equals Ũ ∩G and hence has Lie algebra

(⟨e13, e23⟩)⊕ (⟨e1, e2⟩ ⊗ e)⊕ (⟨e∗3 ⊗ e∗⟩) = nα ⊕ nα+β ⊕ n2α+β ⊕ n3α+β ⊕ n3α+2β .

Note that Q̃ ∩ (G×G′
J) = Q×G′

J .

Write B for P ∩Q, which is a Borel subgroup of G containing T . Write V for the unipotent radical of B.

2.7. Local theta lifts. In this subsection, assume that F is a local field. Write Ω for the minimal repre-

sentation of G̃(F ) in the sense of [18, Definition 3.6] or [18, Definition 4.6], which is an irreducible smooth

representation of G̃(F ). When F is nonarchimedean and K/F is unramified, note that G̃ and hence Ω is
unramified [18, Corollary 7.4].

Let ψ : F → S1 be a nontrivial unitary character. For any X in X̃, write ψX : Ñ(F ) → S1 for the unitary
character given by ñ 7→ ψ(⟨X, ñ⟩), where ⟨−,−⟩ denotes the Killing form.

Proposition 2.4. Assume that F is nonarchimedean. Then there exists a natural M̃(F )-equivariant injec-
tion ΩZ(F ) ↪→ C∞(Omin(F )) such that

(1) the image of ΩZ(F ) contains C∞
c (Omin(F )),

(2) for all X in Omin(F ), postcomposing with evaluation at X induces the unique nonzero C-linear map
ΩÑ(F ),ψX

→ C up to scaling,

(3) when K/F is unramified, the image of any unramified vector in Ω is supported on Omin(F ) ∩ X̃(O),

(4) for nonzero X in X̃(F )−Omin(F ), we have ΩN(F ),ψX
= 0.

Proof. Note that Omin(F ) ∩ X̃(OF ) =
∞⋃
n=0

ϖn
F · Omin(OF ), so parts (1)–(3) follow from [19, p. 2057-2058],

except for the uniqueness in part (2). Part (4) and the uniqueness in part (2) are [18, Proposition 11.5]. □

We use Ω to define our local theta lift.

Definition 2.5. Let σ be an irreducible smooth representation of G′
J(F ). The maximal σ-isotypic quotient

of Ω|G′
J (F ) can be written as σ ⊗ Θ(σ) for some C-vector space Θ(σ), and since G′

J commutes with G, our

Θ(σ) is naturally a smooth representation of G(F ). Write θ(σ) for the maximal semisimple quotient of Θ(σ).

One can swap the roles of G and G′
J : for any irreducible smooth representation π of G(F ), write Θ(π) and

θ(π) for the analogous smooth representations of G′
J(F ).

2.8. Global theta lifts. In this subsection, assume that F is a number field. For every place v of F , write

Ωv for the minimal representation of G̃(Fv) as in §2.7, and write Ω for the restricted tensor product
⊗′

v Ωv.

There exists a canonical G̃(AF )-equivariant embedding θ : Ω ↪→ Adisc(G) [19, §14.3].

Let ψ : F\AF → S1 be a nontrivial unitary character. For any X in X̃, write ψX : [Ñ/Z] → S1 for the
unitary character given by ñ 7→ ψ(⟨X, ñ⟩).

Proposition 2.6. For any φ in Ω, we have θ(φ)Z = θ(φ)Ñ +
∑

X∈Omin(F )

θ(φ)Ñ,ψX
.

Proof. This follows from applying Proposition 2.4.(4) to any nonarchimedean place of F . □
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Note that φ 7→ θ(φ)Ñ,ψX
(1) yields an element ℓ of HomÑ(AF )(Ω, ψX).

Lemma 2.7. If StabG′
J
X satisfies weak approximation, then (StabG′

J
X)(AF ) acts trivially on ℓ.

Proof. Proposition 2.4.(2) and Proposition 2.4.(4) show that HomÑ(Fv)
(Ωv, ψv,X) is at most 1-dimensional

for every nonarchimedean place v of F , and the action of (Stab
M̃
X)(Fv) on HomÑ(Fv)

(Ωv, ψv,X) factors

through an algebraic character of M̃ over Fv [18, Proposition 11.7.(ii)]. Since G′
J has no nontrivial algebraic

characters, this implies that (StabG′
J
X)(Fv) acts trivially on HomÑ(Fv)

(Ωv, ψv,X).

For any g′ in (StabG′
J
X)(AF ), note that g′ · ℓ equals the linear functional φ 7→ θ(φ)Ñ,ψX

(g′−1). So fixing φ

and varying g′ yields a continuous function ℓφ : (StabG′
J
X)(AF )→C. The above shows that ℓφ is invariant

under (StabG′
J
)(A∞

F ), and we see that ℓφ is also invariant under (StabG′
J
X)(F ). Since StabG′

J
X satisfies

weak approximation, this implies that ℓφ is constant, which yields the desired result. □

We now define global theta lifts. For any φ in Ω and f in Acusp(G
′
J), consider the function

θ(φ, f) : [G] → C given by g 7→
∫
[G′

J ]

θ(φ)(gg′)f(g′) dg′ .

The above integral converges because f is rapidly decreasing and θ(φ) is of moderate growth. Since θ(φ)
and f are automorphic forms, we see that θ(φ, f) is also an automorphic form.

Definition 2.8. Let σ be an irreducible cuspidal automorphic representation of G′
J(AF ). Write θ(σ) for

the space of functions on [G] spanned by θ(φ, f) as φ runs over Ω and f runs over σ. Note that θ(σ) is an
automorphic representation of G(AF ).

One can swap the roles of G and G′
J : for any irreducible cuspidal automorphic representation π of G(AF ),

write θ(π) for the analogous automorphic representation of G′
J(AF ).

We always have the following general compatibility between local and global theta lifts.

Proposition 2.9. Let π be an irreducible smooth quotient of θ(σ). Then for every place v of F , the local
component πv is a quotient of θ(σv) as smooth representations of G(Fv).

Proof. Note that φ⊗f 7→ θ(φ, f) yields a (G×G′
J)(AF )-equivariant surjection Ω⊗σ ↠ θ(σ), where G′

J(AF )
acts diagonally on Ω⊗σ and trivially on θ(σ). The Petersson inner product identifies σ with σ∨, so altogether
we get a (G×G′

J)(AF )-equivariant surjection Ω⊗σ∨ ↠ π. This induces a (G×G′
J)(AF )-equivariant surjection

Ω ↠ σ ⊗ π and hence a nonzero element of

Hom(G×G′
J )(AF )(Ω, σ ⊗ π) =

⊗
v Hom(G×G′

J )(Fv)(Ωv, σv ⊗ πv).

In particular, σv⊗πv is a σv-isotypic quotient of Ωv|G′
J (Fv). Therefore πv is a quotient of Θ(σv), and because

πv is irreducible, this factors through θ(σv), as desired. □

3. Automorphic representations of PU3

In this section, we provide various results on Adisc(PU3) to feed into our exceptional theta lift. While a
complete description of Adisc(PU3) is given by Rogawski [46, 47], he describes Howe–Piatetski-Shapiro A-
packets in terms of endoscopy. To compute certain torus periods of Howe–Piatetski-Shapiro A-packets, we
instead need the description originally suggested by Howe–Piatetski-Shapiro [27, p. 315] in terms of unitary
group theta lifts. When PU3 is quasi-split, this was carried out by Gelbart–Rogawski [23]. In the literature,
we could not find the general case that we need, so we provide a proof here.

Using this description of Howe–Piatetski-Shapiro A-packets, we prove a criterion for certain torus periods of
them to not vanish. For a generalization of this result, see work of Borade–Franzel–Girsch–Yao–Yu–Zelingher
[8].
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3.1. The relation with U3. Let e in Mn(K) be an invertible Hermitian matrix, and write Un for the
unitary group over F associated with the Hermitian space induced by e. Identify the center of Un with the
norm-1 torus R1

K/F Gm via the diagonal morphism, and write PUn for the quotient Un /R
1
K/F Gm.

Lemma 3.1. Assume that n is odd. Then the map Un(F ) → PUn(F ) is surjective.

Proof. When restricted to R1
K/F Gm ⊆ Un, the determinant morphism Un → R1

K/F Gm equals the n-th

power morphism. Since n is odd and H1(F,R1
K/F Gm) ∼= F×/NmK/F (K

×) is 2-torsion, the composition

H1(F,R1
K/F Gm) → H1(F,Un) → H1(F,R1

K/F Gm)

equals the identity, so H1(F,R1
K/F Gm) → H1(F,Un) is injective. From here, the exactness of

Un(F )→PUn(F )→H1(F,R1
K/F Gm) → H1(F,Un)

yields the desired result. □

Henceforth, assume that n is odd. When F is a local field, Lemma 3.1 lets us identify smooth representations
of PUn(F ) with smooth representations of Un(F ) on which the center acts trivially. Similarly, when F is
a number field, Lang’s lemma combined with Lemma 3.1 lets us identify automorphic representations of
PUn(AF ) with automorphic representations of Un(AF ) on which the center acts trivially.

3.2. Subgroups of PU3. Henceforth, assume that n = 3. When the Hermitian space induced by e is
isotropic, we may assume that e is anti-diagonal. Write B′ for the upper-triangular Borel subgroup of U3

over F , and write T ′ for the diagonal maximal subtorus of U3 over F . Identify (RK/F Gm) × (R1
K/F Gm)

with T ′ via the morphism (α, β) 7→ diag(α, β, α−1).

Next, we describe some more maximal subtori of U3 over F . Let E be a cubic étale F -algebra, and write
L for E ⊗ K. Let λ be in E×/NmL/E(L

×), and consider the 1-dimensional Hermitian space Lλ for L/E
induced by λ. By postcomposing the Hermitian pairing with trL/K , we view Lλ as a 3-dimensional Hermitian
space for K/F .

Assume that Lλ is isomorphic to the Hermitian space induced by e. Fix such an isomorphism, which induces
an embedding L ↪→ M3(K) of K-algebras with involution (equivalently, an embedding i : E ↪→ J of F -
algebras). Write TE for the torus coker(R1

K/F Gm→RE/F (R
1
L/E Gm)), and note that any such i : E ↪→ J

induces an injective morphism i : TE ↪→ PU3 of groups over F .

We interpret the above construction in terms of Galois cohomology as follows.

Lemma 3.2. The disjoint union∐
(B,ι)

G′
J(F )\{F -algebra embeddings i : E ↪→ J},

where (B, ι) runs over 9-dimensional central simple algebras over K equipped with an involution of the second
kind for K/F and J = Bι=1, is naturally in bijection with H1(F, TE). Under this identification, the map

E×/NmL/E(L
×) ∼= H1(F,RE/F R1

L/E Gm) → H1(F, TE)

corresponds to the assignment λ 7→ (i : E ↪→ J) described above, and the boundary map

H1(F, TE) → H2(F,R1
K/F Gm) ∼= ker(NmK/F : H2(K,Gm) → H2(F,Gm))

corresponds to the assignment (i : E ↪→ Bι=1) 7→ B.

Proof. Consider the torus

ker(NmK/F : (RL/F Gm)/(RK/F Gm) → (RE/F Gm)/Gm)

over F . The natural inclusion RE/F (R
1
L/E Gm) ⊆ RL/F Gm induces an isomorphism from TE to the above

torus, so [19, Lemma 4.5] shows that H1(F, TE) is naturally in bijection with L-isomorphism classes of rank-2
E-twisted composition algebras with quadratic invariant K. The Springer construction [34, Theorem (38.6)]
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shows that the latter are naturally in bijection with the above disjoint union, as desired. Finally, tracing
through these identifications yields the last sentence. □

3.3. The U1 ×U3 theta lifts. In this subsection, assume that F is a local field or a number field. Write

CF :=

{
F× if F is local,

F×\A×
F if F is a number field.

Let χ : CK →S1 be a conjugate-symplectic unitary character, i.e. χ|CF
equals the character ω : CF →{±1}

associated with K/F . In particular, χ(k) = χ(k)−1 for all k in CK . Let ϵ1 be in F×/NmK/F (K
×), and

write U1 for the unitary group over F associated with the Hermitian space induced by ϵ1. Let δ in K×

satisfy trK/F δ = 0.

Consider the F -algebra

RF :=

{
F if F is local,

AF if F is a number field.

For any irreducible smooth representation ρ of U1(RF ) (cuspidal automorphic when F is a number field),
write θ(ρ) for the theta lift of ρ with respect to

• the symplectic space W over F associated with δ and the Hermitian spaces induced by ϵ1 and e,
• the Weil representation of MpW (RF ) associated with ψ,
• the lifting of (U1 ×U3)(RF ) → SpW (RF ) to MpW (RF ) associated with ψ and (χ, χ3) [36, Theorem
3.1].

For unitary group theta lifts, we have the following strengthening of Proposition 2.9.

Proposition 3.3. Assume that F is a number field, and assume that K is a field. If θ(ρv) is nonzero for every
place v of F such that U3,Fv

is anisotropic, then θ(ρ) is an irreducible discrete automorphic representation
of U3(AF ). Moreover, θ(ρ)v is isomorphic to θ(ρv).

Proof. If we can prove that θ(ρ) is nontrivial discrete, then the desired results would follow [22, Proposition
1.2] from local Howe duality [21, Theorem 1.1(iii)], [28, Theorem 1]. So let us focus on proving that θ(ρ) is
nontrivial discrete.

For quasi-split U3, this is [23, Proposition 3.4.1]. For anisotropic U3, our θ(ρ) is automatically cuspidal,
and we will use the Rallis inner product formula as proved by Yamana [55] to show non-vanishing. More
precisely, by [55, Corollary 10.1(1)], [55, Lemma 10.1(2)], and [55, (9.1)], our θ(ρ) is nonzero if and only if,
for every place v of F , the corresponding local zeta integral at v (as in [55, p. 671]) is nonzero.

When U3,Fv
is quasi-split, we can globalize U3,Fv

and ρv to a quasi-split U3 as in the proof of Proposition
3.5, and applying the above discussion to this globalization shows that the local zeta integral at v is nonzero.
When U3,Fv

is anisotropic, the local zeta integral at v is taken over the compact group S1 × S1. Hence the
local seesaw identity used to prove [55, Lemma 8.6.(1)] also proves its converse, i.e. the non-vanishing of
θ(ρv) implies that the local zeta integral at v is nonzero. This concludes the desired result. □

Remark 3.4. When v is nonarchimedean, U3,Fv
is quasi-split. Hence the assumption in Proposition 3.3 that

θ(ρv) is non-zero only needs to be checked when v is archimedean. In our cases of interest, we give explicit
conditions for this in Proposition 3.9 below.

Write ϵ3 in F×/NmK/F (K
×) for the discriminant of the 3-dimensional Hermitian space induced by e. When

F is local, we identify F×/NmK/F (K
×) with its image under ω.
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3.4. Local A-packets over p-adic fields. In this subsection, assume that F is a nonarchimedean local
field. Then the Hermitian space induced by e is isotropic. Consider the character ϱ′ : T ′(F ) → C× given by

(α, β) 7→ χ(α)χ(β)−1|α|1/2,

and write σ+ for the unique irreducible quotient of the normalized parabolic induction iU3

B′ ϱ′. Since ϱ′ is

trivial on the center of U3(F ), we see that iU3

B′ ϱ′ and hence σ+ is too, so σ+ descends to an irreducible
smooth representation of PU3(F ). Note that σ+ is not tempered.

When K is a field, write ξ : (U2 ×U1)(F )→S1 for the unitary character given by (h2, h1) 7→ χ(h1)
−1, and

write σ− for the irreducible cuspidal representation of U3(F ) defined as πs(ξ) in [46, Proposition 13.13.(d)].

We describe σ± in terms of theta lifts as follows.

Proposition 3.5. The theta lift θ(1) of the trivial representation 1 is isomorphic to σϵ, where ϵ in {±1} is

ϵ1 · ϵ3 · ϵ( 12 , χ
3, ψ(trK/F (δ−))).

Proof. When K is split, then ϵ = +1, and this follows from [41, Théorème 1]. So assume that K is a field.
Using Krasner’s lemma, one can construct a quadratic extension K/F of number fields with a place v of F
such that Kv/Fv is identified with K/F . By the Hasse principle for Hermitian spaces, there exists ϵ1 in
F×/NmK/F(K

×) and an invertible Hermitian matrix e in M3(K) such that the resulting Hermitian spaces
for K/F are isomorphic at v to the ones induced by ϵ1 and e, respectively, and that the Hermitian space
induced by e is isotropic.

