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Introduction

Let G be a split reductive algebraic group over a field k of characteristic zero.
If P ⊂ G is a parabolic subgroup, then the quotient G/P has the structure of a
projective variety called the (generalized) flag variety. When B = P is a Borel
subgroup, G/B is called a complete flag variety; the terminology comes from the
most classical case G = GLn/C, where G/B parameterizes complete flags in Cn
and G/P parameterizes partial flags. Flag varieties were first studied in the 19th
century [16] for their rich applications to combinatorial algebraic geometry, and are
now viewed as fundamental objects in their own right.

This expository paper will primarily focus on the decomposition of the flag va-
riety into algebraic components, indexed by combinatorial parameters: first the
Schubert cells, and then a refinement known as the Deodhar components. The
Schubert cells, which are highly classical, form a so-called affine paving of G/P
indexed by cosets in the Weyl group of G (or just elements if P = B is a Borel
subgroup). Their closures, the Schubert varieties, form a basis of the Chow ring,
where the intersection theory is then governed by the combinatorics of the Weyl
group. We will also highlight the connection between Schubert varieties on G/P
and the representation theory of G. Deodhar components are a more recent inno-
vation, dating to Deodhar’s 1985 paper [9] and involving finer combinatorial data
than the Schubert cells. In the last section, we will discuss an influential result
[14] of Marsh and Rietsch, from 2004, where an explicit section from each Deodhar
component to G is constructed. This construction is then used to characterize the
so-called totally positive part of G/B over R. In particular, Marsh and Rietsch
elegantly resolve a conjecture by Lusztig, that the totally positive parts of certain
components of G/B are isomorphic to affine half-space Rn>0.

Sources and references. Flag varieties have an extensive literature, not all of
which could be included here. The exposition is most directly inspired by the
surveys [18, 4]. We have departed from these in two main respects; first, we have
included a review of the features of the Weyl group that will be reflected in the
geometry ofG/P , in an effort to make the exposition as self-contained and accessible
as possible. Second, we have endeavored to include the case P 6= B in all statements
(until the final section on Deodhar components); this allows us to explicitly translate
between the general theory and the concrete example Gm,n.

In addition to the two survey articles, we also have relied on Manivel’s book [13]
for the section on the Grassmanian, and on papers of Chevalley [7, 6] and Serre [17]
for some points of the classical theory that we were unable to find elsewhere. For
general reference, we have used [3, 10, 11]. (These are also excellent resources for
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the basic facts about reductive groups and their Weyl groups which are used freely
in this paper.) In the final section, we of course rely heavily on [14].

Convention. To avoid technicalities, we assume throughout that G is connected,
semisimple, and simply connected. This excludesGLn, but the flag varietiesGLn/P
are isomorphic to flag varieties for SLn.

1. The complex Grassmanian

The exposition in this section generally follows [13].

1.1. Definitions. LetG = SLn+m/C, and let {e1, . . . , en+m} be the standard basis
of Cn+m. If P is the parabolic subgroup of G stabilizing the subspace generated by
{e1, . . . , em}, then the homogeneous space G/P is the usual Grassmanian Gm,n, a
complex projective variety parameterizing the m-dimensional subspaces of Cn+m.

1.2. Partitions. In combinatorics, a partition λ of length m is a decreasing se-
quence of nonnegative integers λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0. A partition is often
represented graphically by its Ferrers diagram, in which the ith row has λi boxes.
For example, the partition (4, 2, 2, 1) is represented by the diagram:

Note that additional zeros do not change the diagram, but if we work with partitions
of a fixed length (or simply identify partitions that differ only by the number of
trailing zeros) there is no ambiguity. We say a partition µ is contained in λ, written
µ ⊂ λ, if the Ferrers diagram of µ is a subset of the Ferrers diagram of λ. This is
of course equivalent to the condition that µj ≤ λj for all j.

The partition of length m whose Ferrers diagram is a rectangle of width n is
written m × n. If λ is a partition of length m and λ1 ≤ n, then λ ⊂ m × n.
The complement of the Ferrers diagram of λ in the Ferrers diagram of m × n is
(after rotating) the Ferrers diagram of a partition, which we call m × n − λ. The
corresponding sequence is given by (m× n− λ)j = n− λm−j+1.

1.3. Schubert varieties. The standard basis defines a complete flag

0 = V0 ⊂ · · · ⊂ Vn+m = Cn+m, Vi = 〈e1, . . . , ei〉,
which we will use to stratify the Grassmanian. In particular, if W ⊂ Cn+m is of
dimension m, then we consider the sequence of subspaces

0 = W ∩ V0 ⊂ · · ·W ∩ Vn+m = W.

These satisfy:

(1) 0 ≤ dim(W ∩ Vi)− dim(W ∩ Vi−1) ≤ 1,

and the indices i such that W ∩ Vi 6= W ∩ Vi−1 constitute a strictly increasing
sequence 1 ≤ i1 < i2 < · · · < im ≤ n + m. The sequence {ij} is often called the
jump sequence of W . If we set λj = n+ j − ij , then

n ≥ λ1 ≥ · · · ≥ λm.
We call this sequence λ the partition associated to W , and write λ = λ(W ).
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Definition 1.3.1. Let λ be a decreasing sequence of nonnegative integers of length
m. Then the Schubert cell Ωλ ⊂ Gm,n (with respect to the standard flag V0 ⊂ · · · ⊂
Vn+m) is the set of m-dimensional subspaces W ⊂ Cn+m such that λ(W ) = λ. The
Zariski closures Xλ = Ωλ are called Schubert varieties; they are normal and
irreducible, but singular in general.

Proposition 1.3.2. The Schubert cells define a decomposition

Gm,n =
⊔

λ⊂m×n

Ωλ.

For each λ, there is a decomposition

Xλ =
⊔
µ⊃λ

Ωµ.

Proof. The first claim is immediate from the definition, since each W is associated
to a unique λ(W ). For the second, we note that Ωλ is defined by the incidence
conditions

dim(W ∩ Vj) = dλ(j),

where dλ(j) is the index such that j lies in the interval

[n+ dλ(j)− λdλ(j), n+ d(j) + 1− λdλ(j)+1).

Equivalently,

dim(W + Vj) = m+ j − dλ(j).

In local coordinates, this condition may be expressed by the vanishing (resp. non-
vanishing) of the minors of order m + j − dλ(j) + 1 (resp. m + j − dλ(j)) of a
(m+ j)× (m+ n) matrix; so the closure of Ωλ is defined by the conditions

dim(W + Vj) ≤ m+ j − dλ(j),

or equivalently

dim(W ∩ Vj) ≥ dλ(j).

Hence

Xλ =
⊔
µ

Ωµ,

where µ ranges over partitions such that dµ(j) ≥ dλ(j) for all 1 ≤ j ≤ m. One may
check directly that this condition is equivalent to µj ≥ λj for all j. �

Remark 1.3.3. We highlight two special cases: if λ is the zero partition, the
corresponding Schubert cell Ωλ is dense in the Grassmanian. Indeed, a generic
subspace W meets Vj in a subspace of the smallest possible dimension, leading to
the jump sequence ij = n + j. On the other hand, if λ = (n, . . . , n) is the largest
possible partition, the Schubert cell is a single point corresponding to W = Vm,
which has jump sequence ij = j. This point is contained in every Schubert variety.

Proposition 1.3.4. Each Schubert cell Ωλ is isomorphic to Cmn−|λ|.

Proof. By definition, every element of Ωλ admits a unique basis of the form:

{ei1 + v1, . . . , eim + vm} ,
where ij = n+ j − λj as above and vj lies in the span of{

e1, e2, . . . , eij
}
−
{
ei1 , . . . , eij

}
.
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We may therefore identify Ωλ with an affine space of dimension

m∑
j=1

(n− λj) = mn− |λ|.

�

1.4. Intersection theory on the Grassmanian. Since the intersections of the
Schubert varieties above are highly non-transverse, we must introduce an opposite
cellular decomposition in order to understand intersections of the corresponding
cycle classes. Let V i ⊂ Cn+m be the subspace spanned by {en+m−i+1, . . . , en+m}
in the standard basis, and let Ωλ be the Schubert cell defined as above, but where
the standard flag is replaced by the flag

0 = V 0 ⊂ · · · ⊂ V n+m = Cn+m.

Similarly, let Xλ = Ω
λ
.

Proposition 1.4.1. The algebraic cycles Xλ and Xλ are rationally equivalent. If
|λ| + |µ| = nm, then Xλ and Xµ intersect transversely at a single point if λ =
m× n− µ, and do not intersect otherwise. In particular,

[Xλ].[Xµ] =

{
[pt] if λ = m× n− µ,
0 otherwise

in CH∗(Gm,n).

Proof. The action of G = SLn+m(C) on the Chow group is through a discrete
quotient, hence trivial, so [gXλ] = [Xλ] for all g ∈ G. If g is the matrix that sends
ei to en+m−i for each i (possibly up to sign), then

dim(gW ∩ V j) = dim(W ∩ Vj)

for all j, so gXλ = Xλ, and the first claim follows.
Now suppose W ∈ Xλ ∩Xµ where |λ|+ |µ| = nm. Then we have:

dim(W ∩ Vn+j−µj ) ≥ j

dim(W ∩ V n+m−j+1,−λm−j+1) ≥ m− j + 1.

Since dimW = m, this implies

W ∩ Vn+j−µj ∩ V n+m−j+1−λm−j+1 6= 0

for all j. If Vn+j−µj ∩ V n+m−j+1−λm−j+1 6= 0, then necessarily µj + λm+j−1 ≤ n.
Since |µ|+ |λ| = nm, equality holds for all j; hence λ = m× n− µ and Vn+j−µj ∩
V n+m−j+1−λm−j+1 = Cen+j−µj . It follows that W is the subspace generated by
en+j−µj for all 1 ≤ j ≤ m. The transversality of the intersection can be checked
using local coordinates near W . �

Corollary 1.4.2. The classes [Xλ] form a basis over Z of the Chow ring CH∗(Gm,n),
and of the the singular cohomology H∗(Gm,n,Z).

Proof. By Proposition 1.3.4 and Proposition 1.3.2, the Schubert cells form an affine
paving of Gm,n. Hence the [Xλ] generate the Chow ring and the singular cohomol-
ogy, and Proposition 1.4.1 shows that they form a Z-basis. �
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Of course, Proposition 1.4.1 does not fully characterize the intersection product.
For a thorough discussion of intersections of Schubert varieties and the relation to
symmetric functions, see [13].

2. The Weyl group and the Bruhat decomposition

Now let G be any split, simply connected, and semisimple algebraic group over
a field k of characteristic zero. Fix a maximal torus T ⊂ G and a set of positive
roots Φ+ ⊂ Φ for G with respect to T . The Weyl group W = NG(T )/T is the
group of symmetries of Φ; it is generated by the reflections sα for α ∈ Φ+, or more
parsimoniously by the simple reflections corresponding to the simple roots ∆ ⊂ Φ+.
(For more details on the general theory of reductive groups, see [3]; for more on
finite reflection groups, see [10].)

2.1. The Bruhat order. Our goal in this section is to establish group-theoretic
facts about W which will play a crucial role in the decomposition of the flag variety.
Following the notation of [14], we make the following definitions.

Definition 2.1.1. An expression w for w ∈W , of length n, is a sequence (w(0), . . . , w(n))

of elements of W such that w(0) = 1, w(n) = w, and w−1
(j−1)w(j) is either the identity

or a simple reflection for each 1 ≤ j ≤ n. An expression may also be specified by
its list of factors, i.e. the values w−1

(j−1)w(j) (in order). The length `(w) is the

minimal length of an expression w for w, and an expression for w is called reduced
if it achieves this minimum. A subexpression v of an expression w is a sequence
(v(0), . . . , v(n)) such that

v−1
(j−1)v(j) ∈

{
1, w−1

(j−1)w(j)

}
.

A positive expression w is one such that `(w(i)) ≤ `(w(i+1)) for all 0 ≤ i <
n. Finally, we say v ≤ w if there exists a reduced expression w for w and a
subexpression v for v in w.

Remark 2.1.2. The relation v ≤ w is not obviously transitive; however, Proposi-
tion 2.1.6 below implies transitivity, and so we obtain a well-defined partial order
on W known as the Bruhat order.

A reduced expression may also be written as w = sα1 · · · sαn , where sαi are the
factors of w and w(i) = sα1 · · · sαi . The length function on W has a geometric
interpretation as the number of “inversions” for the action on the root system. To
be precise, we have:

Proposition 2.1.3. (i) If w is a reduced expression for w ∈ W with factors
sα1 , . . . , sαk , then

w−1(Φ+) ∩ Φ− =
{
sαk · · · sαi+1

(−αi), 1 ≤ i ≤ k
}

=
{
w−1w(i)(−αi), 1 ≤ i ≤ k

}
,

and the set has cardinality exactly k.
(ii) If sα is a simple reflection, then `(wsα) = `(w)± 1.

(iii) If β ∈ Φ+ is any root, not necessarily simple, then `(wsβ) > `(w) =⇒
w(β) ∈ Φ+. Likewise, `(sβw) > `(w) =⇒ w−1(β) ∈ Φ+.
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Proof. (i) Let us first show Φ− ∩ s−1
α (Φ+) = {−α} if α ∈ ∆. Indeed, let

β ∈ Φ−. We may write β = −β′ −mα, where β′ is a sum of simple roots
distinct from α with positive coefficients, and m ≥ 0. Then

sα(β) = mα− β′ − 2
〈β′, α〉
〈α, α〉

α.

It is clear that this can be a positive root only if β′ = 0.
For the general case, we proceed by induction on `(w). Let w′ =

sα2
· · · sαk . For any β ∈ Φ, we have:

sα1
w′(β) ∈ Φ+ ⇐⇒ w′(β) ∈ Φ+ − {α1} or w′(β) = −α1.

It therefore suffices to show that (w′)−1(α1) 6∈ Φ−. For contradiction,
assume otherwise. Then, by induction, (w′)−1α1 = sαk · · · sαi+1

(−αi) for
some 2 ≤ i ≤ k. Using the relation

sv(β) = vsβv
−1,

is not difficult to see that this implies `(w) < k, a contradiction.
(ii) The claim follows from (i) by considering the set (wsα)−1(Φ+) ∩ Φ−.
(iii) The second claim follows from the first because `(w) = `(w−1) for all w ∈

W . So suppose that `(wsβ) > `(w). We induct on `(w), the base case
being trivial. If w 6= 1, then there exists a simple reflection sα such that
`(sαw) < `(w); for instance, the first element in a reduced word for w.
Then

`(sαwsβ) ≥ `(wsβ)− 1 > `(w)− 1 = `(sαw),

so sαw(β) ∈ Φ+ by induction. It remains to check that w(β) 6= −α. If
so, then sα = wsβw

−1, which implies sαw = wsβ , a contradiction by the
choice of α.

�

Corollary 2.1.4. If w is any expression for w, then it contains a positive subex-
pression v for w. Deleting repeated terms in v yields a reduced expression for w.

Proof. The second claim follows from the first by Proposition 2.1.3(ii). To prove
the first, we will show that, if w is non-reduced and i is the first index such that
`(w(i)) > `(w(i+1)), then w has a subexpression v for w such that v(i) = v(i+1);
an easy induction argument shows that this suffices. Now, if sα1

, . . . , sαn are the
nontrivial factors of w, then by Proposition 2.1.3 sαi · · · sαj+1

(−αj) = αi+1 for some
j ≤ i. Then the subexpression v of w omitting the factors sαi and sαj satisfies

v(n) = sα1
· · · sαj−1

sαj+1
· · · sαi−1

sαi+1
· · · sαn = w.

�

The following is [1, Lemma 2.2.1].

Lemma 2.1.5. Suppose that w is a reduced expression of length n with a positive
subexpression v. Then there is a positive subexpression v′ of w such that

v(n) ≤ v′(n) and `(v′(n)) = `(v(n)) + 1.

Proof. Let v = v(n), and, without loss of generality, replace v with the positive
subexpression of w for v such that

max
{
i : v(i) = v(i+1)

}
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is minimal. Let sα1
, . . . , sαn be the factors of w and s′α1

, . . . , s′αn the factors of v, so
that s′αi ∈ {sαi , 1}. Let j be the largest index such that s′αj = 1, and let v′ be the

subexpression of w obtained from v by including the factor sαj . We claim that v′

has the desired properties; it suffices to show that `(v′(n)) > `(v). For contradiction,

suppose otherwise. Since

v′(n) = v · (v−1v(j)sαjv
−1
(j)v),

by Proposition 2.1.3(iii) we have v(j)(αj) ∈ Φ−. Hence for some i ≤ j such that
s′αi = sαi , we have

v−1
(j)v(i)(αi) = αj .