Let χ : K×\A×
K →S1 be as in Lemma 3.6 below, let δ in K× satisfy trK/F(δ) = 0, and let ψ : F\AF →S1 be

a nontrivial unitary character. For now, assume that δ is the image of δ in K and that ψ is ψv. Since U1(F )
is compact, the injective homomorphism U1(F ) ↪→ U1(F)\U1(AF) is a closed embedding, so Pontryagin
duality yields a unitary character ρ : U1(F)\U1(AF)→S1 such that ρv is trivial.

Consider the global theta lift θ(ρ) as in §3.3 with respect to our globalization. Its local component θ(ρ)v is
isomorphic to θ(ρv) = θ(1) by Proposition 3.3, but this local component is also isomorphic to σϵ for some ϵ
in {±1} by [23, Theorem 3.4(a)]. Therefore θ(1) ∼= σϵ.

To determine ϵ, note that it is equivalent to determine whether θ(1) is cuspidal. Now θ(1) is cuspidal if and
only if the local theta lift of 1 to the unitary group associated with the 1-dimensional Hermitian space forK/F
induced by ϵ3 is zero [44, (ch.3,IV,4)], and the latter occurs if and only if ϵ1 · ϵ3 · ϵ( 12 , χ

3, ψ(trK/F (δ−))) = −1
[47, Prop. 3.4]. This yields the desired result for this specific δ and ψ.

In general, δ and ψ are F -multiples of ones arising above. Hence the equivariance of the Weil representation
of (U1 ×U3)(F ) and ϵ(

1
2 , χ

3, ψ(trK/F (δ−))) under scaling implies the result for general δ and ψ. □

Lemma 3.6. There exists a conjugate-symplectic unitary character χ : K×\A×
K → S1 satisfying χv = χ.

Proof. Because F×\A×
F ↪→ K×\A×

K is a closed embedding, Pontryagin duality yields a conjugate-symplectic

unitary character ϕ : K×\A×
K → S1. Therefore ϕvχ

−1 is trivial on F× ⊆ K×. Now the homomorphism

K×/F× →K×\A×
K/A

×
F is injective, and since K×/F× is compact, it is a closed embedding. Pontryagin

duality again yields a unitary character γ : K×\A×
K/A

×
F →S1 such that γv equals ϕvχ

−1. Hence χ := ϕγ−1

satisfies the desired properties. □

Corollary 3.7. When K is a field, σ− has trivial central character. Consequently, σ− descends to an
irreducible smooth representation of PU3(F ).

Proof. Choose ϵ1 such that ϵ1 · ϵ3 · ϵ( 12 , χ
3, ψ(trK/F (δ−))) = −1. Then Proposition 3.5 shows that σ− is

isomorphic to θ(1). Our choice of lifting characters (χ, χ3) ensures that θ(−) preserves central characters. □

We also use Proposition 3.5 to compute the following torus periods of σ±.



12 P. BAKIĆ, A. HORAWA, S. D. LI-HUERTA, AND N. SWEETING

Proposition 3.8. Let i : E ↪→ J be a PU3(F )-conjugacy class of F -algebra embeddings, and let ϵ be in
F×/NmK/F (K

×). Suppose that Homi(TE)(F )(σ
ϵ,1) is nonzero. Then under the identifications of Lemma

3.2, i corresponds to the image of

λ = ϵ( 12 , χ ◦NmL/K , ψ(trL/F (δ−))) ∈ E×/NmL/E(L
×)

under the natural map E×/NmL/E(L
×) → H1(F, TE), and ϵ equals the image of

NmE/F (λ) ·∆E/F · [−1] · ϵ( 12 , χ
3, ψ(trK/F (δ−))) ∈ F×/NmK/F (K

×),

where ∆E/F in F×/(F×)2 denotes the discriminant of E/F , and [−] denotes the map F× →F×/NmK/F (K
×).

Moreover, Homi(TE)(F )(σ
ϵ,1) is 1-dimensional for this choice of i and ϵ.

Proof. By Lemma 3.2 and the exactness of

H1(F,R1
K/F Gm)→H1(F,RE/F R1

L/E Gm)→H1(F, TE)→H2(F,R1
K/F Gm),

we see that our PU3(F )-conjugacy class of F -algebra embeddings i : E ↪→ J is induced by some λ in
E×/NmL/E(L

×), and λ is unique up to the image of F×/NmK/F (K
×) in E×/NmL/E(L

×).

Fix such a λ for our i, and choose ϵ1 such that ϵ1 · ϵ3 · ϵ( 12 , χ
3, ψ(trK/F (δ−))) = ϵ. The analogue of [35,

(2.17)] for unitary groups yields a seesaw of dual pairs

RE/F R1
L/E Gm U3

U1 RE/F R1
L/E Gm

in SpW over F , where the top-left corresponds to the 1-dimensional Hermitian space Lϵ1 for L/E induced
by the image of ϵ1 in L×/NmL/E(E

×), the bottom-right corresponds to the 1-dimensional Hermitian space

Lλ for L/E, and the right morphism recovers i : TE ↪→ PU3 after quotienting by R1
K/F Gm.

Consider the lifting of

(RE/F R1
L/E Gm × RE/F R1

L/E Gm)(F ) → SpW (F )

to MpW (F ) associated with ψ◦trE/F and (χ◦NmL/K , χ◦NmL/K) [36, Theorem 3.1], and for any irreducible

smooth representation ϕ of (R1
L/E Gm)(E), write θ(ϕ) for the resulting theta lift. Since NmL/K(k) = k3 for

all k in K×, we see that this lifting is compatible with our aforementioned lifting of (U1 ×U3)(F )→SpW (F )
to MpW (F ). Therefore the above diagram yields the seesaw identity

Hom(R1
L/E

Gm)(E)(θ(ρ), ϕ) = HomU1(F )(θ(ϕ), ρ),

where we can use θ instead of Θ since ρ and ϕ are cuspidal [44, (ch.3,IV,4)].

By specializing the seesaw identity to ρ = 1 and ϕ = 1, Proposition 3.5 yields Hom(R1
L/E

Gm)(E)(σ
ϵ,1) =

HomU1(F )(θ(ϕ),1). Since this is nonzero, θ(ϕ) is nonzero, which implies that λ equals

ϵ1 · ϵ( 12 , χ ◦NmL/K , ψ(trL/F (δ−)))

[47, Prop. 3.4]. Note that the corresponding i also equals the image of ϵ( 12 , χ ◦ NmL/K , ψ(trL/F (δ−))) in

H1(F, TE), as desired.

By choosing an F -basis of E, one shows that the discriminant of Lλ as a 3-dimensional Hermitian space for
K/F equals the image of NmE/F (λ) ·∆E/F · [−1] in F×/NmK/F (K

×). Hence ϵ3 = NmE/F (λ) ·∆E/F · [−1],
so ϵ has the desired form. Finally, our choice of lifting characters (χ ◦ NmL/K , χ ◦ NmL/K) ensures that
θ(ϕ) = ϕ, so HomU1(F )(θ(ϕ),1) is indeed 1-dimensional. □
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3.5. Local A-packets over R and C. In this subsection, assume that F is an archimedean local field.
When the Hermitian space induced by e is isotropic, proceeding as in the start of §3.4 yields an irreducible
smooth representation σ+ of PU3(F ), via the Langlands quotient of ϱ′ : T ′(F )→C× with respect to B′.
Note that σ+ is not tempered.

When K is a field, note that there exists an odd integer N such that χ(z) = (z/
√
zz)N for all z in C×. For

quasi-split U3, write σ
− for the irreducible discrete series representation of U3(F ) defined as πs(ξ) on [46,

p. 178], where ξ : (U2 ×U1)(F )→S1 denotes the unitary character (h2, h1) 7→ χ(h1)
−1, and U2 denotes the

quasi-split unitary group with respect to K over F . Our σ− is a Jordan–Hölder constituent of iU3

B′ ϱ′ [46,
p. 176], so σ− descends to an irreducible discrete series representation of PU3(F ).

For anisotropic U3, write σ
− for the irreducible discrete series representation of U3(F ) with highest weight

(N−1
2 , N−1

2 ,−N+1) when N is positive and (−N−1, N+1
2 , N+1

2 ) when N is negative. Note that σ− descends
to an irreducible discrete series representation of PU3(F ), and recall that σ− is isomorphic to the Fφ defined
on [46, p. 243], where φ is associated with ξ as in [46, p. 177].

We describe σ± in terms of theta lifts as follows.

Proposition 3.9. Write ϵ for ϵ1 · ϵ3 · ϵ( 12 , χ
3, ψ(trK/F (δ−))) in {±1}. If ϵ = +1 and U3 is anisotropic, then

the theta lift θ(1) of the trivial representation 1 is zero. Otherwise, θ(1) is isomorphic to σϵ.

Proof. When K is split, we have ϵ = +1. For F = R the result follows from [42, Proposition III.9], and
for F = C it follows from [1, Proposition 1.4.(1)]. So assume that K is a field. The end of the proof of
Proposition 3.5 shows that it suffices to prove the desired statement for a single choice of δ and ψ, so take
δ = i and ψ(x) = e−2πix. Then ϵ( 12 , χ

3, ψ(trK/F (δ−))) equals the sign of N [13, Proposition 2.1].

For quasi-split U3, the globalization argument from the proof of Proposition 3.5 shows that θ(1) is isomorphic
to σϵ for some ϵ in {±1}. To determine ϵ, note that it is equivalent to determine whether θ(1) is discrete
series. By using [30, Theorem 4.1] to write θ(1) as a cohomological induction and applying the criterion
from [53, p. 58], we see that θ(1) is discrete series if and only if ϵ1 · ϵ3 · ϵ( 12 , χ

3, ψ(trK/F (δ−))) = −1. This
yields the desired result.

For anisotropic U3, the vanishing result follows from [30, Theorem 6.1]. The non-vanishing result follows
from using [30, Theorem 4.1] to explicitly compute the infinitesimal character of θ(1). □

We use Proposition 3.9 to compute the following torus periods of σ±.

Proposition 3.10. Let i : E ↪→ J be a PU3(F )-conjugacy class of F -algebra embeddings, and let ϵ be in
F×/NmK/F (K

×). If U3 is anisotropic, assume that ϵ = −1. Suppose that Homi(TE)(F )(σ
ϵ,1) is nonzero.

Then under the identifications of Lemma 3.2, i corresponds to the image of

λ = ϵ( 12 , χ ◦NmL/K , ψ(trL/F (δ−))) ∈ E×/NmL/E(L
×)

under the natural map E×/NmL/E(L
×) → H1(F, TE), and ϵ equals the image of

NmE/F (λ) ·∆E/F · [−1] · ϵ( 12 , χ
3, ψ(trK/F (δ−))) ∈ F×/NmK/F (K

×).

Moreover, Homi(TE)(F )(σ
ϵ,1) is 1-dimensional for this choice of i and ϵ.

Proof. Use the proof of Proposition 3.8 with the following modifications:

• in the seesaw identity, we can use θ instead of Θ since our unitary group theta lifts are either in the
stable range [38, Theorem A] or only involve anisotropic groups,

• use Proposition 3.9 instead of Proposition 3.5,
• use [30, Theorem 6.1] instead of [47, Prop. 3.4]. □
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3.6. Automorphic representations. In this subsection, assume that F is a number field, and assume that
K is a field. For every place v of F and ϵ in {±1}, write σϵv for the irreducible smooth representation of
PU3(Fv) associated with χv as in §3.4 or §3.5 whenever it is defined.

Note that σ+
v is defined for cofinitely many v. Write Aχ(PU3) ⊆ Adisc(PU3) for the sum of all irreducible

subrepresentations of Adisc(PU3) that are nearly equivalent to (σ+
v )v.

Theorem 3.11.

(1) We have an isomorphism of PU3(AF )-representations

Aχ(PU3) ∼=
⊕
(ϵv)v

⊗
v

′ σϵvv ,

where (ϵv)v runs over sequences in {±1} indexed by places v of F such that
• σϵvv is defined for all v,
• ϵv = +1 for cofinitely many v,
•
∏
v ϵv = ϵ( 12 , χ

3).
(2) Let σ be an irreducible discrete automorphic representation of PU3(AF ), and assume that there exists

a nonarchimedean place v of F such that
• v splits in K (and hence PU3,Fv

∼= PGL3),
• σv is unramified,

• the Satake parameter Sv of σv has an eigenvalue of norm ≥ q
1/2
v .

Then σ lies in Aχ′(PU3) for some conjugate-symplectic unitary character χ′ : K×\A×
K →S1.

(3) Let G′
in be an inner form of PU3 over F , and assume there exists an irreducible discrete automorphic

representation of G′
in(AF ) satisfying the condition in part (2). Then G′

in is associated with a 3-
dimensional Hermitian space for K/F .

(4) Let (ϵv)v be a sequence as in part (1). Then
⊗′

v σ
ϵv
v is not cuspidal if and only if every ϵv equals +1

and L( 12 , χ
3) is nonzero.

Proof. First, we tackle part (1) and part (2). Now Aχ(PU3) contains
⊕

(ϵv)v

⊗′
v σ

ϵv
v for quasi-split PU3

by [47, Theorem 1.1] and for anisotropic PU3 by [47, Theorem 1.2]. Rogawski’s description [46, p. 202]
of Adisc(PU3) shows that this containment is an equality, and combined with [31, Corollary (2.5)], this
description also implies part (2). Finally, part (3) follows from part (2) and [46, Theorem 14.6.3], and part
(4) is [47, p. 396–397]. □

Let i : E ↪→ J be a PU3(F )-conjugacy class of F -algebra embeddings. For any irreducible cuspidal auto-
morphic representation σ of PU3(AF ), consider the C-linear map Pi : σ→C given by

f 7→
∫
[i(TE)]

f(t′) dt′ ,

which converges because f is rapidly decreasing.

Proposition 3.12. Let (ϵv)v be a sequence as in Theorem 3.11.(1), and write σ for
⊗′

v σ
ϵv
v . Assume that σ

is cuspidal and R1
L/E Gm is anisotropic. Then Pi is nonzero if and only if L( 12 , Ind

F
K χ⊗ IndFE 1) is nonzero

and, for every place v of F , our iv and ϵv satisfy the conditions in Proposition 3.8 or Proposition 3.10.

Proof. For every place v of F , choose ϵ1,v to be ϵ3,v · ϵ( 12 , χ
3
v, ψv(trKv/Fv

(δ−))) · ϵv. Our assumptions imply∏
v ϵ1,v = (

∏
v ϵ3,v)ϵ(

1
2 , χ

3)(
∏
v ϵv) = +1 · ϵ( 12 , χ

3)2 = +1,

so the Hasse principle yields an ϵ1 in F×/NmK/F (K
×) whose image in F×

v /NmKv/Fv
(K×

v ) equals ϵ1,v for
all v. Then Proposition 3.3 along with Proposition 3.5 or Proposition 3.9 show that the global theta lift θ(1)
as in §3.3 with respect to ϵ1 equals σ.

Consider the global analogue of the seesaw from the proof of Proposition 3.8, as well as the lifting of

(RE/F R1
L/E Gm × RE/F R1

L/E Gm)(AF ) → SpW (AF )
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to MpW (AF ) associated with ψ ◦ trE/F and (χ ◦NmL/K , χ ◦NmL/K) [36, Theorem 3.1]. For any irreducible

cuspidal automorphic representation ϕ of (R1
L/E Gm)(AE), write θ(ϕ) for the resulting theta lift. Note that

θ(ϕ) converges because we assume R1
L/E Gm is anisotropic.

For the constant functions 1 on [U1] and [R1
L/E Gm] and any φ in the Weil representation, our seesaw yields∫

[i(R1
L/E

Gm)]

θ(φ, 1)(t′) dt′ =

∫
[U1]

θ(φ, 1)(u) du .

Take ρ = 1 and ϕ = 1. By [56, Theorem 0.4], our θ(ϕ) is nonzero if and only if L( 12 , Ind
F
K χ ⊗ IndFE 1) is

nonzero and, for every place v of F , our iv and ϵv satisfy the conditions in Proposition 3.8 or Proposition
3.10. Our choice of lifting characters ensures that θ(ϕ) = ϕ, and this corresponds to the right hand side
of the seesaw identity. Because θ(ρ) = σ, the left hand side of the seesaw identity corresponds to Pi, as
desired. □

For a generalization of Proposition 3.12, see [8, Theorem 5.3].

4. Automorphic representations of G2

We begin this section by stating Arthur’s multiplicity formula [3, Conjecture 8.1] in the setting of global long
root A-parameters τ for G2. Next, we specialize to the case where τ is dihedral, and we state Theorem A.
We then define the relevant local A-packets over p-adic fields, which are defined by applying our exceptional
theta lift to the local A-packets for PU3 considered in §3.4; this amounts to work of Alonso–He–Ray–Roset
[2].

Afterwards, we define the relevant local A-packets over archimedean fields without using theta lifts. We
instead formulate a conjecture for how our exceptional theta lift relates them to the local A-packets for PU3

considered in §3.5. Finally, we give evidence for our conjecture stemming from the Vogan philosophy as well
as stemming from global considerations, and we verify our conjecture in some cases.

4.1. Global long root A-parameters for G2. In this subsection, assume that F is a number field. Recall

from §2.3 that G is the connected split group of type G2 over F . Then LG = Ĝ(C), where Ĝ is a connected
simple group over C that is also of type G2.

Fix a maximal subtorus T̂ of Ĝ over C. Since there exists a unique pair of orthogonal short and long roots

in G2 up to the Weyl action, we obtain a well-defined morphism SL2,short ×SL2,long → Ĝ of groups over C
up to Ĝ(C)-conjugation.

Let τ be an irreducible cuspidal automorphic representation of PGL2(AF ). For all nonarchimedean places v
of F where τv is unramified, write Tv for the Satake parameter of τv, i.e. the image of geometric Frobenius
under the corresponding unramified representation WFv

→SL2(C). Consider the semisimple conjugacy class

in Ĝ(C) given by the image of (Tv,diag(q
−1/2
v , q

1/2
v )) under SL2,short × SL2,long → Ĝ, and write π+

v for the
corresponding irreducible unramified representation of G(Fv).

Note that π+
v is defined for cofinitely many v. Write Aτ (G) ⊆ Adisc(G) for the sum of all irreducible

G(AF )-subrepresentations π of Adisc(G) that are nearly equivalent to (π+
v )v.

In this setting, Arthur’s multiplicity formula [3, Conjecture 8.1] is equivalent to the following statement.

Conjecture 4.1 (Arthur’s multiplicity formula). For every place v, there exists a finite set Π(τv) of irre-
ducible smooth representations of G(Fv) depending only on τv such that

(1) Π(τv) consists of two elements {π+
v , π

−
v } when τv is discrete series and one element {π+

v } otherwise,
(2) For all nonarchimedean places v of F where τv is unramified, π+

v agrees with the irreducible unramified
representation of G(Fv) defined above,
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(3) We have an isomorphism of G(AF )-representations

Aτ (G) ∼=
⊕
(ϵv)v

⊗
v

′ πϵvv ,

where (ϵv)v runs over sequences in {±1} indexed by places v of F such that
• ϵv = +1 when τv is not discrete series,
•
∏
v ϵv = ϵ( 12 , τ, Sym

3).

For a more detailed explanation of why this is equivalent to Arthur’s formulation, consult [2, Section 4.4].

4.2. The dihedral case. In this subsection, assume that F is a number field. Henceforth, assume that τ is
dihedral, i.e. that τ ⊗ ω = τ for the character ω : F×\A×

F →{±1} associated with some quadratic extension

K/F . Then τ equals the automorphic induction of a unitary character χ : K×\A×
K →S1 [25, Théorème 3],

the condition that τ is cuspidal is equivalent to χ not being self-conjugate, and the condition that τ has
trivial central character is equivalent to χ being conjugate-symplectic with respect to K/F . One computes
that ϵ( 12 , τ, Sym

3) = ϵ( 12 , χ) · ϵ(
1
2 , χ

3).

Let v be a place of F . Since τv is the local automorphic induction of χv [25, Théorème 4], we see that τv
is not discrete series if and only if v splits in K or χv is self-conjugate. Because χv is conjugate-symplectic
with respect to Kv/Fv, our χv being self-conjugate is equivalent to χ2

v = 1.

We will prove the following cases of Conjecture 4.1 in the dihedral setting; this is our Theorem A.

Theorem 4.2. For every place v, we define a finite set Π(τv) of irreducible smooth representations of G(Fv)
depending only on τv such that

(1) Π(τv) consists of one element {π+
v } when v splits in K or χ2

v = 1 and two {π+
v , π

−
v } otherwise,

(2) For all nonarchimedean places v of F where τv is unramified, π+
v agrees with the irreducible unramified

representation of G(Fv) defined in §4.1,
(3) Assume that L( 12 , χ) is nonzero, Kv/Fv is unramified at every place v of F above 2, K is totally

real, and χv : R× → S1 satisfies χv(−1) = 1 at every archimedean place v of F . Then we have an
isomorphism of G(AF )-representations

Aτ (G) ∼=
⊕
(ϵv)v

⊗
v

′ πϵvv ,

where (ϵv)v runs over sequences in {±1} indexed by places v of F such that
• ϵv = +1 when v splits in K or χ2

v = 1,
•
∏
v ϵv = ϵ( 12 , χ

3).

Moreover,
⊗′

v π
ϵv
v is not cuspidal if and only if every ϵv equals +1 and L( 12 , χ

3) is nonzero.

Proof outline. We define Π(τv) in §4.3 and §4.4. They depend only on τv by Lemma 4.3, and they satisfy part
(1) by construction. Part (2) follows from Theorem 4.4. Finally, part (3) is proved at the end of §7.4. □

4.3. Local A-packets over p-adic fields. In this subsection, assume that F is a nonarchimedean local
field. Recall from §3.3 that χ : K× →S1 is a unitary character that is conjugate-symplectic, and recall from
Example 2.1 that G′

J is the connected automorphism group of the Freudenthal algebra J over F associated
with (M3(K), ι). Write τ for the automorphic induction of χ as in [26, Definition 3.7], which descends to an
irreducible smooth representation of PGL2(F ) because χ is conjugate-symplectic.

Recall from §3.4 the irreducible smooth representations σ± of G′
J(F ) associated with χ whenever they are

defined, and recall from Definition 2.5 the exceptional theta lift θ(−). Write π+ for θ(σ+). When K is a
field and χ2 ̸= 1, write π− for θ(σ−).

Lemma 4.3. Our π+ depends only on τ . When K is a field and χ2 ̸= 1, the same is true for π−.
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Proof. Let ϵ be in {±1}. Since σϵ depends on χ, a priori πϵ = θ(σϵ) depends on χ. The only character that
also automorphically induces to τ is the conjugate of χ [26, Corollary 5.2], so we must show that replacing
χ by its conjugate leaves πϵ unchanged.

Recall from Example 2.1 that Aut(J) equals G′
J⋊cZ/2. By extending our exceptional theta lift to G×Aut(J),

we see that θ(σ ◦ c) ∼= θ(σ) for all irreducible smooth representations σ of G′
J(F ) [2, Remark 3.2]. Hence it

suffices to show that σϵ ◦ c is isomorphic to the σϵ associated with the conjugate of χ.

Recall from Proposition 3.5 that σϵ equals the unitary group theta lift of ρ = 1 as in §3.3 using

ϵ1 = ϵ · ϵ3 · ϵ( 12 , χ
3, ψ(trK/F (δ−))).

The explicit formula for the lifting of (U1 ×U3)(F ) to MpW (F ) [36, Theorem 3.1] shows that applying −◦ c
to this unitary group theta lift is isomorphic to the unitary group theta lift as in in §3.3 after replacing χ by
its conjugate. Finally, since the conjugate of χ equals χ−1, this leaves ϵ( 12 , χ

3, ψ(trK/F (δ−)))—and hence
ϵ1 —unchanged. Applying Proposition 3.5 again, we conclude that σϵ ◦ c is isomorphic to the σϵ associated
with the conjugate of χ, as desired. □

Recall from §2.6 that Q is a parabolic subgroup of G with Levi subgroup L identified with GL2.

Theorem 4.4. The representation π+ is isomorphic to the unique irreducible quotient of iGQτ . When K is

a field and χ2 ̸= 1, our π− is irreducible and tempered. When K is a field and χ2 = 1, our θ(σ−) is zero.

Proof. When K is split, this is [2, Theorem 4.12]. When K is a field, this is [2, Theorem 4.10]. □

4.4. Local A-packets over R and C. In this subsection, assume that F is an archimedean local field. Recall
from §3.3 that χ : K× →S1 is a unitary character that is conjugate-symplectic. Write τ for the automorphic
induction of χ as in [24, 3.5], which descends to an irreducible smooth representation of PGL2(F ) because χ
is conjugate-symplectic. Write π+ for the unique irreducible quotient of iGQτ , which evidently only depends
on τ .

When K is a field, recall from §3.5 that χ(z) = (z/
√
zz)N for some odd integer N . In particular, χ2 ̸= 1. Use

the standard realization of G2 in {(a, b, c) ∈ R3 | a+ b+ c = 0} with simple roots (1,−1, 0) and (−1, 2,−1),
and write π− for the irreducible discrete series representation of G(F ) with Harish-Chandra parameter

( |N |+1
2 , |N |−1

2 ,−|N |). Since conjugating χ corresponds to negating N , we see that π− only depends on τ .

Recall from §3.5 the irreducible smooth representations σ± of G′
J(F ) associated with χ whenever they are

defined. Recall from §2.7 the minimal representation Ω of G̃(F ), and recall from Definition 2.5 the exceptional
theta lift θ(−).

Conjecture 4.5.

(1) θ(σ+) is isomorphic to π+, and Hom(G×G′
J )(F )(Ω, σ

+ ⊗ π+) is 1-dimensional,

(2) When K is a field and G′
J is anisotropic, θ(σ−) is isomorphic to π−, and Hom(G×G′

J )(F )(Ω, σ
−⊗π−)

is 1-dimensional,
(3) When K is a field and G′

J is quasi-split, θ(σ−) is zero.

Remark 4.6. Assume that K is a field. One motivation for Conjecture 4.5 comes from the Vogan philosophy,
which suggests that one should consider disjoint unions of packets over pure inner forms (Vogan packets).
For example, unitary group theta lifts induce bijections between discrete series Vogan packets when the
groups have the same rank [45, §4].

The pure inner forms of G′
J are PU3,0 and PU2,1, and the pure inner forms of G are G and its unique compact

form Gc. Write σ±
2,1 for the irreducible smooth representations of PU2,1(R) associated with χ as in §3.5,

and write σ−
3,0 for the irreducible smooth representation of PU3,0(R) associated with χ as in §3.5. Write π−

c

for the irreducible finite-dimensional representation of Gc(R) with highest weight ( |N |−3
2 , |N |−3

2 ,−|N | + 3),
where we assume |N | ≥ 3 for simplicity.
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With any inner form G′
in of G′

J and Gin of G, one can associate an inner form G̃in of G̃ along with a dual pair

G′
in × Gin ↪→ G̃in that recovers our main dual pair of interest when Gin = G [16, p. 1]. Using the minimal

representation of G̃in(R), one can similarly form an exceptional theta lift θ(−) between G′
in and Gin.

Since G′
J and G have the same rank, we expect the exceptional theta lifts to induce a bijection between

the Vogan packets {σ+
2,1, σ

−
2,1, σ

−
3,0} and {π+, π−, π−

c }. One always expects σ+
2,1 to correspond to π+. By

combining the K-type decomposition of the minimal representation [16, p. 7–8] with the branching laws in
[40], one can show that θ(π−

c ) = σ−
2,1.

2 Hence we expect θ(σ−
3,0) = π− and θ(σ−

2,1) = 0, which is precisely
Conjecture 4.5. The situation is summarized in Figure 1.

G′
J

PU2,1

PU3,0

σ+
2,1

σ−
2,1

σ−
3,0

G2

G

Gc

π+

π−

π−
c

0

Figure 1. An illustration of the expected bijection between the Vogan packets
{σ+

2,1, σ
−
2,1, σ

−
3,0} and {π+, π−, π−

c }. The dotted blue arrows are the theta correspondence

for PU2,1 ×G and indicate parts (1) and (3) of Conjecture 4.5. The dashed orange arrow is
the theta correspondence for PU2,1 ×Gc; it would follow from Howe duality, since we know
that θ(π−

c ) = σ−
2,1. The green arrow is the theta correspondence for PU3,0 ×G and indicates

part (2) of Conjecture 4.5, which holds by [29, Theorem 5.2].

We can verify Conjecture 4.5 in the following cases.

Proposition 4.7.

(1) When F = R and K = R× R, Conjecture 4.5.(1) holds for χ : R× →S1 satisfying χ(−1) = 1,
(2) Conjecture 4.5.(2) holds.

Proof. In case (1), note that there exists t in R such that χ(x) = |x|it for all x in R. Now σ+ and π+ are
both spherical with infinitesimal character (it+ 1

2 , it−
1
2 ,−2it), so the result follows from [39, p. 6359] and

[37, Theorem 8.1]. In case (2), the result follows from [29, Theorem 5.2]. □

As global evidence for Conjecture 4.5.(3), see Theorem 6.16. There we show that, for any global cuspidal σ
as in Theorem 3.11 with an archimedean place v such that G′

J,Fv
is isomorphic to PU2,1 and σv is isomorphic

to σ−, the global theta lift θ(σ) vanishes.

5. From PU3 to G2: cuspidality

In this section, we prove a criterion for our exceptional theta lift from PU3 to G2 to be cuspidal, in terms
the mini-theta lift arising from the constant term of the minimal representation along the Heisenberg para-
bolic. Using this criterion, we conclude that the exceptional theta lifts of cuspidal Howe–Piatetski-Shapiro
representations remain cuspidal, which is part of Theorem B.

2We omit the details since this is logically unnecessary for our results.
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5.1. Freudenthal–Jordan algebra. We start with some algebraic preliminaries about J .

Lemma 5.1. Let x be in J . The following are equivalent:

(1) the K-rank of x in M3(K) is at most 1, and TJ(x) = 0.
(2) x ◦ x = 0.
(3) x equals cv tv for some c in F and v in K3 such that tve−1v = 0.

In particular, if x is nonzero and satisfies any of (1)–(3), then StabG′
J
x is isomorphic to (R1

K/F Gm)⋉ V ′,

where V ′ equals the unipotent radical of a Borel subgroup of G′
J .

Proof. Note that (3) immediately implies (2), and the formulas in Example 2.1 show that (2) implies (1).
Let us prove that (1) implies (3). This is immediate if x = 0, so suppose that x ̸= 0. Then x has K-rank 1,
so x = v tw for some nonzero v and w in K3. Since x is Hermitian, we have v tw = w tv, which implies that
w = cv for some c in K×. Applying this relation again shows that c lies in F×. Finally,

0 = TJ(x) = tr(cv tve−1) = c tr(v · tve−1) = c tr(tve−1 · v) = c tve−1v,

so tve−1v = 0.

For the last statement, note that v is isotropic for the non-degenerate Hermitian form on K3 induced by e.
Hence the stabilizer of ⟨v⟩ ⊆ ⟨v⟩⊥ yields a Borel subgroup B′ of G′

J , and (3) shows that StabG′
J
x equals the

preimage of R1
K/F Gm ⊆ RK/F Gm under the Levi quotient B′ ↠ RK/F Gm. □

Corollary 5.2. Let x and y in J satisfy the equivalent conditions of Lemma 5.1. Then x ◦ y = 0 if and only
if x and y are K-linearly dependent.

Proof. If either x or y vanishes, this is immediate, so suppose that both are nonzero. Write x = cv tv and
y = dw tw for c and d in F and v and w in K3 as in Lemma 5.1. Then x and y are K-linearly dependent if
and only if v and w are, and we have

x ◦ y = 1
2cd

(
v tve−1w tw + w twe−1v tv

)
.

If v and w are K-linearly dependent, the vanishing of tve−1v implies that the above vanishes.

Conversely, suppose that x ◦ y = 0. Then (x ◦ y)(e−1v) = 0, so the vanishing of tve−1v implies that

0 = (x ◦ y)(e−1v) = v tve−1w twe−1v = v(tve−1w)(twe−1v).

Therefore tve−1w = 0. Now e induces a non-degenerate Hermitian form on K3, and this shows that the
K-subspace generated by v and w is isotropic. Hence v and w must be K-linearly dependent, as desired. □

Recall from Proposition 2.2 the subgroup LJ ⊆ GLJ of linear maps that preserve NJ .

Lemma 5.3. Let x and y in J satisfy xe−1y = ye−1x = 0. Then l(x) ◦ l∗(y) = 0 for all l in LJ(F ).

Proof. Recall from Example 2.1 the automorphism c of J . The group LJ corresponds to(
ker(NmK/F ◦ det : RK/F GL3 →Gm)/(R1

K/F Gm)
)
⋊ cZ/2,

where g in RK/F GL3 acts on J = h3 via x 7→ gx tg [6, p. 6]. Under our identification J ∼= J∗, our c is

self-dual, and the dual of g in RK/F GL3 acts via x 7→ g′x
t
g′, where g′ := ι(g)−1.