Substituting sαi = v−1
(i) v(j)sαjv

−1
(j)v(i), we obtain

v = s′α1
· · · s′αn = s′α1

· · · s′αi−1
s′αi+1

· · · s′αj−1
sαjs

′
αj+1
· · · s′αn ,

contradicting the choice of v. �

Proposition 2.1.6. (i) If v ≤ w, then any reduced expression for w contains
a positive subexpression for v.

(ii) There is a unique element w0 ∈ W of maximal length; w0 is of order two,
and v ≤ w if and only if w0v ≥ w0w. In particular, w ≤ w0 for all w ∈W .

Proof. (i) By Corollary 2.1.4 and Lemma 2.1.5, it suffices to consider the case
`(w) = `(v) + 1. If there is a reduced expression for w with a subexpression
for v, then w = vsβ for a root β ∈ Φ+, not necessarily simple. By Proposi-
tion 2.1.3(iii), w(β) ∈ Φ−; then by Proposition 2.1.3(i), for any reduced ex-
pression w = sα1 · · · sαk , there is an index i such that β = sαk · · · sαi+1(αi).
This implies

v = wsβ = sα1 · · · sαi−1sαi+1 · · · sαk .

This expression is clearly reduced because it has length `(v).
(ii) By Proposition 2.1.3(i), no element of W has length more than |Φ+|, so

there is some element w of maximal length. By Proposition 2.1.3 again, if
α is a simple root such that w−1(α) ∈ Φ+, then `(sαw) > `(w). Hence w−1

sends all simple roots to negative roots, so w(Φ+) = Φ−. If w1, w2 are two
elements of maximal length, then w1w2(Φ+) = Φ+, so `(w1w2) = 0; this
implies both uniqueness and w2

0 = 1. For the final claim, again applying
Corollary 2.1.4 and Lemma 2.1.5, it suffices to show v < w =⇒ w0v > w0w
when `(w) = `(v) + 1. Then w = vsβ for some β ∈ Φ+, so w(β) ∈ Φ−. On
the other hand, if w0v < w0w, then w0v(β) ∈ Φ−, a contradiction.

�

2.2. Example: the Weyl group of SLn. If G = SLn with the standard maximal
torus T of diagonal matrices, then the roots are {εi − εj : i 6= j} , where εi : t→ C
is the map sending the diagonal matrix with entries λ1, . . . , λn to the ith entry
λi. The standard choice of positive roots is Φ+ = {εi − εj : i < j}, and the simple
roots are εi − εi+1. The Weyl group is isomorphic to Sn, where the ith simple
reflection corresponds to the simple transposition (i, i+ 1). Then Proposition 2.1.3
implies that the length of a permutation σ : {1, . . . , n} → {1, . . . , n} is the number
of pairs i < j such that σ(i) > σ(j). We note as well that the longest element w0

is the order-reversing permutation σ(i) = n+ 1− i.
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2.3. Parabolic subgroups of the Weyl group. If J ⊂ ∆ is a set of simple
roots, then the reflections sα for α ∈ J generate a parabolic subgroup written
WJ ⊂ W . (As one might expect, these subgroups are closely related to parabolic
subgroups of G; see Proposition 3.1.1.) Define

W J = {w ∈W : `(wsα) > `(w), ∀α ∈ J} ;

also let J± denote the intersection of the linear span of J with Φ±.

Proposition 2.3.1. (i) Let w = wJwJ for some wJ ∈ W J and wJ ∈ WJ .
Then

`(wJ) = #(Φ+ ∩ w(Φ− \ J−)), `(wJ) = #(Φ+ ∩ w(J−)),

and in particular `(w) = `(wJ) + `(wJ).
(ii) The multiplication map is a bijection:

W J ×WJ →W.

In particular, W J forms a set of coset representatives for W/WJ .

Proof. (i) We first observe that

wJ(Φ± \ J±) = Φ± \ J±,

because WJ preserves the linear span of J and cannot change the sign of
any root not spanned by J . Therefore,

#(Φ+ ∩ w(Φ− \ J−)) = #(Φ+ ∩ wJ(Φ− \ J−)) = `(wJ).

The other assertion is similar.
(ii) To show that the multiplication map is surjective, it suffices to see that each

coset of WJ contains an element of W J ; and indeed, any element of minimal
length in wWJ will lie in W J by definition. It remains to show injectivity;
suppose therefore that y1w1 = y2w2 where yi ∈ W J and wi ∈ WJ . We
have

y1 = y2(w2w
−1
1 ),

and by (i) the concatenation of a reduced expression for y2 and a reduced
expression for w2w

−1
1 is a reduced expression for y1. If w2w

−1
1 6= 1, then

it has a reduced expression ending with sα for some α ∈ J ; this would
contradict y1 ∈ W J because it would imply `(y1sα) < `(y1). Hence w2 =
w1, and so y1 = y2 as well.

�

For any w ∈W , we write

w = wJwJ

for the factorization provided by Proposition 2.3.1. The Bruhat order on W induces
a natural partial order on W J , and in fact this is compatible with the projection
W →W J , in the following sense.

Proposition 2.3.2. Let w, v ∈W be any elements.

(i) If w ≤ v, then wJ ≤ vJ .
(ii) We have wJ ≤ vJ if and only if (w0w)J ≥ (w0v)J , where w0 ∈ W is the

unique longest element.

In particular, wJ ≤ wJ0 for all w ∈W .
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Proof. (i) Since wJ ≤ w, we may assume without loss of generality that wJ =
w. We proceed by induction on `(vJ), where the base case is trivial. If
vJ 6= 1, then there exists α ∈ J such that `(vJsα) < `(vJ), or equivalently
`(vsα) < `(v). We will show:

(2) w ≤ vsα.
Indeed, if

vsα = sβ1 · · · sβk
is any reduced expression, then sβ1

· · · sβksα contains a reduced expression
for w as a subword. Since no reduced expression for w ends in sα, (2) holds.
In particular, by induction, w ≤ (vsα)J = vJ .

(ii) One direction clearly suffices, so suppose w ≤ v. Since wJ ≤ vJ ≤ v, we
have w0v ≤ w0w

J . By (i), (w0v)J ≤ (w0w
J)J . Since w0w

J and w0w lie in
the same WJ -coset, the claim follows.

�

2.4. Example: Sm × Sn ⊂ Sm+n. In the notation of the preceding example,
consider the subset of simple roots

J = {εi − εi+1 : 1 ≤ i ≤ n+m− 1, i 6= m} .
The corresponding subgroup WJ ⊂ Sm+n is generated by all simple transpositions
except (m,m+ 1). It is not difficult to see that this subgroup is exactly Sm × Sn,
and the set of coset representatives W J consists of permutations that preserve the
internal order of {1, . . . ,m} and {1, . . . , n}. We will see in §3.2 that this is exactly
the example relevant to the Grassmanian Gm,n.

2.5. Lifting to G. The projection NG(T ) → W is not split in general, but the
following well-known result of Tits [19] provides a good approximation.

Proposition 2.5.1. There exists a system of lifts ṡα ∈ NG(T ), for each α ∈ ∆,
such that:

(i) The natural image of ṡα in W is sα.
(ii) For all α, ṡ4

α = 1.
(iii) If sα1 · · · sαn and sβ1 · · · sβn are two reduced expressions for w, then

ṡα1 · · · ṡαn = ṡβ1 · · · ṡβn .

We therefore obtain a well-defined set-theoretic section W → NG(T ) defined by
w 7→ ẇ = ṡα1 · · · ṡαn , where w = sα1 · · · sαn is any reduced expression.

Recall that, for each α ∈ Φ, there is a unique, one-dimensional unipotent sub-
group Uα whose Lie algebra is the root space corresponding to α. By definition,
for all w ∈W we have:

(3) ẇUαẇ
−1 = Uw(α).

2.6. The Bruhat decomposition of G. Let B+ ⊂ G be the Borel subgroup as-
sociated to the choice of positive roots Φ+, and U+ its unipotent radical. Swapping
positive and negative roots gives the opposite Borel B−, with unipotent radical U−.
For each w ∈W , we define the Bruhat cell

C(w) = B+ẇB+ ⊂ G,
a locally closed subvariety.
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Remark 2.6.1. The Bruhat cell has a simple description in terms of representation
theory, as follows. Let λ be a dominant weight and V the representation of G
generated by the highest weight vector ξλ; V has a basis of weight vectors. Then g ∈
B+ẇB+ implies that the lowest weight vector appearing in the basis decomposition
of gξλ has weight wλ. Similarly, if g ∈ B−ẇB+, then wλ is the highest weight
appearing in gξλ.

The goal of this subsection is to prove the Bruhat decomposition, our template
for decomposing flag varieties:

(4) G =
⊔
w∈W

C(w).

Our exposition largely follows [5, Chapter 30].

Proposition 2.6.2. For each w ∈W , multiplication induces isomorphisms:∏
α∈Φ+∩w(Φ−)

Uα ×B+ → C(w),

(u, b) 7→ uẇb;∏
β∈Φ−∩w−1(Φ+)

Uβ ×B+ → C(w),

(u, b) 7→ ẇub.

Proof. Recall that, by the Baker-Campbell-Hausdorff formula, multiplication is an
isomorphism ∏

α∈Φ+

Uα → U+,

regardless of the order. We therefore have:

B+ẇB+ = U+ẇB+

= ẇ(ẇ−1U+ẇ)B+

= ẇ
∏
α∈Φ+

Uw−1(α)B
+

= ẇ
∏

α∈Φ+∩w(Φ−)

Uw−1(α)B
+,

where the last expression has no redundancy because B− ∩ B+ = T . The desired
expressions follow immediately. �

Lemma 2.6.3. For each w ∈W and each simple reflection sα, we have:

C(sα)C(w) =

{
C(sαw) if `(sαw) > `(w),

C(sαw) ∪ C(w) if `(sαw) < `(w).

Proof. We calculate directly using Proposition 2.6.2:

C(sα)C(w) = UαṡαB
+ẇB+

= ṡαU−αẇ
∏

β∈Φ−∩w−1(Φ+)

Uw−1(β)B
+

= ṡαẇU−w−1(α)

∏
β∈Φ−∩w−1(Φ+)

UβB
+.



DECOMPOSING FLAG VARIETIES 11

Now, if `(sαw) > `(w), we may conclude using Proposition 2.1.3(i). So suppose
that `(sαw) < `(w). If we set w′ = sαw, then `(sαw

′) > `(w′), so

C(sα)C(sαw
′) = C(sα)C(sα)C(w′).

It therefore suffices to show

C(sα)C(sα) = C(1) ∪ C(sα)

for each simple reflection sα. Taking w = sα in our calculation above, we have:

C(sα)C(sα) = UαU−αB
+.

Now, using only a computation in SL2, one can show

UαU−αUαT = UαT ∪ UαṡαUαT,

which suffices to conclude. �

Corollary 2.6.4. We have

G = ∪w∈WC(w).

Proof. The lemma shows that the right-hand side is a subgroup of G. Since it
contains B+ and each ṡα, it must be the entire group. �

Now, to establish (4), it suffices to show:

Proposition 2.6.5. If w 6= w′, then C(w) 6= C(w′).

Proof. We induct on min {`(w), `(w′)}. The base case is clear; for the inductive
step, suppose `(w) ≤ `(w′) and let sα be a simple reflection such that `(sαw) <
`(w). Then

sαw ∈ C(sα)C(w′) ⊂ C(sαw
′) ∪ C(w′)

by Lemma 2.6.3. The inductive hypothesis implies either w = w′, as desired, or
sαw = w′. The latter case is impossible because `(sαw) < `(w) ≤ `(w′). �

The geometric significance of the Bruhat order is encapsulated by the following
fundamental fact.

Proposition 2.6.6. For each w ∈W , the Zariski closure of C(w) is:

C(w) =
⊔
v≤w

C(v).

Proof. The following elegant proof may be found in [18], and uses the Bott-Samelson
varieties further studied by Demazure [8]. Let w = sα1 . . . sαk be a reduced decom-
position. For each α ∈ ∆, define

Pα = C(sα) ∪ C(1),

which is a subgroup of G by Lemma 2.6.3; it is not difficult to check using Proposi-
tion 2.6.2 and a calculation in SL2 that Pα/B ' P1. For varieties X, Y with left and
right actions by B, define an equivalence relation on X × Y by (x, y) ∼ (xb−1, by).
When it exists, the quotient X×B Y by this equivalence relation again has left and
right actions by B.

We claim that the multiplication map

π : Pα1
×B Pα2

×B · · · ×B Pαk → G
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is proper. Indeed, it is the base change along G → G/B of the multiplication
map Pα1 ×B Pα2 ×B · · · ×B Pαk/B → G/B, whose source is an iterated P1-bundle.
Therefore the image of π is an irreducible, closed subvariety of G.

Restricted to a dense open subvariety, π agrees with the isomorpism onto C(w)
given by Proposition 2.6.2. Hence the image of π is exactly the closure of C(w).
On the other hand, by Proposition 2.1.6(i) the image of π is tv≤wC(v). �

Remark 2.6.7. This reasoning could also be used to give a geometric proof of
Proposition 2.1.6(i).

Corollary 2.6.8. The subset B−B+ is open and dense in G.

Proof. The preceding proposition, along with Proposition 2.1.6, shows that the “big
cell” B+ẇ0B

+ is open and dense, where w0 ∈ W is the unique longest element.
Hence ẇ0B

+ẇ0B
+ = B−B+ is open and dense as well. �

For each w ∈W , let Ωw ⊂ G/B+ be the natural image of the Bruhat cell C(w).
We refer to Ωw as a Schubert cell in G/B+; the closure Xw = Ωw is called a
Schubert variety. Combining the preceding proposition with Proposition 2.6.2, we
conclude:

Corollary 2.6.9. For each w ∈W , Ωw is isomorphic to A`(w) and

Xw =
⊔
v≤w

Ωv.

In particular, the Schubert cells define a cellular decomposition of the complete flag
variety G/B+.

In the next section, we will generalize this result to all flag varieties G/P .

3. Generalized flag varieties

The homogeneous space G/P , where P is a parabolic subgroup, has the structure
of a smooth, projective algebraic variety. In this section, we give a decomposition
of G/P generalizing the one we have seen for the complex Grassmanian.

3.1. Classifying parabolic subgroups. Recall that a parabolic subgroup is a
closed subgroup P ⊂ G containing a Borel subgroup B, which we may assume
without loss of generality is B+.

Proposition 3.1.1. (i) If J ⊂ ∆ is any set of simple roots, then

PJ =
⊔

w∈WJ

C(w)

is a parabolic subgroup of G. Conversely, any parabolic subgroup B+ ⊂ P ⊂
G is of this form.

(ii) If J1, J2 ⊂ ∆, then PJ1 ∩ PJ2 = PJ1∩J2 .

Proof. (i) By Lemma 2.6.3 and Proposition 2.6.6, to show that PJ is a closed
subgroup it suffices to check that WJ is downwards closed for the Bruhat
order on W . Indeed, if w ∈ WJ and v ≤ w, then vJ ≤ wJ = 1 by
Proposition 2.3.2.
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Conversely, suppose P is any closed parabolic containing B+; then

P =
⊔

w∈W0

C(w)

for some subset W0 ⊂ W . Since P is closed, if sα is a simple reflection
appearing in the reduced decomposition of any w ∈W0, we have sα ∈W0.
It follows that W0 is a subgroup generated by simple reflections, hence of
the form WJ for some J .

(ii) It suffices to show that WJ1 ∩WJ2 = WJ1∩J2 . The inclusion ⊃ is obvious,
so suppose that w ∈ WJ1 ∩WJ2 . Fix any reduced expression for w, and
suppose it contains sα for a simple root α. Then by definition sα ≤ w. As
we saw in the proof of (i), this implies sα ∈ WJ1 ∩WJ2 , so by Proposition
2.3.1(i) α ∈ J1 ∩ J2. Hence w ∈WJ1∩J2 .

�

We define the (generalized) Schubert cell ΩJw to be the image of C(w) in
G/PJ , and the (generalized) Schubert variety XJ

w to be its Zariski closure. In
general, XJ

w may be singular, but it is always Cohen-Macaulay (even in positive
characteristic [15]). When J = ∅, we omit the superscript.

Proposition 3.1.2. (i) For each J ⊂ ∆, there is a decomposition

G/PJ =
⊔

w∈WJ

ΩJw.

(ii) For all w ∈W , ΩJw is isomorphic to A`(wJ ).
(iii) For each w ∈W J ,

XJ
w =

⊔
v∈WJ

v≤w

ΩJv .

In particular, dim(G/PJ) = `(wJ0 ) = #Φ+ \ J+.

Proof. (i) Using the Bruhat decomposition along with Lemma 2.6.3 and Propo-
sition 2.3.1, we have:

G =
⊔
w∈W

C(w)

=
⊔

w∈WJ

⊔
v∈WJ

C(w)C(v)

=
⊔

w∈WJ

C(w)PJ .