We have c(x) ◦ c∗(y) = 1
2 (xe

−1y + ye−1x) = 1
2 (xe

−1y + ye−1x) = 0, so let us turn to g in GL3(K). Then

g(x) ◦ g∗(y) = 1
2

(
gxe−1ye−1g−1 + e tg−1e−1ye−1x tge−1

)
,

which vanishes when xe−1y = ye−1x = 0. □
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5.2. The mini-theta lifts. Recall from §2.5 that P̃ is a parabolic subgroup of G̃ with Levi subgroup M̃ and

unipotent radical Ñ . We identify M̃ with a quasi-split form of (Gm × GL6)/Gm that splits over K, where
Gm ↪→ Gm×GL6 is given by x 7→ (x3, x) [19, §7.2]. Note that the algebraic character (Gm×GL6)/Gm→Gm
given by (x, g) 7→ det(g)/x descends to M̃ [19, §7.2], which we use to view homomorphisms F× →C× as

homomorphisms M̃(F )→C×.

For the rest of this section, assume that F is a number field, and assume that K is a field. Recall from §2.8
the global minimal representation Ω. We now study the mini-theta correspondence arising from the constant

term of Ω along Ñ . For every place v of F , write Ω
M̃,v

for the minimal representation of M̃(Fv) as in [19,

§8.4], and write Ω
M̃

for
⊗′

v ΩM̃,v
. There exists a canonical M̃(AF )-equivariant injection θ : ΩM̃ ↪→ Adisc(M̃).

Proposition 5.4.

(1) For every nonarchimedean place v of F , we have (Ωv)Ñ(Fv)
∼= ωv|−|−2

v ⊕ Ω
M̃,v

|−|−3/2
v as represen-

tations of M̃(Fv).

(2) The composition of θ : Ω→Adisc(G̃) with the constant term map (−)Ñ : A(G̃)→A(M̃) has image

lying in ω|−|−2 ⊕ θ(Ω
M̃
)|−|−3/2

.

Proof. Part (1) is [19, §8.4]. Part (2) follows from part (1) and [33, Lemma 6.2]. □

We write ϕ 7→ θ0(ϕ) for the automorphic realization of Ω
M̃

introduced by Proposition 5.4.(2).

Since G and G′
J are mutual centralizers in G̃, we see that G ∩ M̃ = M and G′

J are mutual centralizers in

M̃ . This is the dual pair for our mini-theta lift. For any ϕ in Ω
M̃

and f in Acusp(G
′
J), consider the function

θ0(ϕ, f) : [M ]→C given by g 7→
∫
[G′

J ]

θ0(ϕ)(gg
′)f(g′) dg′ ,

and note that θ0(ϕ, f) is a well-defined automorphic form of M . For any irreducible cuspidal automorphic
representation σ of G′

J(AF ), write θ0(σ) for the subspace of A(M) spanned by θ0(ϕ, f) as ϕ runs over Ω
M̃

and f runs over σ.

Recall from §2.4 the subgroup Ñα of G̃, and write S̃ for the Siegel parabolic subgroup of M̃ whose unipotent

radical equals Ñα [19, §7.5]. By checking on Lie algebras, we see that S̃ ∩ (G×G′
J) = B ×G′

J , where B is

the Borel subgroup of G from §2.6. For any X in ñ−α(F ), write ψX : [Ñα]→S1 for the unitary character
given by ñ 7→ ψ(⟨X, ñ⟩). Under our identifications from §2.4, ñα× ñ−α corresponds to J ×J , and the Killing
form on ñα × ñ−α corresponds to (x, y) 7→ TJ(x ◦ y).

Lemma 5.5. For any ϕ in Ω
M̃
, we have θ0(ϕ) =

∑
X∈J

rkX≤1

θ0(ϕ)Ñα,ψX
.

Proof. Apply the short exact sequence in [19, §8.8] to any nonarchimedean place of F . □

Corollary 5.6. For any f in Acusp(G
′
J) and ϕ in Ω

M̃
, our θ0(ϕ, f) lies in Acusp(M).
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Proof. We compute the constant term of θ0(f, ϕ) along Nα (the unipotent radical of the Borel of M):

θ0(ϕ, f)Nα
(1) =

∫
[Nα]

∫
[G′

J ]

θ0(ϕ)(ng
′)f(g′)dg′dn

=

∫
[G′

J ]

∫
[Nα]

∑
X∈J

rkX≤1

θ0(ϕ)Ñα,ψX
(ng′)f(g′)dndg′ by Lemma 5.5

=

∫
[G′

J ]

∑
X∈J

rkX≤1
TJ (X)=0

θ0(ϕ)Ñα,ψX
(g′)f(g′)dndg′

since Nα(F ) ⊆ Ñα(F ) corresponds to ⟨e⟩ ⊆ J . Write T0 for the set {X ∈ J | rkX ≤ 1 and TJ(X) = 0}.
Because the Killing form is G′

J -invariant, we can unfold the above integral to obtain∑
X∈G′

J (F )\T0

∫
(StabG′

J
X)(AF )\G′

J (AF )

∫
[StabG′

J
X]

θ0(ϕ)Ñα,ψX
(u′g′)f(u′g′) du′ dg′ .

Write StabG′
J
X ∼= (R1

K/F Gm) ⋉ V ′ as in Lemma 5.1. Since R1
K/F Gm and V ′ satisfy weak approximation,

StabG′
J
X also satisfies weak approximation, so the argument of Lemma 2.7 implies that θ0(ϕ)Ñα,ψX

(u′g′) =

θ0(ϕ)Ñα,ψX
(g′). Therefore our expression becomes∑

X∈G′
J (F )\T0

∫
(StabG′

J
X)(AF )\G′

J (AF )

θ0(ϕ)Ñα,ψX
(g′)

∫
[StabG′

J
X]

f(u′g′) du′ dg′ ,

which vanishes because f is cuspidal. □

For our purposes, we will need the following stronger result. Recall from §2.5 our identification M ∼= GL2.

Proposition 5.7. Let σ be an irreducible cuspidal automorphic representation of G′
J(AF ). Assume that

there are infinitely many nonarchimedean places v of F such that

• v splits in K (and hence G′
J,Fv

∼= PGL3),
• σv is unramified,

• the Satake parameter Sv of σv has an eigenvalue of norm ≥ q
1/2
v .

Then θ0(σ) = 0. In particular, this holds for the cuspidal σ =
⊗′

v σ
ϵv
v considered in Theorem 3.11.(1).

Proof. Corollary 5.6 shows that θ0(σ) is cuspidal and hence semisimple. Therefore it suffices to show that
θ0(σ) has no irreducible subrepresentations π. For such a π, let v be a nonarchimedean place of F where πv
is unramified and the above conditions are satisfied; such a v exists by infinitude. Write Pv for the Satake
parameter of πv. By the argument of Proposition 2.9, our πv is a quotient of θ0(σv).

For the rest of this proof, we work over Fv. Under our identifications, M × G′
J ↪→ M̃ corresponds to the

morphism GL2 ×PGL3 ↪→ (Gm × GL6)/Gm of groups over Fv given by (m, g′) 7→ (detm2 det g′,m ⊗ g′).

Moreover, the construction of Ω
M̃,v

shows that it equals the minimal representation of M̃(Fv) [19, §8.4].
Therefore θ0 equals the theta lift associated with a type II dual pair, so [41, Théorème 1] implies that Sv
equals the image of Pv under the natural morphism SL2 ↪→ SL3 of groups over C.

Now π is an irreducible cuspidal automorphic representation of GL2(AF ), which implies that πv is generic.

Hence the eigenvalues of Pv have norm < q
1/2
v [31, Corollary (2.5)], so the same holds for the eigenvalues of

Sv. But by assumption, this cannot happen. Therefore we see that θ0(σ) = 0. □

5.3. Cuspidality. Recall from Definition 2.8 the exceptional theta lift θ(−). The goal of this subsection is
to prove the following criterion for θ(−) to be cuspidal, which is the main result of this section.

Theorem 5.8. Let σ be an irreducible cuspidal automorphic representation of G′
J(AF ). Then θ(σ) is cuspidal

if and only if θ0(σ) = 0.
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Note that Theorem 5.8 and Proposition 5.7 immediately imply the following, which is part of Theorem B.

Corollary 5.9. Let (ϵv)v be a sequence as in Theorem 3.11.(1), write σ for
⊗′

v σ
ϵv
v , and assume that σ is

cuspidal. Then θ(σ) is cuspidal.

To prove Theorem 5.8, we must compute the constant terms of θ(σ) along the unipotent radicals of the two
parabolic subgroups of G: the Heisenberg parabolic, P =MN , and the three-step parabolic, Q = LU .

5.3.1. Heisenberg parabolic. We begin by computing θ(σ)N .

Proposition 5.10. For any f in Acusp(G
′
J) and φ in Ω, we have

θ(φ, f)N (g) =

∫
[G′

J ]

θ(φ)Ñ (gg′)f(g′) dg′ .

In particular, θ(σ)N equals θ0(σ).

For this, we need to describe certain stabilizers for the G′
J(F )-action on the minimal orbit.

Lemma 5.11. For any X in O0(F ) := Omin(F ) ∩ p−1(0, 0, 0, 0), its stabilizer in G′
J is isomorphic to

(R1
K/F Gm)⋉ V ′, where V ′ equals the unipotent radical of a Borel subgroup of G′

J .

Proof. By Lemma 2.3, X is nonzero and equals (0, x, y, 0) for some x and y in J satisfying TJ(x) = 0 and
TJ(y) = 0. By Proposition 2.2, we have x ◦ y = 0, x# = 0, and y# = 0. The formulas in Example 2.1
then imply that x and y have K-rank at most 1, so Lemma 5.1 and Corollary 5.2 show that x and y are
K-linearly dependent. Applying Lemma 5.1 again yields the desired result. □

Remark 5.12. If G′
J is anisotropic, then Lemma 5.11 shows that O0(F ) is empty.

Proof of Proposition 5.10. By replacing φ with g · φ, it suffices to consider the case g = 1. We compute the
constant term of θ(φ, f) along N :

θ(φ, f)N (1) =

∫
[N ]

∫
[G′

J ]

θ(φ)(ng′)f(g′) dg′ dn

=

∫
[G′

J ]

∫
[N/Z]

θ(φ)Ñ (ng′) +
∑

X∈Omin(F )

θ(φ)Ñ,ψX
(ng′)

 f(g′) dndg′ by Proposition 2.6

=

∫
[G′

J ]

θ(φ)Ñ (g′)f(g′) dg′ +

∫
[G′

J ]

∑
X∈O0(F )

θ(φ)Ñ,ψX
(g′)f(g′) dg′ .

We will show that the rightmost integral vanishes. Because the Killing form is G′
J -invariant, we can unfold

this integral to obtain∑
X∈G′

J (F )\O0(F )

∫
(StabG′

J
X)(AF )\G′

J (AF )

∫
[StabG′

J
X]

θ(φ)Ñ,ψX
(u′g′)f(u′g′) du′ dg′ .

Write StabG′
J
X ∼= (R1

K/F Gm)⋉ V ′ as in Lemma 5.11. Since R1
K/F Gm and V ′ satisfy weak approximation,

StabG′
J
X also satisfies weak approximation, so Lemma 2.7 implies that θ(φ)Ñ,ψX

(u′g′) = θ(φ)Ñ,ψX
(g′).

Therefore our expression becomes∑
X∈G′

J (F )\O0(F )

∫
(StabG′

J
X)(AF )\G′

J (AF )

θ(φ)Ñ,ψX
(g′)

∫
[StabG′

J
X]

f(u′g′) du′ dg′ ,

which vanishes because f is cuspidal. □
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5.3.2. Three-step parabolic. Next, we want to compute θ(σ)U .

Proposition 5.13. For any f in Acusp(G
′
J) and φ in Ω, we have θ(φ, f)U = 0.

To prove Proposition 5.13, we adapt the argument from the split case in [17].

Lemma 5.14. For any t in F×, write

ϕt : J → X̃

for the map of algebraic varieties given by x 7→ (t, x, t−1x#, 0). Then

(1) ϕt restricts to a G′
J -equivariant isomorphism of varieties over F

{x ∈ J | x ◦ x ◦ x = 0} ∼−→ Ot := Omin ∩ p−1(t, 0, 0, 0).

(2) for any x in J satisfying x◦x◦x = 0 and x◦x ̸= 0, consider the Borel subgroup of G′
J associated with

ker(x) ⊆ ker(x ◦ x), and write V ′ for its unipotent radical. Then there exists a surjective morphism
n : V ′ ↠ Nα of groups over F such that

ϕt(u
′ · x) = n(u′) · ϕt(x) for all u′ in V ′.

Moreover, ϕt induces a bijection V ′(F ) · x ∼−→ Nα(F ) · ϕt(x).

Proof. Let x in J satisfy x ◦ x ◦ x = 0. The formulas in Example 2.1 imply that TJ(x) = 0 and NJ(x) = 0,
so Lemma 2.3 shows that x lies in p−1(t, 0, 0, 0). Proposition 2.2 and Lemma 5.3 show that x lies in Omin.

Conversely, Proposition 2.2 implies that any (t, x, y, 0) in Ot satisfies y = t−1x# and hence

0 = x ◦ y = t−1x ◦ x# = t−1NJ(x),

so NJ(x) = 0. Lemma 2.3 shows that TJ(x) = 0 and TJ(x
#) = 0 also, so the characteristic polynomial of x

becomes 0 = x ◦ x ◦ x− TJ(x)x ◦ x+ TJ(x
#)x−NJ(x) = x ◦ x ◦ x. This proves part (1).

For part (2), we first observe that since the groups are split over K, such a morphism n exists over K by
[17, Lemma 6.1]. Therefore it suffices to show that n descends to F . Indeed, for u′ in V ′(K) we have

ϕt(u′ · x) = ϕt(u′ · x) = n(u′) · ϕt(x) = n(u′) · ϕt(x),

so n(u′)n(u′)
−1

acts trivially on ϕt(x). Now [17, (6.12)] implies that StabNα
ϕt(x) is trivial, letting us

conclude that n(u) = n(u). For the last claim, note that H1(F, kern) = 0 since kern ⊆ V ′ is unipotent. □

Recall from §2.6 that V is a maximal unipotent subgroup of G, and that L ∼= GL2.

Proof of Proposition 5.13. View θ(φ, f)U as an element of A(L), and note that Nβ is a maximal unipotent
subgroup of L. Since NβU = V = NαN , we have

(θ(φ, f)U )Nβ
= θ(φ, f)V = (θ(φ, f)N )Nα = θ0(φ, f)Nα

by Proposition 5.10. As Nα is a maximal unipotent subgroup of M , Corollary 5.6 shows that this vanishes,
so θ(φ, f)U lies in Acusp(L).

Note that inclusion induces an isomorphism Nα ×Nβ
∼→V ab. Hence every unitary character ψβ : [Nβ ]→S1

extends uniquely to a unitary character ψV : [V ab]→S1 that is trivial on [Nα]. We claim that, for every
nontrivial such ψβ , we have θ(φ, f)V,ψV

= 0. This would imply that

(θ(φ, f)U )Nβ ,ψβ
= θ(φ, f)V,ψV

= 0,

and as ψβ runs over all nontrivial unitary characters of [Nβ ], the Fourier expansion of θ(φ, f)U would show
that θ(φ, f)U vanishes.



24 P. BAKIĆ, A. HORAWA, S. D. LI-HUERTA, AND N. SWEETING

Let us turn to the claim. Under our identifications in §2.4 and §2.8, the restriction of ψV to [N ] corresponds
to (t, 0, 0, 0) for some t in F×. By replacing φ with g ·φ, it suffices to evaluate θ(φ, f)V,ψV

at g = 1. We get:

θ(φ, f)V,ψV
(1) =

∫
[V ]

∫
[G′

J ]

ψV (v)
−1θ(φ)(vg′)f(g′) dg′ dv

=

∫
[G′

J ]

∫
[V/Z]

ψV (v)
−1

θ(φ)Ñ (vg′) +
∑

X∈Omin(F )

θ(φ)Ñ,ψX
(vg′)

 f(g′) dv dg′ by Proposition 2.6

=

∫
[G′

J ]

∑
X∈Ot(F )

θ(φ)Ñ,ψX
(g′)f(g′) dg′ .

Because the Killing form is G′
J -invariant, we can unfold this integral to obtain∑

X∈G′
J (F )\Ot(F )

∫
(StabG′

J
X)(AF )\G′

J (AF )

∫
[StabG′

J
X]

θ(φ)Ñ,ψX
(v′g′)f(v′g′) dv′ dg′ .