(ii) It suffices to show that the map∏
β∈Φ−∩w−1(Φ+)

Uβ → Ωw,

defined by u 7→ ẇuPJ , is an isomorphism when w ∈ W J . By Proposition
2.6.2, this morphism is well-defined and surjective. It is also injective: the
intersection  ∏

β∈Φ−∩w−1(Φ+)

Uβ

 ∩ PJ



14 NAOMI SWEETING

is trivial because none of the βs lie in the linear span of J (cf. 2.3.1(i)).
(iii) Since the quotient map π : G→ G/PJ is open, we may compute the closures

inside G:

Ω
J

w = π
(
π−1(ΩJw)

)
= π

(
B+ẇPJ

)
= π

( ⊔
v∈WJ

B+ẇv̇B+

)
= π

(
∪v∈WJ

∪w′≤wv B+ẇ′B+
)

= ∪v∈WJ
∪w′≤wv ΩJw′ .

By Proposition 2.3.2, since w ∈ W J , w′ ≤ wv =⇒ (w′)J ≤ w, which
completes the proof.

�

Each Bruhat cell ΩJw contains a distinguished point e(w) = ẇPJ , which is fixed
by the left action of the torus T ⊂ G. The T -action stabilizes ΩJw, and we have the
following:

Lemma 3.1.3. Let w ∈W J ; then e(w) is the unique T -stable point in ΩJw.

Proof. Let ẇuPJ be a fixed point for T , where

u ∈
∏

β∈Φ−∩w−1(Φ+)

Uβ .

Then, for all t ∈ T ,

u−1ẇ−1tẇu ∈ PJ .

Since ẇ normalizes T , this is equivalent to

u−1Tu ⊂ PJ .

The left-hand side is contained in

T
∏

β∈Φ−∩w−1(Φ+)

Uβ ,

where there is no redundancy in the expressions, and this subgroup intersects PJ
only in T because w ∈ W J . Hence it suffices to show that, if u 6= 1, there exists
t ∈ T such that u−1tu has nonzero Uβ component for some β. But this is clearly
true because no nontrivial unipotent elements normalize T . �

3.2. Example: the Grassmanian. We now translate our first example, the
Grassmanian, into the more general language of parabolic subgroups. Let G =
SLn+m/C; the parabolic subgroup stabilizing the coordinate subspace Cm ⊂ Cm+n

corresponds to the set of simple roots J = ∆−{εm − εm+1} considered in §2.4. In-
deed, the lift Sn+m → G sends a permutation to the corresponding (n+m)×(n+m)
permutation matrix, up to sign; the permutation matrices preserving Cm are pre-
cisely the ones corresponding to the parabolic subgroup Sm × Sn ⊂ Sm+n.
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Let us now identify the Schubert cells on G/PJ . The T -fixed point e(w) corre-
sponds to the subspace Ww = ẇ(Cm). If Vi ⊂ Cm+n is the i-dimensional coordinate
subspace 〈e1, . . . , ei〉, then

dim(Vi ∩Ww) = #w({1, . . . ,m}) ∩ {1, . . . , i} .

This gives a recipe for the jump sequence associated to Ww; in particular, as ex-
pected, the partition λ(Ww) depends only on the coset of w in W/WJ . We leave
to the reader the verification that the inclusion relation λ ⊂ µ corresponds exactly
to the partial order on W J . We also remark that dim(G/PJ) = #(Φ+/J+) = mn:
indeed, Φ+/J+ consists of roots εi − εj with 1 ≤ i ≤ m < m+ 1 ≤ j ≤ m+ n.

3.3. Intersections on G/PJ : dual Schubert varieties. As in the case of Grass-
manians, the intersections of Schubert varieties are best understood by considering
the opposite (or dual) Schubert varieties, i.e. w0X

J
w, where w0 ∈ W is the unique

longest element. The intersection w0X
J
w ∩XJ

v is sometimes called a Richardson
variety. Note that, since G is generated by one-parameter subgroups, XJ

w and
w0X

J
w are rationally equivalent. The following proposition generalizes Proposition

1.4.1.

Proposition 3.3.1. (i) The Richardson variety w0X
J
w0v ∩X

J
w is nonempty if

and only if vJ ≤ wJ .
(ii) The co-dimension of XJ

w0v is equal to `(vJ), and for all w, v ∈ W with

`(wJ) = `(vJ), we have:

[XJ
w].[XJ

w0v] =

{
0 if w 6= v,

[pt] if w = v.

In light of this proposition, w0X
J
w0w is sometimes called the dual Schubert variety

to XJ
w.

Proof. (i) The intersection XJ
w ∩ w0X

J
w0v is a T -stable closed subvariety, so if

it is nonempty it contains a T -fixed point. By Lemma 3.1.3, such a point
is of the form e(y) for some y ∈W J . But by Proposition 3.1.2, any such y
satisfies both y ≤ wJ and (w0y)J ≤ (w0v)J . By Proposition 2.3.2, the latter
equality implies vJ ≤ y, so by transitivity of the Bruhat order vJ ≤ wJ .
The converse is immediate.

(ii) The co-dimension claim follows from Proposition 2.3.1. To compute the
intersection product, we consider again w0X

J
w0v ∩X

J
w. By (i), if the inter-

section is nonempty then w = v. In this case, the intersection at e(w) is
transverse, as we can check using the coordinates of Proposition 2.6.2; since
any other irreducible component of this intersection would have a T -fixed
point, we conclude XJ

w ∩ XJ
w0w is indeed a single point with multiplicity

one.
�

Corollary 3.3.2. The algebraic cycle classes [XJ
w] form a Z-basis of the Chow

ring CH∗(G/PJ). If k = C, then their images in the ring of singular cohomology
H∗(G/PJ) likewise form a Z-basis.

Proof. That these cycle classes generate follows from Proposition 3.1.2; Proposition
3.3.1 implies that they are also linearly independent over Z. �
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Corollary 3.3.3. The divisor class group of G/PJ is freely generated by the cycle
classes [XJ

w0sα ], where α ranges over ∆ \ J .

Proof. In light of the previous corollary, we must show that:{
wJ ∈W J : `(wJ) = `(wJ0 )− 1

}
=
{

(w0sα)J : α 6∈ ∆ \ J
}
,

and that the (w0sα)J are distinct. Our first claim is that

(5) (w0sα)J = (w0)J

for all α ∈ ∆\J . Indeed, applying Proposition 2.3.1(i), (w0)J is the unique longest
element of WJ , and `((w0sα)J) = `(w0)J = #J+ because sα(J−) ⊂ Φ−.

Now, (5) implies that the (w0sα)J are distinct elements of length `(wJ0 ) − 1. It
remains to show that every wJ of length `(wJ0 ) − 1 is of this form. For any such
wJ , we have:

`(wJ(w0)J) = `(wJ) + `((w0)J) = `(w0)− 1.

However, any element of W of length `(w0)−1 is of the form w0sα for some α ∈ ∆,
by Proposition 2.1.3(i). It follows that

wJ = (wJ(w0)J)J = (w0sα)J .

If α ∈ J , then of course (w0sα)J = wJ0 , which would imply `(wJ) = wJ0 . So
α ∈ ∆ \ J . �

4. Line bundles on G/PJ and representation theory

4.1. The Borel presentation of cohomology. Let X(T ) = Hom(T,Gm) be the
character group of T . For any λ ∈ X(T ), one may define an associated line bundle
L(λ) on the complete flag variety G/B+, with total space

G×B+,λ A1.

Here, B+ acts on the affine line by the usual extension of λ to B+ = TU+, and
the notation is as in the proof of Proposition 2.6.6. Sending each character to the
Chern class of the associated line bundle, we obtain a ring map:

(6) Sym(X(T ))→ CH∗(G/B+).

Theorem 4.1.1 (Borel, 1953). The map above induces an isomorphism:

CH∗(G/B+)⊗Q ' Q⊗ Sym(X(T ))

Sym(X(T ))W+
,

where the quotient is by the ideal generated by W -invariant elements of positive
degree. Furthermore, the natural map

CH∗(G/PJ)⊗Q→ CH∗(G/B+)⊗Q
identifies

CH∗(G/PJ)⊗Q ∼−→
(
CH∗(G/B+)WJ

)
.

Borel’s proof [2] (which we do not reproduce here) is purely topological; we have
translated the result to the Chow ring via Corollary 3.3.2.

In the case of degree-one elements of Sym(X(T )), the second assertion of the
theorem may be viewed as follows. Let

λ =
∑
α∈∆

cαωα ∈ X(T )
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be a dominant weight, where ωα is the fundamental weight associated to the simple
root α. (Recall that the fundamental weights form a Z-basis of the character group,
and λ is dominant if and only if cα ≥ 0 for all α.) Then λ is associated to a highest
weight representation of G, with highest weight vector ξλ. If Jλ ⊂ ∆ is the set of
α with cα = 0, then ξλ is an eigenvector for any parabolic subgroup PJ such that
J ⊂ Jλ and in particular λ extends to a character of PJ . We may therefore form
the associated bundle LJ(λ) on G/PJ , whose pullback to G/B+ via the natural
projection is exactly L(λ).

Conversely, if λ extends to PJ , then it is fixed by WJ , which implies J ⊂ Jλ since
sβωα = ωα−δαβα for all simple roots α, β. The associated line bundle construction
therefore defines a map

Sym((X(T )WJ )→ CH∗(G/PJ).

However, when J 6= ∅, it is not true that Sym((X(T )WJ ) = Sym(X(T ))WJ , so
characteristic classes of line bundles on G/PJ do not generate the cohomology in
general, even up to torsion. Although we expect all cycle classes on G/PJ to
be exhausted by the characteristic classes of vector bundles associated to higher-
dimensional representations of G/PJ , we have not verified this fact.

4.2. Computing characteristic classes on G/PJ . In this section, we identify
the characteristic classes of the line bundles LJ(λ) in terms of Schubert varieties;
this relates the Borel presentation of the cohomology to the one given in Corollary
3.3.2. The first step is the following observation:

Proposition 4.2.1. Let V be a representation of G with highest weight λ; for each
J ⊂ Jλ, V defines a map fJλ : G/PJ → P(V ) by g 7→ [g · ξλ], where ξλ is a nonzero
highest weight vector. Then

LJ(−λ) = (fJλ )∗(O(1)),

where O(1) is the hyperplane line bundle on P(V ).

Proof. Dualizing, we consider instead the pullback of the tautological bundle V →
P(V ). It then suffices to note that the following diagram is Cartesian:

G×PJ ,λ A1 V

G/PJ P(V ).

�

On the other hand, consider the divisor

D =
∑

α∈∆\J

cαX
J
w0sα

on G/PJ , where cα is a nonnegative integer for each α. (By Corollary 3.3.3, all
effective divisors on G/PJ are linearly equivalent to one of this form.) For each
g ∈ G, the translate gD is linearly equivalent to D. Thus the linear system |D|
has no base points, and it defines a morphism fD of G/PJ into a projective space
P(V ) by the usual recipe; if ti ∈ H0(G/PJ , L(D)) are a basis of global sections,
0 ≤ i ≤ n, then dimV = n+ 1 and fD(y) = [t0(y) : . . . : tn(y)] ∈ P(V ).
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Proposition 4.2.2. There exists an irreducible representation ρ : G → V whose
projectivization ρ satisfies

fD(gy) = ρ(g)fD(y)

for all g ∈ G and y ∈ G/PJ . The highest weight of V is

λD =
∑

α∈∆\J

cαωα,

where ωα is the fundamental weight corresponding to the root α; in particular,

L(D) = f∗D(O(1)) = LJ(−λD).

Remark 4.2.3. With more care, this construction (in fact, just the special case
PJ = B+) can be adapted to a proof of the highest weight theorem classifying all
representations of G. This was the approach taken in the Séminaire Chevalley [6].
The proof here is adapted from Chevalley’s notes as well as from Serre’s proof of
the Borel-Weil theorem [17].

Proof. We begin by constructing the action of G on P(V ). Choose any g ∈ G; since
gD is linearly equivalent to D, there exists a function ug : G/PJ → P1, defined
up to a scalar, such that div ug = gD − D. Each section ti may be considered
as a function on G/PJ such that div ti ≥ −D. Then tgi , the function such that
tgi (y) = ti(gy), satisfies

div tgi + ug−1 ≥ −g−1D + g−1D −D = −D.

Hence

tgi ug =
∑

aij(g)tj

for some coefficients aij(g) defined up to a scalar. The matrix aij(g) defines the
sought-after action of g on P(V ), because fD(gy) = [tg0(y) : . . . : tgn(y)].

Now that we have the projective representation ρ, it may be lifted to an honest
representation ρ : G → V because G is simply connected. The irreducibility of V
is clear: the image of fD is generated by fD(1 · PJ) under the action of g, and by
definition the image of fD is not contained in any hyperplane of P(V ). Therefore
V is a highest weight representation, with some weight λD which is fixed by WJ ,
and by Proposition 4.2.1 we have L(D) = LJ(−λD). By linearity, to establish the
formula for λD, it suffices to consider D = XJ

w0sα .

By definition, D is the cycle class of f−1
D (H), where H is a hyperplane section

of P(V ). Let {ξµ} be a basis of weight vectors for V , and consider the hyperplane
of V generated by all weight vectors except the lowest one ξw0λD . If H is its image
in P(V ), then f−1

D (H) is, at least set-theoretically, the set of cosets gPJ such that
ξw0λD does not appear in the basis expansion of gξλD . As observed in Remark 2.6.1,
this is exactly the collection of Schubert cells B+ẇPJ such that wλD 6= w0λD. We
therefore have:{

w ∈W J : wλD 6= w0λD
}

=
{
w ∈W J : w ≤ w0sα

}
.

One can check directly that this implies

λD = nαωα

for some positive integer nα. We claim that in fact nα = 1; indeed, we have

LJ(ωα)⊗nα = L(XJ
w0sα),
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and by Corollary 3.3.3 the line bundles L(XJ
w0sα) freely generate the Picard group

of G/PJ as α ranges over ∆ \ J . �

4.3. Example: tautological bundles. Suppose that G = SLn/C, and consider
the standard upper-triangular Borel subgroup B. The complete flag variety G/B
parameterizes flags:

0 = V0 ⊂ · · · ⊂ Vn = Cn, dimVi = i.

It therefore carries tautological bundles Li = Vi/Vi−1. It is not difficult to check
that these are the bundles associated to the weights

λi :

t1 . . .

tn

 7→ ti.

Since these weights additively generate X(T ), Borel’s result implies that the char-
acteristic classes of the tautological bundles generate the cohomology as a ring.
For a direct proof of this fact, see [13]. We also can make sense of the kernel
Sym(X(T ))W+ of the natural map Sym(X(T )) → CH∗(G/B). For instance, the
trivial bundle C = Cn × SLn/B is an iterated extension of all of the Li. By the
splitting principle and the multiplicative property of total Chern classes, we obtain:

c(C) =

n∏
i=1

(1 + c1(Li)) = 1.

The nonconstant terms of this polynomial are the elementary symmetric functions
in c1(Li), so their vanishing corresponds to the Weyl-invariance of the nontrivial
symmetric functions in λi, considered as elements of Sym(X(T )).

Now consider the Grassmanian Gm,n, corresponding to the parabolic subgroup
Pm,n ⊂ SLm+n. It carries a tautological vector bundle W of rank m, whose fiber
over a point of the Grassmanian is the corresponding subspace of Cm+n. This
vector bundle is also the associated bundle to the standard representation of GLm,
considered as a representation of Pm,n. Let π : SLm+n/B → SLm+n/Pm,n be the
natural projection; then π∗(W) is the iterated extension of the bundles L1, . . . , Lm,
and so

π∗(c(W)) =

m∏
i=1

(1 + c1(Li)).

From the Borel perspective, the total Chern class ofW is the image of the Sm×Sn-
invariant element

m∏
i=1

(1 + λi) ∈ Sym(X(T )).

In fact, the nonconstant terms in this polynomial generate all of (Sym(X(T ))Sm×Sn ,
so the higher Chern classes of W generate the cohomology of the Grassmanian.
Again, a more concrete proof of this fact may be found in [13].

On the other hand, there is a paucity of line bundles on the Grassmanian com-
pared to the complete flag variety. Since ∆ \ J is the single root εm − εm+1, the
Picard group of Gm,n is generated by just one line bundle: the one associated to
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the corresponding fundamental weight of SLm+n. This weight ist1 . . .

tm+n

 7→ t1 · · · tm,

so the corresponding line bundle is the top exterior power of W.

4.4. Intersections on G/PJ . The Borel presentation implies that the intersec-
tions with divisors fully determine the multiplicative structure of the Chow ring on
G/B+, although not on G/PJ . In this section, we will prove Chevalley’s formula [7]
(Proposition 4.4.2), which evaluates the intersection product of any Schubert cycle
with a cycle of codimension one. The first step is to classify the T -stable curves,
partially following the exposition of [18].