For X that corresponds to x in J under Lemma 5.14.(1) satisfying x ◦ x = 0, Lemma 5.1 and the proof of
Proposition 5.10 imply that the associated integral vanishes. So consider the case where x ◦ x ̸= 0. Note
that StabG′

J
X lies in V ′ as in Lemma 5.14.(2), so StabG′

J
X is unipotent. Therefore StabG′

J
X satisfies weak

approximation, so Lemma 2.7 implies that θ(φ)Ñ,ψX
(v′g′) = θ(φ)Ñ,ψX

(g′). Hence the corresponding term

in the above sum equals∫
(StabG′

J
X)(AF )\G′

J (AF )

θ(φ)Ñ,ψX
(g′)

∫
[StabG′

J
X]

f(v′g′) dv′ dg′ .

Since ψV is trivial on [Nα], Lemma 5.14.(2) and G′
J -invariance of the Killing form imply that θ(φ)Ñ,ψX

(g′)

is [V ′]-invariant. Therefore this term equals∫
V ′(AF )\G′

J (AF )

θ(φ)Ñ,ψX
(g′)

∫
[V ′]

f(v′g′) dv′ dg′ ,

which vanishes because f is cuspidal. □

To conclude, note that Theorem 5.8 follows from Proposition 5.10 and Proposition 5.13.

6. From PU3 to G2: non-vanishing

We begin this section by proving a criterion for the exceptional theta lift of cuspidal Howe–Piatetski-Shapiro
representations σ to not vanish. To do this, we rewrite the generic Fourier coefficients of θ(σ) along the
Heisenberg parabolic in terms of torus periods of σ along the subtori of PU3 considered in §3.2. By using
our local results from §3.4 and §3.5, we obtain the desired criterion.

Next, we spend the rest of this section studying precisely when this criterion is met. Using our global results
from §3.6, this amounts to carefully analyzing certain local root numbers while simultaneously finding certain
nonvanishing L-values. Our study lets us complete the proof of Theorem B.

6.1. Fourier coefficients and torus periods. Recall from §3.2 that E is a cubic étale F -algebra, which
induces a 2-dimensional torus TE over F , and recall that any embedding i : E ↪→ J of F -algebras induces
an injective morphism i : TE ↪→ G′

J over F .

Fix a generator t of E over F . Write f(x) = x3 + bx2 + cx+ d for its normalized characteristic polynomial
over F , and under our identifications in §2.4, also write E for the element (1, b, c, d) of X.

Lemma 6.1. We have a natural G′
J -equivariant isomorphism of varieties over F

{F -algebra embeddings E ↪→ J} ∼→Omin ∩ p−1(E)

given by i 7→ X := (1, i(t), i(t)#, NJ(i(t))). Under this correspondence, StabG′
J
X equals the image of TE

under i : TE ↪→ G′
J .
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Proof. The proof of Lemma 5.3 shows that, for all l in LJ(F ), we have l
∗(i(t)#) = l(i(t))#. Since l preserves

NJ , Proposition 2.2 and Lemma 2.3 imply that our morphism is valued in Omin ∩ p−1(E). Because f is
separable, we see that it is even an isomorphism.

Note that J⊗FK is isomorphic to M3(K) asK-algebras with involution, so i induces a embedding E⊗FK ↪→
M3(K) ofK-algebras with involution. Now StabG′

J
i equals the image in G′

J of the intersection of U3 with the

commutator of E⊗F K in M3(K). By dimension counting, E⊗F K is a maximal commutative K-subalgebra
of M3(K), so it equals its own commutator. Finally, since E⊗F K ↪→ M3(K) commutes with the involution,
we see that StabG′

J
i and hence StabG′

J
X has the desired form. □

For the rest of this subsection, assume that F is a number field, and assume that K is a field.

Proposition 6.2. For any f in Acusp(G
′
J) and φ in Ω, we have

θ(φ, f)N,ψE
(1) =

∑
i

∫
i(TE)(AF )\G′

J (AF )

θ(φ)Ñ,ψX
(g′)

∫
[i(TE)]

f(t′g′) dt′ dg′ ,

where i runs over G′
J(F )-conjugacy clases of F -algebra embeddings E ↪→ J .

Proof. By Proposition 2.6, we have

θ(φ, f)N,ψE
(1) =

∫
[N ]

∫
[G′

J ]

ψE(n)
−1θ(φ)(ng′)f(g′) dg′ dn

=

∫
[G′

J ]

∫
[N/Z]

ψE(n)
−1

θ(φ)Ñ (ng′) +
∑

X∈Omin(F )

θ(φ)Ñ,ψX
(ng′)

 f(g′) dndg′

=

∫
[G′

J ]

∑
X∈Omin(F )∩p−1(E)

θ(φ)Ñ,ψX
(g′)f(g′) dg′

since E = (1, b, c, d) in X is nonzero. Because the Killing form is G′
J -invariant, we can unfold the above

integral to obtain∑
X∈G′

J (F )\(Omin(F )∩p−1(E))

∫
(StabG′

J
X)(AF )\G′

J (AF )

∫
[StabG′

J
X]

θ(φ)Ñ,ψX
(t′g′)f(t′g′) dt′ dg′

=
∑
i

∫
i(TE)(AF )\G′

J (AF )

∫
[i(TE)]

θ(φ)Ñ,ψX
(t′g′)f(t′g′) dt′ dg′ by Lemma 6.1.

Since TE is a 2-dimensional torus, it is F -rational [54, Theorem 2] and hence satisfies weak approximation.
Therefore Lemma 2.7 implies that θ(φ)Ñ,ψX

(t′g′) = θ(φ)Ñ,ψX
(g′), so our expression finally becomes∑

i

∫
i(TE)(AF )\G′

J (AF )

θ(φ)Ñ,ψX
(g′)

∫
[i(TE)]

f(t′g′) dt′ dg′ . □

For any irreducible cuspidal automorphic representation σ of PU3(AF ), recall from §3.6 the C-linear map
Pi : σ→C. Also, since J is not associated with a division algebra, recall that the natural map

G′
J(F )\{F -algebra embeddings E ↪→ J}→

∏′

v
G′
J(Fv)\{Fv-algebra embeddings Ev ↪→ Jv}

is a bijection [19, Lemma 15.5.(2)].

Theorem 6.3. Let (ϵv)v be a sequence as in Theorem 3.11.(1), write σ for
⊗′

v σ
ϵv
v , and assume that σ is

cuspidal. Then θ(σ) is nonzero if and only if there exists a cubic étale F -algebra E such that Pi : σ→C is
nonzero, where i : E ↪→ J is the unique G′

J(F )-conjugacy class of F -algebra embeddings (if it exists) such
that, for every place v of F , our iv and ϵv satisfy the conditions in Proposition 3.8 or Proposition 3.10.
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Proof. For all f in σ and φ in Ω, Proposition 6.2 yields

θ(φ, f)N,ψE
(1) =

∑
i

∫
i(TE)(AF )\G′

J (AF )

θ(φ)Ñ,ψX
(g′)Pi(g′ · f) dg′ ,

where i runs over G′
J(F )-conjugacy classes of F -algebra embeddings E ↪→ J . Note that Pi is an element of

HomG′
J (AF )(σ,1) =

⊗
v HomG′

J (Fv)(σ
ϵv
v ,1),

which Proposition 3.8 or Proposition 3.10 indicate is nonzero if and only if, for every place v of F , our iv
and ϵv satisfy the conditions therein. Therefore our expression becomes

θ(φ, f)N,ψE
(1) =

∫
i(TE)(AF )\G′

J (AF )

θ(φ)Ñ,ψX
(g′)Pi(g′ · f) dg′ .(6.1)

Suppose that no E as in Theorem 6.3 exists. Corollary 5.9 shows that θ(σ) is cuspidal and hence semisimple,
so it suffices to show that θ(σ) has no irreducible subrepresentations π. For such a π, the above discussion
shows that (−)N,ψE

vanishes on π for all cubic étale F -algebras E. By [11, Theorem 3.1], this cannot happen,
so we must have θ(σ) = 0.

Conversely, suppose that some E as in Theorem 6.3 exists. Then there exists f in σ of the form ⊗′
vfv such

that Pi(f) ̸= 0; let S be a finite set of places of F such that, for all v not in S,

• v does not lie above {2, 3,∞},
• the étale Fv-algebras Kv and Ev are unramified,
• X lies in Omin(OFv

),
• σϵvv is unramified, and fv is an unramified vector in σϵvv .

For all v not in S, we claim that the intersection of the G′
J(Fv)-orbit of X with X̃(OFv

) equals the G′
J(OFv

)-

orbit of X. We immediately have G′
J(OFv ) · X ⊆ (G′

J(Fv) · X) ∩ X̃(OFv ). For the reverse inclusion, note
that the orbit G′

J ·X is isomorphic to G′
J/i(TE) over OFv by Lemma 6.1 and flatness.3 We have

(G′
J(Fv) ·X) ∩ X̃(OFv ) ⊆ (G′

J ·X)(Fv) ∩ X̃(OFv ) = (G′
J ·X)(OFv )

since Lemma 6.1 shows that G′
J · X is a closed subscheme of X̃. Finally, Lang’s lemma indicates that

(G′
J ·X)(OFv

) equals (G′
J)(OFv

) ·X, which proves the claim.

Note that φ 7→ θ(φ)Ñ,ψX
(1) lies in HomÑ(AF )(Ω, ψX) =

⊗′
v HomÑ(Fv)

(Ωv, ψv,X). For every nonarchimedean

place v of F , Proposition 2.4 identifies Ωv,Z(Fv) with an M̃(Fv)-subrepresentation of C∞(Omin(Fv)), and
under this identification, evaluation at X spans HomÑ(Fv)

(Ωv, ψv,X) by Proposition 2.4.(2). Therefore the

claim and Proposition 2.4.(3) show that when φ is of the form ⊗′
vφv, where φv is an unramified vector

in Ωv for all v not in S, the function g′ 7→ θ(φ)Ñ,ψX
(g′) is a C×-multiple of the indicator function on∏

v/∈S G
′
J(OFv

) when restricted to G′
J(ASF ). Because fv is unramified for all v not in S, this implies that

(6.1) equals a C×-multiple of ∫
i(TE)(FS)\G′

J (FS)

θ(φ)Ñ,ψX
(g′)Pi(g′ · f) dg′ ,(6.2)

where FS denotes
∏
v∈S Fv.

Next, let ϕ be a Bruhat–Schwartz function on Ñ(FS). If we use ϕ ∗ φ in place of φ, we get

θ(ϕ ∗ φ)Ñ,ψX
(g′) =

∫
[Ñ ]

θ(ϕ ∗ φ)(ñg′)ψ−1
X (ñ) dñ =

∫
[Ñ ]

∫
Ñ(FS)

ϕ(h̃)θ(φ)(ñg′h̃)ψ−1
X (ñ) dh̃dñ .

3This also uses Lemma 6.1 over Fqv , which holds with the same proof and uses the fact that v does not lie above {2, 3}.
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By replacing ñ with ñg′h̃−1g′−1, invariance of the Killing form under Ñ turns this integral into∫
[Ñ ]

∫
Ñ(FS)

ϕ(h̃)θ(φ)(ñg′)ψ−1
X (ñg′h̃−1g′−1) dh̃dñ =

∫
[Ñ ]

θ(φ)(ñg′) dñ ψ−1
X (ñ)

∫
Ñ(FS)

ϕ(h̃)ψg′−1·X(h̃) dh̃

= θ(φ)Ñ,ψX
(g′)ϕ̂Z(−g′−1 ·X),

where ϕZ denotes the Z(FS)-average of ϕ, and (̂−) denotes the Fourier transform on (Ñ/Z)(FS). Hence
using ϕ ∗ φ in place of φ in (6.2) yields∫

i(TE)(FS)\G′
J (FS)

θ(φ)Ñ,ψX
(g′)ϕ̂Z(−g′−1 ·X)Pi(g′ · f) dg′ .

Note that g′ 7→ Pi(g′ · f) is continuous, and it is nonzero at g′ = 1. By Proposition 2.4.(1) and Proposition
2.4.(2), we can choose ⊗v∈Sφv such that g′ 7→ θ(φ)Ñ,ψX

(g′) is a bump function supported on a small

neighborhood of g′ = 1, and we can always choose ϕ such that g′ 7→ ϕ̂Z(−g′−1 ·X) has the same property.
With these choices, we see that the integral is nonzero, so θ(σ) is nonzero, as desired. □

6.2. Some root numbers over p-adic fields. In this subsection, assume that F is a local field, and assume
that K is a field. We will use Theorem 6.3 to compute the (non-)vanishing of our global theta lift, so let us
explicate the associated local conditions in our cases of interest. Let F ′ be a quadratic étale algebra over F ,
and write K ′ for K ⊗ F ′.

Lemma 6.4. When E = F × F ′, the condition on ϵ in Proposition 3.8 or Proposition 3.10 is

ϵ = [−1] · ϵ( 12 , χ
3, ψ(trK/F (δ−))) ·∆F ′/F · ϵ( 12 , χ · ωK′/K , ψ(trK/F (δ−))).

Proof. From the expressions in Proposition 3.8 or Proposition 3.10 for λ and ϵ, we get

(6.3) ϵ = ϵ( 12 , χ, ψ(trK/F (δ−))) · [−1] · ϵ( 12 , χ
3, ψ(trK/F (δ−))) ·∆F ′/F · ϵ( 12 , χ ◦NmK′/K , ψ(trK′/F (δ−))),

where for F ′ not in {F × F,K}, we use the fact that NmF ′/F induces an isomorphism

F ′×/NmK′/F ′(K ′×)
∼→F×/NmK/F (K

×),

so the image of F× in F ′×/NmK′/F ′(K ′×) is trivial.

By using inductivity in degree 0 on the Galois side, we conclude that

ϵ( 12 , χ|K′ − 1, ψ(trK′/F (δ−))) = ϵ( 12 , Ind
K
K′(χ|K′ − 1), ψ(trK/F (δ−)))

= ϵ( 12 , χ+ χ · ωK′/K − 1− ωK′/K , ψ(trK/F (δ−))).

Hence the rightmost factor in (6.3) equals

ϵ( 12 , χ, ψ(trK/F (δ−))) · ϵ( 12 , χ · ωK′/K , ψ(trK/F (δ−))) · ϵ( 12 , ωK′/K , ψ(trK/F (δ−))).

To finish the proof, we just need to check that

(6.4) ϵ( 12 , ωK′/K , ψ(trK/F (δ−))) = 1.

For F ′ in {F ×F,K}, we have ωK′/K = 1, so (6.4) holds. For other F ′, we use the fact that NmK/F induces

an isomorphism K×/NmK′/K(K ′×)
∼→F×/NmF ′/F (F

′×), so the image of F× in K×/NmK′/K(K ′×) is
trivial. Therefore ωK′/K |F× is trivial, so we can use [10, Theorem 3] to deduce (6.4). □

The fact that χ is conjugate-symplectic and the equivariance of ϵ-factors under scaling imply that the
conditions in Lemma 6.4 are independent of δ and ψ. Hence we will choose whatever δ and ψ are convenient
for computations.

We now study which values of ϵ can occur, depending on K and χ. For the rest of this subsection, write
ϵ(χ, ψ) := ϵ( 12 , χ, ψ) to simplify the notation, and assume that F is nonarchimedean. Write c(−) for the
conductor of a character. Let us first collect some general lemmas.

Lemma 6.5. Write D ⊆ OF for the discriminant ideal of F ′/F . Then vF (D) equals c(ωF ′/F ), and it is
also congruent to vF (∆F ′/F ) modulo 2.
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Proof. Because K/F is quadratic, the first statement follows immediately from the conductor-discriminant
formula. The second statement follows from using the OF -basis of OK that computes D as the F -basis of
K that computes ∆K/F . □

Lemma 6.6. Assume that F ′ is a field. Then the image of ∆F ′/F in F×/NmK/F (K
×) ∼= {±1} equals the

image of ∆K/F in F×/NmF ′/F (F
′×) ∼= {±1}.

Proof. The image of ∆F ′/F in F×/NmK/F (K
×) ∼= {±1} equals the Hilbert symbol (∆F ′/F ,∆K/F ), so the

desired result follows from commutativity of the Hilbert symbol. □

Lemma 6.7. Suppose that t := c(ω) is at least 1. Then c(χ) is at least 2t− 1, and if inequality holds, then
c(χ) is even.

Proof. By assumption, there exists x in O×
F such that χ(1 +ϖt−1

F x) = ω(1 +ϖt−1
F x) ̸= 1. Since t ≥ 1, our

K/F is ramified, so this implies that there exists y in O×
K such that χ(1+ϖ2t−2

K y) ̸= 1. Hence c(χ) ≥ 2t−1.