For any root β, not necessarily simple, let Gβ be the subgroup of G generated
by Uβ and ṡβ . Equivalently, Gβ is the image of the homomorphism SL2 → G
associated to β.

Lemma 4.4.1. If β ∈ Φ+ is a root not in the linear span of J , and w ∈ W J is
any element, then the natural image Cw,β of

ẇGβPJ

in G/PJ is a T -stable curve isomorphic to P1. Furthermore:

(i) Any closed, irreducible T -stable curve is of this form.
(ii) The T -fixed points on Cw,β are e(w) and e(wsβ).

(iii) For each v ∈W J , Cw,β ⊂ XJ
v if and only if w, (wsβ)J ≤ v.

(iv) The cycle class of Cw,β is:

[Cβ ] =
∑

α∈∆−J
〈ωα, β〉 · [XJ

sα ].

Proof. It is clear that Cw,β is T -stable. Since Gβ ∩ PJ is a Borel subgroup Bβ of
Gβ ' SL2, Cw,β is isomorphic to Gβ/Bβ ' P1.

(i) Suppose that C is a closed, irreducible T -stable curve. It possesses a T -
fixed point, which by Lemma 3.1.3 is of the form ẇPJ for some w ∈ W J .
By Corollary 2.6.8, ẇB−B+PJ is an open neighborhood of ẇPJ . On the
other hand,

B−B+PJ =

 ∏
α∈Φ−\J−

Uα

PJ .

A T -stable curve in this open affine subset must correspond to some Uα, as
can be seen clearly on the Lie algebra level. Let β = −α; then

ẇ−1C ∩B−B+PJ = U−βPJ ,

so, since C is closed, it contains Cw,β , hence is equal to it.
(ii) If e(v) ∈ ẇGβPJ , then v̇−1ẇ ∈ GβPJ . If w′ = (v−1w)J , it follows that

ẇ′ ∈ GβPJ = U−βPJ t ṡβPJ . The same argument as the one in Lemma
3.1.3 shows that w′ ∈ {sβ , 1}.

(iii) Suppose that wsβ ≤ w. Then

ẇU−βPJ ⊂ B+ẇPJ ,
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so we have Cw,β ⊂ XJ
w. It follows by Proposition 3.1.2 that Cw,β ⊂ XJ

v

for all v ≥ w. On the other hand, if Cw,β ⊂ XJ
v , then e(w) ∈ XJ

v , which
by Lemma 3.1.3 implies w ≤ v. Similarly, if w ≤ wsβ , then Cw,β ⊂ XJ

wsβ

because ẇṡβU−βPJ ⊂ B+ẇṡβPJ , and the rest of the proof is the same.
(iv) By Proposition 3.3.1, it suffices to check that

[Cw,β ].[XJ
w0sα ] = 〈ωα, β〉[pt].

Since cycle classes are translation-invariant, assume w = 1 and consider the
inclusion ι : C1,β ↪→ G/PJ . By the usual projection formula,

[XJ
w0sα ].[C1,β ] = ι∗(ι

∗[XJ
w0sα ]).

Now, [XJ
w0sα ] is the characteristic class of the line bundle LJ(−ωα) by

Proposition 4.2.2, and the restriction of LJ(−ωα) to C1,β ' P1 isO(〈ωα, β〉).
(Since C1,β can be naturally identified with the SL2 flag variety Gβ/Bβ ,
this is just another application of Proposition 4.2.2.) Since ι∗([pt]) = [pt],
this completes the proof.

�

We are now ready to prove Chevalley’s intersection formula:

Proposition 4.4.2. For any w ∈W J and α ∈ ∆ \ J , we have:

[XJ
w].[XJ

w0sα ] =
∑

v=(wsβ)J , β∈Φ+

`(v)=`(w)−1

〈ωα, β〉[XJ
v ].

Proof. By Proposition 3.3.1, it suffices to consider the triple intersections

[XJ
w].[XJ

w0sα ].[XJ
w0v],

where v ∈ W J and `(v) = `(w)− 1. We first compute [XJ
w].[XJ

w0v], by considering

the intersection XJ
w ∩ w0X

J
w0v. If the intersection is nonempty, then it is T -stable,

so it has a T -fixed point. By Lemma 3.1.3, such a point is of the form e(y) with
y ∈W J , y ≤ w, and (w0y)J ≤ (w0v)J ; the latter inequality is equivalent to v ≤ y by
Proposition 2.3.2(ii). Hence v ≤ w, which implies v = wsβ for some β ∈ Φ+. After
an easy check of transversality and an application of Lemma 4.4.1, we therefore
have, for all v ∈W J such that `(v) = `(w)− 1:

[XJ
w].[XJ

w0v] =

{
[Cβ ] if v = (wsβ)J ,

0 otherwise.

Lemma 4.4.1(iv) now completes the proof. �

5. The Deodhar decomposition

In this section, we will discuss the work of Marsh and Rietsch [14], which builds
on a result of Deodhar [9]. The set up is as before: G is a split, simply connected
semisimple algebraic group over a field k; we invite the reader to recall the defini-
tions in §2.1.1, which will be used extensively. Also, from now on, we restrict our
consideration to the complete flag variety G/B+.
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5.1. Relative position. If y1 = g1B
+, y2 = g2B

+ ∈ G/B+, then the double coset
B+g−1

1 g2B
+ is well-defined and, according to the Bruhat decomposition, equal to

B+ẇB+ for a unique w ∈ W . Following [14], we call w the relative position of
y1, y2 and write

y1
w−→ y2.

Proposition 5.1.1. (i) If y1
w−→ y2

sα−→ y3 for a simple reflection sα, then
either:

y1
wsα−−−→ y3 or y1

w−→ y3.

If the latter holds, then necessarily `(wsα) < `(w).

(ii) If y1
w−→ y2, then y2

w−1

−−−→ y1.

Proof. (i) is a direct translation of Lemma 2.6.3, and (ii) is clear from definition. �

Proposition 5.1.2. Suppose that w is a reduced expression for w ∈W with factors
sα1 , . . . , sαn . Then for all y ∈ Ωw, there is a unique sequence y0, . . . , yn such that:

e(1) = y0

sα1−−→ y1

sα2−−→ · · · sαn−−→ yn = y.

The map πww(i)
: Ωw → Ωw(i)

given by y 7→ y(i) is algebraic and defined on cosets by

bẇB+ 7→ bẇ(i)B
+, b ∈ B

Proof. For existence, we just need to check that bẇB+ → bẇ(i)B
+ is well-defined, or

equivalently that B+∩ẇB+ẇ−1 ⊂ B+∩ẇ(i)B
+ẇ−1

(i) . This follows from Proposition

2.1.3(i).
For uniqueness, it suffices to show that if there are two such sequences yi, y

′
i then

yn−1 = y′n−1. By Proposition 5.1.1, we have yn−1
sαn−−→ yn

sαn−−→ y′n−1, hence either

yn−1 = y′n−1 or yn−1
sαn−−→ y′n−1. In the latter case, by Proposition 5.1.1 again we

have y0
w−→ y′n−1, which contradicts the uniqueness of relative position. �

5.2. Pinning G. To work in coordinates on G, we establish some more notation.
For each α ∈ ∆, fix an associated group homomorphism

φα : SL2 → G.

The choice of φα yields explicit one-parameter subgroups defined by

xα(t) = φα

(
1 t
0 1

)
, yα(t) = φα

(
1 0
t 1

)
,

considered as homomorphisms Ga → G of algebraic groups over k. The images are
the root subgroups Uα, U−α, respectively. Taken together, the data of T,Φ+, and
the maps φα, xα, yα are sometimes called a pinning of G. In our coordinates, the
lifts of sα guaranteed by Proposition 2.5.1 may be given by

ṡα = φα

(
0 −1
1 0

)
.
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5.3. Deodhar components. Fix a reduced expression w for w. For each y ∈ Ωw,
define a sequence v(i) ∈W by the diagram of relative positions:

e(1) = y0 y1 · · · yn−1 yn = y

e(w0) e(w0) e(w0) e(w0)

sα1 sα2
sαn−2 sαn

w0v(0)(y) w0v(1)(y) w0v(n−1)(y) w0v(n)(y)

Equivalently, if we define for any v, v′ ∈W the cell

(7) Rv,v′ = w0Ωw0v ∩ Ωv′ = B+e(v′) ∩B−e(v) ⊂ G/B+,

then v(i)(y) is the unique element of W such that

yi ∈ Rv(i)(y),w(i)
.

For any sequence v ∈Wn, define the Deodhar component:

Rv,w =
{
y ∈ Rv,w : v(i)(y) = v(i)

}
=
{
y ∈ Rv,w : πww(i)

(y) ∈ Rv(i),w(i)

}
.