Now assume that c := c(χ) is odd, and write d := c−1
2 . Then there exists z in O×

K such that χ(1+ϖc−1
K z) ̸= 1,

so there exists w in O×
K such that χ(1 +ϖd

Fw) ̸= 1. Checking valuations shows that OK = OF ⊕OFϖK , so
w = a+ bϖK for some a and b in OF . Because w is a unit, we see that a must also be a unit. Moreover,

1 ̸= χ(1 +ϖd
Fw) = χ(1 +ϖd

Fa+ϖd
FϖKb) = χ(1 +ϖd

Fa) = ω(1 +ϖd
Fa)

because 1 +ϖd
Fa is a unit and vK(ϖd

FϖK) = 2d + 1 = c. Therefore a witnesses the fact that c−1
2 = d < t

and consequently c < 2t+ 1. Since c is odd and at least 2t− 1, we must have c = 2t− 1, as desired. □

First, we observe that when K/F and χ are unramified (and hence χ2 = 1), we have ϵ = +1.

Proposition 6.8. Assume that K/F and χ are unramified. Then we have ϵ = +1 in Lemma 6.4.

Proof. Now NmK/F : O×
K →O×

F is surjective, so [−1] is trivial in F×/NmK/F (K
×). Moreover, we may

choose δ and ψ such that ψ(trK/F (δ−)) has conductor 0. Since χ3 is unramified, we get ϵ(χ3, ψ(trK/F (δ−))) =
+1. Next, since K/F and χ are unramified, we see that

ϵ(χ · ωK′/K , ψ(trK/F (δ−))) = χ(ϖK)c(ωK′/K)ϵ(ωK′/K , ψ(trK/F (δ−))) by [52, (3.2.6.3)]

= χ(ϖK)c(ωK′/K) by (6.4)

= (−1)c(ωK′/K) since χ is conjugate-symplectic

= (−1)c(ωF ′/F ) since ωF ′/F ◦NmK/F = ωK′/K .

To complete the proof, observe that

∆F ′/F · (−1)c(ωF ′/F ) = +1

by applying Lemma 6.5 and noting that vF (mod 2) induces an isomorphism F×/NmK/F (K
×)

∼→Z/2. □

Next, when χ2 ̸= 1, we expect ϵ to take any value in {±1} as we vary F ′. We prove this away from 2.

Proposition 6.9. Assume that the residue characteristic of F is not 2, and that χ2 ̸= 1. For any ϵ0 in
{±1}, there exists an F ′ such that ϵ = ϵ0 in Lemma 6.4.

Proof. If the image of ∆K/F in F×/NmK/F (K
×) equals −1, then taking F ′ = F × F and F ′ = K in

Lemma 6.4 yields different values of ϵ, so one of them must equal ϵ0. So assume that the image of ∆K/F in

F×/NmK/F (K
×) = +1. Lemma 6.4 indicates that we must find a field F ′ ̸= K such that

(6.5) ∆F ′/F · ϵ(χ, ψ(trK/F (δ−))) · ϵ(χ · ωK′/K , ψ(trK/F (δ−))) = −1.

Case 1. K/F is unramified. We may choose δ and ψ such that ψ(trK/F (δ−)) has conductor 0. Then, for

any conjugate-symplectic unitary character χ0 : K× →S1, [13, Lemma 3.1] yields

ϵ(χ0, ψ(trK/F (δ−))) = (−1)c(χ0).
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Since ωK′/K |F× is trivial, χ and χ · ωK′/K are conjugate-symplectic, so the left hand side of (6.5) equals

∆F ′/F · (−1)c(χ) · (−1)c(χ·ωK′/K) = (−1)c(ωF ′/F ) · (−1)c(χ) · (−1)c(χ·ωK′/K),

where we applied Lemma 6.5 to F ′/F . Hence it suffices to show that, for ramified F ′/F , we have

c(ωF ′/F ) + c(χ) + c(χ · ωK′/K) ≡ 1 (mod 2).

Because the residue characteristic of F is not 2, we get c(ωF ′/F ) = c(ωK′/K) = 1. When c(χ) ≥ 2, we see
that c(χ · ωK′/K) = c(χ), so we indeed have

c(ωF ′/F ) + c(χ) + c(χ · ωK′/K) = 1 + 2c(χ) ≡ 1 (mod 2).

Since K/F is unramified, χ2 ̸= 1 implies that χ is ramified. Thus it remains to consider c(χ) = 1. Now
ϖF is a uniformizer for OK , and χ(ϖF ) = ω(ϖF ) = −1, so χ2 ̸= 1 implies that χ2|O×

K
̸= 1. Hence

(χ · ωK′/K)2|O×
K

= χ2|O×
K

̸= 1, which shows that (χ · ωK′/K)|O×
K

̸= 1. Because χ and ωK′/K both have

conductor 1, this implies that their product also has conductor 1, so altogether we have

c(ωF ′/F ) + c(χ · ωK′/K) + c(χ) ≡ 1 + 1 + 1 ≡ 1 (mod 2).

This concludes the verification of (6.5) for any ramified F ′/F .

Case 2. K/F is ramified. Because the residue characteristic of F is not 2, our K is obtained from F by
adjoining the square root of a uniformizer, and the different of K/F has valuation 1. Thus we may choose
δ to satisfy vK(δ) = −1, and choosing ψ to have conductor 0 makes ψ(trK/F (δ−)) also have conductor 0.

Take F ′ to be the unramified field extension of F . Then K ′/K is also unramified, so [52, (3.2.6.3)] yields

ϵ(χ · ωK′/K , ψ(trK/F (δ−))) = ωK′/K(ϖK)c(χ)ϵ(χ, ψ(trK/F (δ−))) = (−1)c(χ)ϵ(χ, ψ(trK/F (δ−))).

Therefore the left hand side of (6.5) becomes ∆F ′/F · (−1)c(χ). Because the residue characteristic of F is not
2, we have t := c(ω) = 1. Since F ′/F is unramified, Lemma 6.6 and Lemma 6.5 show that

∆F ′/F = ωF ′/F (∆K/F ) = (−1)t = −1.

By Lemma 6.7, we see that c(χ) is either 1 or even. Thus it remains to show that c(χ) is not 1.

We claim that, if c(χ) = 1, then χ2 = 1, which is not the case for us. Indeed, χ|O×
K

becomes a character of

O×
K/(1 +ϖKOK) = (OK/ϖK)× = (OF /ϖF )

× = O×
F /(1 +ϖFOF ),

and because χ is conjugate-symplectic, we see that χ2|O×
K
= 1. Because the residue characteristic of F is not

2, we may choose ϖF and ϖK such that ϖF = ϖ2
K , so we also get χ(ϖK)2 = χ(ϖF ) = ω(ϖF ) = 1, where

the last equality follows from [ϖF ] = ∆K/F = +1 in F×/NmK/F (K
×). This completes the proof. □

At 2, we prove this for unramified K/F .

Proposition 6.10. Assume that K/F is unramified, the residue characteristic of F is 2, and χ2 ̸= 1. For
any ϵ0 in {±1}, there exists an F ′ such that ϵ = ϵ0 in Lemma 6.4.

Because K/F is unramified and χ is conjugate-symplectic, the χ2 ̸= 1 assumption forces χ to be ramified.
We begin with some lemmas. Write e := vF (2) for the absolute ramification index of F .

Lemma 6.11. If the image of ∆F ′/F in F×/NmK/F (K
×) is −1, then c(ωF ′/F ) = 2e+ 1.

Proof. Our assumption is that vF (∆F ′/F ) modulo 2 is nontrivial, so there exists a uniformizer ϖF of OF

such that F ′ = F [
√
ϖF ]. Checking valuations shows that OF ′ = OF ⊕OF

√
ϖF , so the discriminant ideal of

F ′/F is generated by 4ϖF . Finally, applying Lemma 6.5 to F ′/F yields the desired result. □

Lemma 6.12. Assume that c(χ) is even, and c(χ) is at most 2e.

(1) There exists a quadratic character ω′ : F× →{±1} such that

c(χ · ω′ ◦NmK/F ) < c(χ),
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(2) If χ2 ̸= 1, then there exists a quadratic character ω′ : F× →{±1} such that c(χ · ω′ ◦NmK/F ) is odd
and less than c(χ).

Proof. We start by proving part (1). Note that, for abelian groups A ⊆ B satisfying A ∩ 2B = 0, any
homomorphism A→{±1} extends to a homomorphism B→{±1}. Write a := c(χ), which is even and
satisfies 0 < a ≤ 2e. Let us try to verify these conditions for

A :=
1 +ϖa−1

F OF

1 +ϖa
FOF

and B :=
1 +ϖFOF

1 +ϖa
FOF

.

Let y be in 1 +ϖFOF , and write y = 1 +ϖn
Fu for some positive integer n and u in O×

F . Then

y2 − 1 = 2ϖn
Fu+ϖ2n

F u2 and hence vF (y
2 − 1) ≥ min{e+ n, 2n}.

If vF (y
2 − 1) ≤ a− 1, then vF (y

2 − 1) < 2e, which forces n < e. Consequently vF (y
2 − 1) = 2n is even, and

because a− 1 is odd, we see that y2 cannot lie in 1 +ϖa−1
F OF without lying in 1 +ϖa

FOF . So A ∩ 2B = 0.

Note that OK/ϖFOK = Fq2 , and the restriction

χ|1+ϖa−1
F OK

:
1 +ϖa−1

F OK

1 +ϖa
FOK

∼= Fq2 → S1

must be quadratic. Since K/F is unramified, NmK/F induces a surjective homomorphism

1 +ϖa−1
F OK

1 +ϖa
FOK

↠
1 +ϖa−1

F OF

1 +ϖa
FOF

that is identified with trFq2/Fq
: Fq2 ↠ Fq. Because the residue characteristic is 2, we see that ker(trFq2/Fq

) =

Fq, and since χ is conjugate-symplectic, our χ|1+ϖa−1
F OK

is trivial on ker(trFq2/Fq
). Therefore we obtain a

homomorphism ξ : A→{±1} such that ξ ◦NmK/F = χ|1+ϖa−1
F OK

.

Our earlier discussion yields a homomorphism ξ̃ : B→{±1} extending ξ. Then χ|1+ϖa−1
F OK

· ξ̃ ◦ NmK/F is

trivial, so setting ω′ on F× = ϖZ
F × F×

q × (1 +ϖFOF ) to be trivial on ϖZ
F × F×

q and to be ξ̃ on 1 +ϖFOF

concludes the proof of part (1).

We now turn to part (2). Let ω′ : F× →{±1} be a quadratic character with minimal c(χ ·ω′ ◦NmK/F ). Since

χ is conjugate-symplectic and χ2 ̸= 1, we see that χ2|O×
K
̸= 1, so c(χ ·ω′ ◦NmK/F ) ≥ 1. If c(χ ·ω′ ◦NmK/F )

were even, then applying part (1) to χ · ω′ ◦NmK/F would yield a quadratic character ω′′ : F× →{±1} such
that c(χ · (ω′ω′′) ◦NmK/F ) < c(χ · ω′ ◦NmK/F ). This would violate the minimality of c(χ · ω′ ◦NmK/F ), so
c(χ · ω′ ◦NmK/F ) must be odd. □

Proof of Proposition 6.10. Case 1 in the proof of Proposition 6.9 shows it suffices to find a ramified quadratic
character ω′ : F× →{±1} such that

c(ω′) + c(χ) + c(χ · ω′ ◦NmK/F ) ≡ 1 (mod 2).

We divide our work into four cases, depending on c(χ).

(1) If c(χ) ≥ 2e+ 2, take ω′ = ωF ′/F for F ′/F such that ∆F ′/F in F×/NmK/F (K
×) is −1. Then

c(ω′) + c(χ) + c(χ · ω′ ◦NmK/F ) = (2e+ 1) + c(χ) + c(χ) by Lemma 6.11

≡ 1 (mod 2).

(2) If c(χ) ≤ 2e is odd, take ω′ as in case (1). Then

c(ω′) + c(χ) + c(χ · ω′ ◦NmK/F ) = (2e+ 1) + c(χ) + (2e+ 1) by Lemma 6.11

≡ 1 (mod 2).

(3) If c(χ) ≤ 2e is even, then by Lemma 6.12.(2) there exists an ω′ such that c(χ · ω′ ◦ NmK/F ) is odd
and less than c(χ). Hence we must have c(ω′) = c(ω′ ◦NmK/F ) = c(χ), so

c(ω′) + c(χ) + c(χ · ω′ ◦NmK/F ) = c(χ) + c(χ) + c(χ · ω′ ◦NmK/F ) ≡ 1 (mod 2).



GLOBAL LONG ROOT A-PACKETS FOR G2: THE DIHEDRAL CASE 31

(4) If c(χ) = 2e+ 1, take ω′ as in case (1). We divide our work further into two subcases:
(a) If c(χ · ω′ ◦NmK/F ) is odd, then

c(ω′) + c(χ) + c(χ · ω′ ◦NmK/F ) = (2e+ 1) + (2e+ 1) + c(χ · ω′ ◦NmK/F ) by Lemma 6.11

≡ 1 (mod 2).

(b) If c(χ · ω′ ◦NmK/F ) is even, then it is at most 2e+ 1 and hence at most 2e. Applying Lemma

6.12.(2) to χ · ω′ ◦NmK/F yields a quadratic character ω′′ : F× →{±1} such that c(χ · (ω′ω′′) ◦
NmK/F ) is odd and less than 2e. Therefore

c(ω′ω′′) + c(χ) + c(χ · (ω′ω′′) ◦NmK/F ) = (2e+ 1) + (2e+ 1) + c(χ · (ω′ω′′) ◦NmK/F )

≡ 1 (mod 2).

Hence replacing ω′ with ω′ω′′ yields the desired result.

This concludes the proof of Proposition 6.10. □

Finally, when χ2 = 1, we expect to get ϵ = +1 for some F ′. We prove this under our previous hypotheses.

Proposition 6.13. Assume that χ2 = 1. If the residue characteristic of F is 2, also assume that K/F is
unramified. Then there exists an F ′ such that ϵ = +1 in Lemma 6.4.

Proof. First, assume that [−1] = +1. Taking F ′ = F × F yields ∆F ′/F = 1, so

ϵ = ϵ(χ3, ψ(trK/F (δ−))) · ϵ(χ · ωK′/K , ψ(trK/F (δ−)))

= ϵ(χ, ψ(trK/F (δ−))) · ϵ(χ, ψ(trK/F (δ−))) since ωK′/K = 1 and χ2 = 1

= +1.

Now assume that [−1] = −1. Then K/F is ramified, so our hypothesis ensures the residue characteristic of
F is not 2. Hence we can assume that K = F (

√
ϖF ). We claim that there exist no conjugate-symplectic

quadratic characters χ : K× →{±1}, since such a χ yields

1 = χ2(
√
ϖF ) = χ(ϖF ) = ω(ϖF ) = −1,

where the last equality follows from NmK/F (
√
ϖF ) = −ϖF and [−1] = −1. □

Remark 6.14. We expect Proposition 6.10 and Proposition 6.13 to hold even without the assumption that
K/F is unramified when the residue characteristic of F is 2.

6.3. Some root numbers over R. In this subsection, assume that F = R, and assume that K = C.

Proposition 6.15. Let ϵ be in F×/NmK/F (K
×). Then there exists a cubic étale F -algebra E and a G′

J(F )-
conjugacy class of F -algebra embeddings i : E ↪→ J such that i and ϵ satisfy the conditions in Proposition
3.10 if and only if one of the following holds:

• G′
J is quasi-split and ϵ = +1,

• G′
J is anisotropic and ϵ = −1.

Proof. Recall from §3.5 that χv(z) = (z/
√
zz)N for some odd integer N . Note that the conditions in

Proposition 3.10 are independent of δ and ψ, so take δ = i and ψ(x) = e−2πix. Then ϵ( 12 , χ, ψ(trK/F (δ−)))

and ϵ( 12 , χ
3, ψ(trK/F (δ−))) equal the sign of N [13, Proposition 2.1].

There are only two cubic étale F -algebras. Both are isomorphic to F ×F ′ for some quadratic étale F -algebra
F ′, so Lemma 6.4 shows that the conditions in Proposition 3.10 force ϵ = −1 ·∆F ′/F . When F ′ = C, the
3-dimensional Hermitian space induced by λ is isotropic and ∆F ′/F = −1, so G′

J is quasi-split and ϵ = +1.

When F ′ = R2, all entries of λ in E×/NmL/E(L
×) ∼= {±1}3 are equal to the sign of N , and ∆F ′/F = +1.

Therefore G′
J is anisotropic and ϵ = −1. □
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6.4. Global (non-)vanishing. In this subsection, assume that F is a number field, and assume that K is
a field. The following concludes the proof of Theorem B and is the main result of this section.

Theorem 6.16. Let (ϵv)v be a sequence as in Theorem 3.11.(1), write σ for
⊗′

v σ
ϵv
v , and assume that σ is

cuspidal. Consider the following condition:

for all places v of F , if χ2
v = 1, then ϵv = +1, and

when v is archimedean, G′
J,Fv

is anisotropic if and only if ϵv = −1.
(6.6)

If (6.6) is not satisfied, then θ(σ) is zero. If (6.6) is satisfied and we also have

(1) L( 12 , χ) is nonzero,
(2) for all places v of F above 2, the étale Fv-algebra Kv is unramified,

then θ(σ) is nonzero. Moreover, if Conjecture 4.5 holds at all archimedean places of F , then θ(σ) is isomor-
phic to

⊗′
v π

ϵv
v , where πϵvv is the irreducible smooth representation of G(Fv) as in §4.3 or §4.4.

In particular, Proposition 4.7 shows that this holds unconditionally when

(3) for all archimedean places v of F , either G′
J,Fv

is anisotropic, or Kv = R × R and χv : R× → S1

satisfies χv(−1) = 1.

Proof. Corollary 5.9 shows that θ(σ) is cuspidal and hence semisimple. If (6.6) is not satisfied, then one of
the following holds:

• there exists an archimedean place v of F such that G′
J is quasi-split and ϵv = −1. Then Proposition

6.15 and Theorem 6.3 imply that θ(σ) is zero.
• there exists a nonarchimedean place v of F such that χ2

v = 1 and ϵv = −1. Then Theorem 4.4 and
Proposition 2.9 imply that θ(σ) has no irreducible subrepresentations, so θ(σ) is zero.

Conversely, suppose that (6.6), (1), and (2) are satisfied. Let S be a finite set of places of F such that, for
all v not in S,

• v is nonarchimedean,
• the étale Fv-algebra Kv is unramified,
• χv is unramified.

Let v in S be not split in K. We claim that there exists a quadratic étale Fv-algebra F
′
v and a G′

J(Fv)-
conjugacy class of Fv-algebra embeddings iv : Fv × F ′

v ↪→ Jv such that iv and ϵv satisfy the conditions in
Proposition 3.8 or Proposition 3.10:

• when v does not lie above {2,∞} and χ2
v ̸= 1, this is Proposition 6.9.

• when v lies above 2 and χ2
v ̸= 1, this follows from (2) and Proposition 6.10.

• when v is nonarchimedean and χ2
v = 1, this follows from (6.6), (2), and Proposition 6.13.

• when v is archimedean, this follows from (6.6) and Proposition 6.15.

Using Krasner’s lemma, one can construct a quadratic étale F -algebra F ′ such that, for all v in S that does
not split in K, the completion of F at v is isomorphic to F ′

v over Fv. Take E = F × F ′, and write K ′ for
K⊗F ′. For all v not in S that do not split in K, (6.6) and Proposition 6.8 show that any G′

J(Fv)-conjugacy
class of Fv-algebra embeddings iv : Fv × F ′

v ↪→ Jv satisfies the conditions in Proposition 3.8 with ϵv. Note
that these conditions are automatic for all places v of F that split in K.

Recall from §4.2 that τ is the irreducible cuspidal automorphic representation of PGL2(AF ) obtained from χ
by automorphic induction. For every place v of F , applying the projection formula on the Galois side yields
τv ⊗ ωF ′

v/Fv
= IndFv

Kv
(χv · ωK′

v/Kv
), and inductivity in degree 0 gives

ϵ( 12 , τv ⊗ ωF ′
v/Fv

− 1− ωv, ψv) = ϵ( 12 , Ind
Fv

Kv
(χv · ωK′

v/Kv
− 1), ψv) = ϵ( 12 , χv · ωK′

v/Kv
− 1, ψv ◦ trKv/Fv

).
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Taking the product over all v yields ϵ( 12 , τ ⊗ ωF ′/F )ϵ(
1
2 , ω) = ϵ( 12 , χ · ωK′/K). Now taking the product of

Lemma 6.4 over all v shows that ϵ( 12 , χ
3) =

∏
v ϵv = ϵ( 12 , χ

3)ϵ( 12 , χ · ωK′/K), so ϵ( 12 , χ · ωK′/K) = 1. Finally,

(6.4) implies that ϵ( 12 , ω) = 1, so altogether we get ϵ( 12 , τ ⊗ ωF ′/F ) = 1. Therefore [9, Theorem B, part (1)]

lets us assume, after replacing F ′, that F ′ ̸= K and L( 12 , τ ⊗ ωF ′/F ) ̸= 0. Hence R1
L/E Gm is anisotropic,

and (1) implies that

L( 12 , Ind
F
K χ⊗ IndFE 1) = L( 12 , τ)

2L( 12 , τ ⊗ ωF ′/F ) = L( 12 , χ)
2L( 12 , τ ⊗ ωF ′/F ) ̸= 0.

Applying Theorem 6.3 and Proposition 3.12 indicates that θ(σ) is nonzero, as desired.

For any irreducible subrepresentation π of θ(σ), Proposition 2.9 indicates that πv is a quotient of θ(σϵvv ).
Using (6.6), Theorem 4.4 or Conjecture 4.5 imply that θ(σϵvv ) is the irreducible representation πϵvv , so it
remains to see that π appears in θ(σ) with multiplicity one. The proof of Proposition 2.9 shows that the
multiplicity space of π in θ(σ) equals

Hom(G×G′
J )(AF )(Ω, σ ⊗ π) =

⊗
v Hom(G×G′

J )(Fv)(Ωv, σ
ϵv
v ⊗ πϵvv ).

By [6, Theorem 4.1 (ii)] or [20, Theorem 1.2(ii)] for nonarchimedean v and Conjecture 4.5 for archimedean v,
each factor in the right hand side is 1-dimensional. Thus π indeed appears in θ(σ) with multiplicity one. □

7. From G2 to PU3

Our goal in this section is to prove Theorem C, which concludes the proof of Theorem A. We start by
recalling the dual pair considered by Gan–Savin [19], which lies in a seesaw with our G2 × PU3 dual pair.
(Strictly speaking, we replace PU3 with a disconnected group whose neutral component is PU3.) Using this
seesaw, we prove a condition for our exceptional theta lift from G2 to PU3 to not vanish.

We then prove a criterion for our exceptional theta lift from G2 to PU3 to be cuspidal, in terms of the theta
lift considered by Gan–Gurevich–Jiang [15]. Using results of Gan [11], we deduce that the exceptional theta
lifts of our dihedral global long root A-packets are nonzero and cuspidal. We use this to prove Theorem C,
and we conclude by putting everything together to prove Theorem A.

7.1. Twisted composition algebras. In §6, we proved that certain theta lifts from G′
J to G were nonzero

by using the non-vanishing of periods along some subgroup i : TE ↪→ G′
J . In this section, we will reverse this

strategy and prove that certain theta lifts from G to G′
J are nonzero by showing that their periods along

some subgroup i : TE ↪→ G′
J is non-vanishing.

For any rank-2 E-twisted composition algebra C in the sense of [34, §36], write HC := Aut(C) for its
automorphism group over F . Recall that the Springer construction [34, Theorem (38.6)] yields a bijection∐

J

Aut(J)\{F -algebra embeddings i : E ↪→ J} ∼→{rank-2 E-twisted composition algebras C},

where J runs over 9-dimensional Freudenthal–Jordan algebras over F . We have a canonical injective mor-
phism HC ↪→ Aut(J) of groups over F , and this morphism induces an isomorphism on component groups.
Under the above correspondence, the neutral component H◦

C is identified with TE by the proof of Lemma
3.2, and HC ↪→ Aut(J) recovers i : TE ↪→ G′

J after restricting to H◦
C = TE .

Recall from §2.2 the Lie algebra g̃E , which is the quasi-split form of D4 with respect to E over F . Write GE
for the associated simply connected group over F . Now [19, Proposition 6.2] shows that the inclusion g̃E ⊆ g̃
induces an injective morphism GE ↪→ Aut(g̃) of groups over F , and we see that the images of HC and GE
in Aut(g̃) commute. This yields a morphism HC × GE → Aut(g̃) of groups over F , which is an important
dual pair in this section.

Since g ⊆ g̃E and hence G ↪→ GE , we have a seesaw of dual pairs in Aut(g̃)
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GE Aut(J)

G HC .

7.2. Non-vanishing. For the rest of this section, assume that F is a number field, and assume that K is a
field. We write θJ(−) for the exceptional theta lift from Definition 2.8, to emphasize its dependence on the
J from the end of Example 2.1.

Recall from §4.2 that τ is the irreducible cuspidal automorphic representation of PGL2(AF ) obtained from
χ by automorphic induction, and recall from §4.1 the G(AF )-subrepresentation Aτ (G) of Adisc(G).

Theorem 7.1. Suppose that L( 12 , χ) ̸= 0. Let π be an irreducible subrepresentation of Aτ (G), and assume
that π is cuspidal. Then there exists a J of the form considered at the end of Example 2.1 such that θJ(π) ̸= 0.

By extending Ω to a representation of Aut(J)G̃(AF ) [19, §14.3], one can form a theta lift θC(−) from HC

to GE [19, §14.4], where we use the fact that K is a field to see that [HC ] has finite measure. For any f in
Acusp(G), the constant function 1 on [HC ], and φ in Ω, the seesaw from §7.1 yields an identity∫

[HC ]

θJ(φ, f)(h
′) dh′ =

∫
[G]

θC(φ, 1)(g)f(g) dg ,(7.1)

where θJ(−) denotes the extension of our exceptional theta lift to G × Aut(J). In other words, roughly
speaking, the period of θJ(π) along i : TE ↪→ G′

J is controlled by the Petersson inner product with θC(1).

This motivates us to prove the following analogue of the Siegel–Weil formula. Write PE for the Heisenberg
parabolic of GE , and write ME for its Levi quotient. Note that ME is isomorphic to

ker
(
det : RE/F GL2 →(RE/F Gm)/Gm

)
,

so it has an algebraic character det : ME→Gm, which we use to view homomorphisms A×
F →C× as homo-

morphisms ME(AF )→C×.

Write IPE
(s, ω) for the induced representation Ind

GE(AF )
PE(AF ) (ω|−|s+

5
2 ). For any standard section h of IPE

(s, ω),

write E(s, h) for the associated normalized Eisenstein series as in [49, p. 2026]. Now E(s, h) has a simple pole
at s = 1

2 [50, Theorem 4.1], so we obtain a residue map R : IPE
( 12 , ω)→A(GE) given by h 7→ ress= 1

2
E(s, h).

Proposition 7.2. For any h in IPE
( 12 , ω), there exists finitely many rank-2 E-twisted composition algebras

Cj and φj in Ω such that ress= 1
2
E(s, h) =

∑
j θCj

(φj , 1).

Proof. The image of R is semisimple by [51, Theorem 5.4.(4)] or [51, Theorem 6.6.(2)], so R factors through
the maximal semisimple quotient of IPE

( 12 , ω). For every place v of F , the maximal semisimple quotient

of Ind
GE(Fv)
PE(Fv)

(ωv|−|
1
2+

5
2

v ) is isomorphic to
⊕

Cv
θCv

(1), where Cv runs over rank-2 Ev-twisted composition

algebras satisfying KJv = Kv: for nonarchimedean v this is [19, Corollary 12.11], and for archimedean
v this follows from [51, Proposition A.1] and [19, §13.2]. Therefore the maximal semisimple quotient of

IPE
( 12 , ω) =

⊗′
v Ind

GE(Fv)
PE(Fv)

(ωv|−|
1
2+

5
2

v ) is isomorphic to⊕
(Cv)v

⊗
v

′ θCv (1),

where (Cv)v runs over sequences of rank-2 Ev-twisted composition algebras such that Cv is trivial for
cofinitely many v. Every such (Cv)v arises from a rank-2 E-twisted composition algebra C [19, Lemma
15.5.(2)], so

⊗′
v θCv (1) is isomorphic to θC(1) as GE(AF )-representations. Finally, [19, Theorem 16.8]

indicates that θC(1) is an irreducible GE(AF )-subrepresentation of Adisc(GE) that appears with multiplicity
1, so we obtain the desired result. □

Remark 7.3. One can use results of Segal [51] to determine which rank-2 E-twisted composition algebras Cj
yield nonzero terms in Proposition 7.2. However, since this is logically unnecessary for our results, we do
not pursue this here.
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Recall from §4.1 that Ĝ is the connected split semisimple group of type G2 over C, and write Std for the

7-dimensional irreducible algebraic representation of Ĝ.

Proposition 7.4. Let π =
⊗′

v πv be an irreducible cuspidal automorphic representation of G(AF ), and
assume that πN,ψE

̸= 0. Let S be a finite set of places of F such that, for all v not in S,

• v is nonarchimedean,
• the étale Fv-algebras Kv and Ev are unramified,
• πv is unramified.

For all v not in S, let fv be an unramified vector in πv. Then there exist fS in
⊗

v∈S πv, finitely many
rank-2 E-twisted composition algebras Cj, and φj in Ω such that, for f = fS ⊗

⊗
v/∈S fv, we have

ress=1 L
S(s, π, ω,Std) =

∑
j

∫
[G]

θCj
(φj , 1)(g)f(g) dg ,

where LS(s, π, ω,Std) denotes the partial L-function of π with respect to Std, twisted by ω.

Proof. By [49, Theorem 3.1], there exist fS in
⊗

v∈S πv and a standard section h of IPE
(s, ω) such that

LS(s+ 1
2 , π, χ, Std)ξ(s) =

∫
[G]

E(s, h)(g)f(g) dg ,

where ξ(s) is holomorphic in a neighborhood of s = 1
2 and satisfies ξ( 12 ) = 1. After taking residues at s = 1

2 ,
Proposition 7.2 enables us to conclude that

ress=1 L
S(s, π, ω,Std) =

∫
[G]

(
ress= 1

2
E(s, h)(g)

)
f(g) dg =

∑
j

∫
[G]

θCj (φj , 1)(g)f(g) dg . □

Proof of Theorem 7.1. By [11, Theorem 3.1], there exists a cubic étale F -algebra E such that πN,ψE
̸= 0.

Let S be a finite set of places of F satisfying the conditions in Proposition 7.4 such that, for all v not in S,
we also have πv ∼= π+

v . This implies that, for all v not in S, the local L-factor Lv(s, πv, ωv,Std) equals

Lv(s+
1
2 , τv) · Lv(s−

1
2 , τv) · Lv(s, τv, ωv,Sym

2),

as τv ⊗ ωv ∼= τv because τv is dihedral. Writing ρ for the automorphic induction of χ2, we get

Lv(s, τv,Sym
2) = Lv(s, ωv) · Lv(s, ρv) and hence Lv(s, τv, ωv,Sym

2) = Lv(s,1) · Lv(s, ρv),

as ρv ⊗ ωv ∼= ρv because ρv is dihedral. Altogether, taking the product over all v not in S yields

LS(s, π, ω,Std) = LS(s+ 1
2 , τ) · L

S(s− 1
2 , τ) · ζ

S
F (s) · LS(s, ρ)

= LS(s+ 1
2 , χ) · L

S(s− 1
2 , χ) · ζ

S
F (s) · LS(s, χ2).

Because LS( 12 , χ) ̸= 0 and χ2 ̸= 1, this has a simple pole at s = 1. Combined with Proposition 7.4, we see
that there exist f in π, finitely many rank-2 E-twisted composition algebras Cj , and φj in Ω such that∑

j

∫
[G]

θCj
(φj , 1)(g)f(g) dg

is nonzero. In particular, one of the terms
∫
[G]
θCj

(φj , 1)(g)f(g) dg is nonzero, so (7.1) shows that the

corresponding
∫
[HCj

]
θJ(φj , f)(h

′) dh′ is nonzero, where J denotes the 9-dimensional Freudenthal–Jordan

algebra over F corresponding to Cj . In particular, the extension of θJ(π) to Aut(J) is nonzero, so our
original θJ(π) on G

′
J is also nonzero.

We want to show that J is of the form considered at the end of Example 2.1. For the sake of contradiction,
assume that it is not; then J must equal Bι=1 for some 9-dimensional central division algebra B over K
with an involution of the second kind ι : B → B for K/F . The resulting G′

J is anisotropic, so θJ(π) is
automatically cuspidal and hence semisimple.
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Let σ be an irreducible subrepresentation of θJ(π). For every place v of F , Proposition 2.9 shows that σv is
a quotient of θJ(πv). When v does not lie in S, [6, Theorem 4.1 (ii)] or [20, Theorem 1.2(ii)] indicate that
θJ(πv) ∼= θJ(π

+
v ) is isomorphic to the σ+

v associated with χv from §3.4 when χ2
v = 1, and it is isomorphic to

the sum of the σ+
v associated with χv and χ−1

v when χ2
v ̸= 1. Therefore σ satisfies the condition in Theorem

3.11.(2), so Theorem 3.11.(3) indicates that G′
J is associated with a 3-dimensional Hermitian space for K/F .

Hence B must be M3(K), contradicting our assumption that B is a division algebra. □

7.3. Cuspidality. The goal of this subsection is to prove the following criterion for θJ(−) to be cuspidal.

Theorem 7.5. Let π be an irreducible cuspidal automorphic representation of G(AF ). If π is not in the
near equivalence class from [11, Main Theorem (ii)], then θJ(π) is cuspidal. In particular, this holds when π
is a subrepresentation of Aτ (G).

This is automatic for anisotropic G′
J , so assume that G′

J is quasi-split. Recall from §3.2 that B′ is a Borel
subgroup of G′

J containing the maximal subtorus T ′, write V ′ for the unipotent radical of B′, and write
Z ′ for the center of V ′. Write J↑ ⊆ J for the subspace of matrices concentrated above the anti-diagonal,
J↔ ⊆ J for the anti-diagonal matrices, and J↓ ⊆ J for the matrices concentrated below the anti-diagonal.
Recall that lJ corresponds to RK/F sl3, where a in RK/F sl3 acts on J = h3 via x 7→ ax+ x ta [6, p. 6], and
write s ⊆ sl3 for the subalgebra of diagonal matrices.

Write B̃′ for the parabolic subgroup of G̃ that admits a Levi factor T̃ ′ with Lie algebra equal to

(sl3 ⊕ RK/F s)⊕ (V ⊗ J↔)⊕ (V ∗ ⊗ J∗
↔)

and whose unipotent radical Ṽ ′ has Lie algebra ṽ′ equal to (RK/F n3)⊕ (V ⊗ J↑)⊕ (V ∗ ⊗ J∗
↓ ). By checking

on Lie algebras, we see that B̃′ ∩ (G×G′
J) = G×B′. Note that the center Z̃ ′ of Ṽ ′ has abelian Lie algebra

z̃′, and the quotient Ṽ ′/Z̃ ′ is also abelian [6, p. 11]. Hence the exponential morphism Ṽ ′/Z̃ ′ ∼= ṽ′/̃z′ is an

isomorphism of groups over F . Finally, note that Ṽ ′ ∩G′
J = V ′ and Z̃ ′ ∩G′

J = Z ′.

Write ṽ′op for the nilradical of the opposite parabolic of b̃′, and write z̃′op for the center of ṽ′op. We use the

Killing form to identify z̃′∗ with z̃′op and (ṽ′/̃z′)∗ with ṽ′op/̃z
′
op. Note that T̃ ′ naturally acts on ṽ′. For any X

in z̃′op, write ψX : [Z̃ ′] → S1 for the unitary character given by z̃′ 7→ ψ(⟨X, z̃′⟩), and for any X in ṽ′op/̃z
′
op,

write ψX : [Ṽ ′/Z̃ ′] → S1 for the analogous unitary character. Write O for the minimal nonzero nilpotent

G̃-orbit in g̃.

Lemma 7.6. For any φ in Ω, we have θ(φ) = θ(φ)Ṽ ′ +
∑

X∈O∩z̃′op

θ(φ)Z̃′,ψX
+

∑
X∈O∩ṽ′

op/z̃
′
op

θ(φ)Ṽ ′,ψX
.

Proof. Apply [18, Proposition 3.7] and [43, I.16] to any nonarchimedean place of F not lying above 2. □

Write O for the split octonion algebra over F , and write O0 its trace-zero subspace. One can naturally
identify the orthogonal complement of z′ in z̃′op with O0 and the orthogonal complement of v′/z′ in ṽ′op/̃z

′
op

with O0⊗K [6, p. 12]. Under our identifications, G ∼= Aut(O) acts tautologically on O0, and T
′ ∼= RK/F Gm

acts on F via NmK/F (−)−1 and on K via (−)−1.

Recall from §2.6 the three-step parabolic subgroup Q = LU of G.

Lemma 7.7. Under our identifications, O ∩O0 and O ∩ (O0 ⊗K) correspond to the G× T ′-orbits of[
0 (1, 0, 0)

(0, 0, 0) 0

]
∈ O0

in O0 and O0 ⊗ K, respectively. In particular, for any X in O ∩ O0 or O ∩ (O0 ⊗ K), the commutator
subgroup of StabG×T ′ X contains U .

Proof. This follows from the proof of [6, Lemma 2.3]. □
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Corollary 7.8. Let φ be in Ω. For any X in O ∩O0, we have θ(φ)Z̃′,ψX
(ug) = θ(φ)Z̃′,ψX

(ug) for all u in

U(AF ) and g in G̃(AF ). For any X in O ∩ (O0 ⊗K), the same holds for θ(φ)Ṽ ′,ψX
.

Proof. By replacing φ with g ·φ, it suffices to consider the case g = 1. Now [18, Proposition 3.7] and [43, I.16]
show that HomṼ ′(Fv)

(Ωv, ψv,X) is 1-dimensional for every nonarchimedean place v of F not lying above 2, so

the action of (StabG×T ′ X)(Fv) on HomṼ ′(Fv)
(Ωv, ψv,X) factors through a character of (StabG×T ′ X)(Fv).

Lemma 7.7 implies that U lies in the commutator subgroup of StabG×T ′ X, so U(Fv) acts trivially on
HomṼ ′(Fv)

(Ωv, ψv,X).

Note that φ 7→ θ(φ)Ṽ ′,ψX
(1) yields an element ℓ of HomṼ ′(AF )(Ω, ψX), and u · ℓ equals the linear functional

φ 7→ θṼ ′,ψX
(u−1). So fixing φ and varying u yields a continuous function ℓφ : U(AF ) → C. The above shows

that ℓφ is invariant under U(A{2,∞}
F ), and we see that ℓφ is also invariant under U(F ). Since U satisfies

weak approximation, this implies that ℓφ is constant, which yields the second statement.

For the first statement, we argue similarly. Because ψv,X factors through a continuous homomorphism

Z̃ ′(Fv) → Fv, the Stone–von Neumann theorem yields a unique irreducible unitary representation Wψv,X
of

Ṽ ′(Fv) with central character ψv,X . Now [18, Proposition 3.7] and [43, I.16] show that HomṼ ′(Fv)
(Ωv,Wψv,X

)

is 1-dimensional, and Lemma 7.7 implies that U(Fv) acts trivially on HomṼ ′(Fv)
(Ωv,Wψv,X

).

Note that φ 7→ (ṽ′ 7→ θ(φ)Z̃′,ψX
(ṽ′)) yields a Ṽ ′(AF )-equivariant map ℓ : Ω → L2([Ṽ ′], ψX). Since [Ṽ ′] is

compact, L2([Ṽ ′], ψX) is semisimple. For any irreducible subrepresentation W of L2([Ṽ ′], ψX), uniqueness
forces Wv

∼=Wψv,X
. From here, arguing as above yields the first statement. □

Proof of Theorem 7.5. Let f be in π, and let φ be in Ω. We compute the constant term of θJ(φ, f) along
V ′ (the unipotent radical of the Borel of G′

J):

θJ(φ, f)V ′(1) =

∫
[V ′]

∫
[G]

θ(φ)(gv′)f(g) dg dv′

=

∫
[G]

∫
[V ′]

θ(φ)Ṽ ′(gv
′) +

∑
X∈O∩z̃′op

θ(φ)Z̃′,ψX
(gv′) +

∑
X∈O∩ṽ′

op/z̃
′
op

θ(φ)Ṽ ′,ψX
(gv′)

 f(g) dv′ dg

=

∫
[G]

θ(φ)Ṽ ′(g) +
∑

X∈O∩O0

θ(φ)Z̃′,ψX
(g) +

∑
X∈O∩(O0⊗K)

θ(φ)Ṽ ′,ψX
(g)

 f(g) dg

by Lemma 7.6. Because the Killing form is G-invariant, we can unfold the middle and rightmost integrals
to obtain ∫

[G]

θ(φ)Ṽ ′(g)f(g) dg +
∑

X∈G(F )\(O∩O0)

∫
(StabGX)(F )\G(AF )

θ(φ)Z̃′,ψX
(g)f(g) dg

+
∑

X∈G(F )\(O∩(O0⊗K))

∫
(StabGX)(F )\G(AF )

θ(φ)Ṽ ′,ψX
(g)f(g) dg .

By Corollary 7.8, the middle and rightmost integrals vanish because f is cuspidal. As for the first integral,

note that the restriction of ΩṼ ′ to T̃ ′der is isomorphic to the minimal representation as in [15, Section 5]
for the cubic étale F -algebra F × K. Because π does not lie in the near equivalence class from [11, Main
theorem (ii)], that result implies that the first integral vanishes, as desired. □

7.4. Arthur’s multiplicity formula. Recall from §3.6 the subrepresentation Aχ(G
′
J) of Adisc(G

′
J).

Proposition 7.9. Suppose that

(1) L( 12 , χ) is nonzero,
(2) for all places v of F above 2, the étale Fv-algebra Kv is unramified.
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If Conjecture 4.5 holds at all archimedean places of F , then we have an isomorphism of G(AF )-representations∑
(J,σ)

θJ(σ) ∼=
⊕
(ϵv)v

⊗
v

′ πϵvv ,

where J runs over Freudenthal algebras over F of the form considered at the end of Example 2.1, σ runs
over irreducible cuspidal subrepresentations of Aχ(G

′
J), and (ϵv)v runs over sequences as in Theorem 4.2.(3)

such that, if L( 12 , χ
3) is nonzero, then not every ϵv equals +1.

In particular, Proposition 4.7 shows that this holds unconditionally when

(3) K is totally real, and χv : R× → S1 satisfies χv(−1) = 1 at every archimedean place v of F .

Proof. Fix such a J . Theorem 3.11.(1) and Theorem 3.11.(4) identify σ ∼=
⊗′

v σ
ϵv
v for some sequence (ϵv)v

as in Theorem 3.11.(1) such that, if G′
J is quasi-split and L( 12 , χ

3) is nonzero, then not every ϵv equals +1.
Under our assumptions, Theorem 6.16 shows that θJ(σ) is nonzero if and only if (6.6) is satisfied, in which
case θJ(σ) ∼=

⊗′
v π

ϵv
v .

The first part of (6.6) is equivalent to (ϵv)v also satisfying the conditions in Theorem 4.2.(3). Moreover,
given a sequence (ϵv)v as in Theorem 4.2.(3), there exists a unique choice of J such that (ϵv)v satisfies the
second part of (6.6) with respect to G′

J . Therefore, as J varies, we obtain the desired result. □

Proposition 7.10. Suppose that L( 12 , χ) ̸= 0, and let π be an irreducible cuspidal subrepresentation of
Aτ (G). Then π lies in

∑
(J,σ) θJ(σ), where J runs over Freudenthal algebras over F of the form considered

at the end of Example 2.1, and σ runs over irreducible cuspidal subrepresentations of Aχ(G
′
J).

Proof. Let S be a finite set of places of F such that, for all v not in S, our v is nonarchimedean and πv ∼= π+
v .

Theorem 7.1 yields such a J satisfying θJ(π) ̸= 0, and Theorem 7.5 shows that θJ(π) is cuspidal and hence
semisimple.

Let σ be an irreducible subrepresentation of θJ(π). For every place v of F , Proposition 2.9 shows that σv is
a quotient of θJ(πv). When v does not lie in S, [6, Theorem 4.1 (ii)] or [20, Theorem 1.2(ii)] indicate that
the irreducible quotients of θJ(πv) ∼= θJ(π

+
v ) are the σ+

v associated with χv or χ−1
v , so Theorem 3.11.(2)

shows that σ lies in Aχ′(G′
J) for some conjugate-symplectic unitary character χ′ : K×\A×

K →S1 such that,
for all v not in S, our χ′

v equals either χv or χ−1
v . Then Lemma 7.11 below shows that χ′ equals either χ or

χ−1. Altogether, we see that θJ(π) lies in
∑
σ σ, where σ runs over irreducible cuspidal subrepresentations

of Aχ(G
′
J)⊕Aχ−1(G′

J).

Because θJ(σ) ̸= 0, there exist f in π and φ in Ω such that f ′ := θ(φ, f) ̸= 0. The above shows that f ′ lies
in

∑
σ σ. Now the Petersson inner product of θ(φ, f ′) and f equals∫

[G]

∫
[G′

J ]

θ(φ)(gg′)f ′(g′) · f(g) dg′ dg =

∫
[G′

J ]

∫
[G]

θ(φ)(gg′)f(g) · f ′(g′) dg dg′ =
∫
[G′

J ]

f ′(g′)f ′(g′) dg′ ̸= 0,

so
∑
σ θJ(σ) pairs nontrivially with π. Because π is irreducible, we see that π ⊆

∑
σ θJ(σ).

Now the conjugate of χ equals χ−1, so any irreducible subrepresentation σ of Aχ−1(G′
J) has σ ◦ c lying in

Aχ(G
′
J). Using the extension of our theta lift to G×Aut(J), we see that θJ(−◦ c) = θJ(−). Therefore when

forming
∑
σ θJ(σ), we only need irreducible cuspidal subrepresentations σ of Aχ(G

′
J), as desired. □

Lemma 7.11. Let χ and χ′ be two unitary characters K×\A×
K →S1 such that, for cofinitely many places v

of F , our χ′
v equals either χv or χ−1

v . Then χ′ equals either χ or χ−1.

Proof. Let S be a finite set of places of F such that, for all v not in S, our χ′
v equals either χv or χ−1

v . Write
τ and τ ′ for the isobaric sums χ⊞ χ−1 and χ′ ⊞ χ′−1, respectively, and note that τv is isomorphic to τ ′v for
all v not in S. Therefore we have

LS(s, χ2) · ζSK(s)2 · LS(s, χ−2) = LS(s, τ × τ) = LS(s, τ × τ ′)

= LS(s, χχ′) · LS(s, χχ′−1) · LS(s, χ−1χ′) · LS(s, χ−1χ′−1).
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Since the left hand side has a pole at s = 1, so does the right hand side. Hence one of the four factors on the
right hand side has a pole at s = 1, which implies that one of the {χχ′, χχ′−1, χ−1χ′, χ−1χ′−1} is trivial. □

Proof of Theorem 4.2.(3). Proposition 7.9 and Proposition 7.10 yield an isomorphism ofG(AF )-representations

Acusp(G) ∩ Aτ (G) ∼=
⊕
(ϵv)v

⊗
v

′ πϵvv ,

where (ϵv)v runs over sequences as in Theorem 4.2.(3) such that, if L( 12 , χ
3) is nonzero, then not every ϵv

equals +1. The description of Ares(G) given by H. Kim [32, Theorem 5.1] and Žampera [57, Theorem 1.1]
imply that Ares(G) ∩ Aτ (G) = 0 if L( 12 , χ

3) is zero and Ares(G) ∩ Aτ (G) ∼=
⊗′

v π
+
v if L( 12 , χ

3) is nonzero.
Finally, we conclude by noting that Aτ (G) equals (Acusp(G) ∩ Aτ (G))⊕ (Ares(G) ∩ Aτ (G)). □
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29. Jing-Song Huang, Pavle Pandžić, and Gordan Savin, New dual pair correspondences, Duke Math. J. 82 (1996), no. 2,
447–471. MR 1387237

30. Atsushi Ichino, Theta lifting for tempered representations of real unitary groups, Adv. Math. 398 (2022), Paper No. 108188,

70. MR 4372665
31. H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic representations. I, Amer. J. Math.

103 (1981), no. 3, 499–558. MR 618323

32. Henry H. Kim, The residual spectrum of G2, Canad. J. Math. 48 (1996), no. 6, 1245–1272. MR 1426903
33. Ju-Lee Kim, Sug Woo Shin, and Nicolas Templier, Asymptotic behavior of supercuspidal representations and Sato-Tate

equidistribution for families, Adv. Math. 362 (2020), 106955, 57. MR 4046074

34. Max-Albert Knus, Alexander Merkurjev, Markus Rost, and Jean-Pierre Tignol, The book of involutions, American Math-
ematical Society Colloquium Publications, vol. 44, American Mathematical Society, Providence, RI, 1998, With a preface

in French by J. Tits. MR 1632779

35. Stephen S. Kudla, Seesaw dual reductive pairs, Automorphic forms of several variables (Katata, 1983), Progr. Math., vol. 46,
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