(8)

5.4. Distinguished subexpressions. By definition, we have

Ωw =
⊔
v

Rv,w.

But we do not yet even know for which v the Deodhar component is nonempty!
The key combinatorial condition is the following. If v is a subexpression of w, then
v is called distinguished if, for all 1 ≤ i ≤ n, we have:

`(v(i−1)sαi) < `(v(i−1)) =⇒ v(i) = v(i−1)sαi .

Proposition 5.4.1. If Rv,w 6= ∅, then v is a distinguished subexpression of w.

Proof. Suppose y ∈ Rv,w and consider for each i the diagram of relative positions:

yi−1 yi

e(w0)

sαi

w0v(i−1) w0v(i)

Then by Proposition 5.1.1, we have either w0v(i) = w0v(i−1)sαi or w0v(i) = w0v(i−1),
and the latter occurs only if `(w0v(i−1)sαi) < `(w0v(i−1)). Equivalently, either
v(i) = v(i−1)sαi or v(i) = v(i−1), and the latter occurs only if `(v(i−1)sαi) > `(v(i−1)).
Since v(0) = 1, this is exactly the condition for v to be a distinguished subexpression
of w. �

5.5. Recursively parameterizing Deodhar components. Suppose that w is a
reduced expression of length n for w ∈W , and v is a distinguished subexpression.
Let α be a simple root such that `(wsα) = n + 1, and let wα be the reduced
expression obtained by appending w(n+1) = wsα to w. There are two natural
extensions of v to a subexpression of wα, obtained by appending either v(n+1) =
v(n)sα or v(n+1) = v(n) to v. Let us label them vα and v◦, respectively. Then we
have:

(9) (πwsαw )−1(Rv,w) = Rvα,wα tRv◦,wα .

Note that, if v(n)ṡα < v(n), then Rv◦,wα = ∅ by Proposition 5.4.1.
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Lemma 5.5.1. Suppose given a subset G0 ⊂ U−v̇n such that the natural projection
G→ G/B+ induces an isomorphism

G0
∼−→ Rv,w.

Then:

(i) If `(v(n)sα) < `(v(n)), then there is a commutative diagram:

G0 × Uαṡα Rvα,wα

G0 Rv,w

pr1

∼

πwsαw

∼

where the top arrow is induced by multiplication and projection G→ G/B+.
(ii) If `(v(n)sα) > `(v(n)), then there are commutative diagrams:

G0 × U∗−α Rv◦,wα G0 × {ṡα} Rvα,wα

G0 Rv,w G0 Rv,w

pr1

∼

πwsαw
pr1

∼

πwsαw

∼ ∼

where the top arrows are again induced by multiplication and projection,
and U∗±α = U±α \ {1}.

Proof. Our first claim is that the map G0×Uαṡα → G/B+ is an isomorphism onto

(πwsαw )−1(Rv,w). Indeed, it has the correct image because gB+ sα−→ gusαB
+ for all

g ∈ G and u ∈ U+, and injectivity can be checked on the restriction to a single
value of g ∈ G0, where it is clear. By Proposition 5.4.1, (i) follows.

For (ii), suppose that y = guṡα ∈ G/B+, where u ∈ Uα and g ∈ G0. If u = 1,
then

y = gṡαB
+ ∈ U−v̇(n)ṡαB

+,

so by definition y ∈ Rvα,wα .
Suppose now that u 6= 1. There is an isomorphism (of varieties) ι : U∗α → U∗−α

such that

uṡαB
+ = ι(u)B+.

This can be checked at the level of SL2, where it is given by(
1 t
0 1

)
7→
(

1 0
−t−1 1

)
.

Therefore the natural map G0 × U∗−α → G/B+ is an isomorphism onto the image
of G0 × U∗αṡα. Since

G0U
∗
−α ⊂ U−v̇nU−α ⊂ U−v̇(n),

the image of G0 × U∗−α lands in Rv◦,wα , and (ii) follows. �

We can use this lemma to give an explicit parameterization of each Deodhar
component.

Definition 5.5.2. For each expression v of length n, define index sets

J+
v =

{
i ∈ {1, . . . , n} : v(i) > v(i−1)

}
,

J◦v =
{
i ∈ {1, . . . , n} : v(i) = v(i−1)

}
,

J−v =
{
i ∈ {1, . . . , n} : v(i) < v(i−1)

}
.
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For every reduced expression w with factors sα1
, . . . , sαn , and every distinguished

subexpression v, define a subvariety Gv,w of G to be the space of products

g = g1 · · · gn, gi =


xαi(mi)ṡ

−1
αi , if i ∈ J−v

yαi(ti), ti 6= 0 if i ∈ J◦v
ṡαi if i ∈ J+

v ,

where mi and ti are considered as parameters in A1 and A1−{0}, respectively. Let

ρv,w :
(
A1
)J−v × (A1 − {0}

)J◦v → Gv,w

be the map defined by the parameters mi and ti.

Proposition 5.5.3 ([14] Proposition 5.2). Let w be a reduced expression and v
a distinguished subexpression. Then ρv,w is an isomorphism, and the natural map
induces an isomorphism:

Gv,w
∼−→ Rv,w

g 7→ gB+.

Moreover, if g = g1 . . . gn is the factorization witnessing g ∈ Gv,w, the partial
products satisfy g1 . . . gi ∈ U−v̇(i) and πww(i)

(g1 . . . gnB
+) = g1 . . . giB

+.

Proof. The strategy is to induct on n; the base case is trivial, and for the inductive
step we must apply Lemma 5.5.1. So assume that the proposition holds for v,w
and consider a reduced expression of the form wα for a simple root α. By induction,
we may apply the lemma to

G0 = Gv,w ⊂ U−v̇n.
The only point requiring explanation is the substitution of Uαṡ

−1
α for Uαṡα in

case (i). This is needed to ensure Gvα,wα = Gv,wUαṡ
−1
αi ⊂ U−v̇(n+1) because

v̇(n+1) = v̇(n)ṡ
−1
α ; but it does no other damage because ṡ2

α ∈ T . �

The following corollaries are originally due to Deodhar; less explicit proofs of
them are contained in [9].

Corollary 5.5.4. (i) Given a reduced expression w for w of length n, Rv,w 6=
∅ if and only if v is a distinguished subexpression of w.

(ii) If v is a distinguished subexpression for v, then

dim(Rv,w) = `(w)− `(v)− |J−v |,
and on the level of points there is an isomorphism

kJ
−
v × (k∗)J

◦
v ∼= Rv,w(k).

This corollary suggests that we should consider for which distinguished v the
set |J−v | is a small is possible; recall that a subexpression v of w is positive if
v(i) ≥ v(i−1) for all i.

Proposition 5.5.5 ([14], Lemma 3.5). Given a reduced expression w for w, for
every v ≤ w there is a unique distinguished, positive subexpression v+ for v in w.

Proof. We proceed by induction on `(w) = n. If v is both positive and distinguished,
then we must have v(n−1)sαn > v(n−1). So set v(n−1) = v(n)sαn if vsαn < v and
v(n−1) = v otherwise. We then have v(n−1) ≤ w(n−1), so by induction there is a
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unique positive, distinguished subexpression for v(n−1) in the reduced expression
(w(0), . . . , w(n−1)). Then the resulting sequence, with v(n) = v appended, is the
unique positive, distinguished subexpression for v in w. �

Corollary 5.5.6. The cell Rv,w is irreducible of dimension `(w)−`(v), and Rv+,w(k)

is Zariski dense in Rv,w(k). If k = R or C, then Rv+,w(k) is also dense in Rv,w(k)
for the analytic topology.

Proof. In light of Corollary 5.5.4 and Proposition 5.5.5, we need only observe that
k is Zariski dense in k for any characteristic zero field k. �

5.6. Positivity. Suppose for this subsection that k = R. We give a brief review of
the notion of positivity following [14, §11] as well as [12]. In 1930, Schoenberg [16]
defined a matrix to be totally ≥ 0 if all of its minors are ≥ 0; this definition was
found to have powerful combinatorial applications.

For any reductive group G with a pinning as above, we may define

U+
α,≥0 = xα(R≥0) = φα

(
1 R≥0

0 1

)
, U−α,≥0 = yα(R≥0) = φα

(
1 0

R≥0 1

)
for each simple root α. Likewise, let

Tα,>0 =

{
φα

(
t 0
0 t−1

)
: t ∈ R≥0

}
.

If we denote by U±≥0 the submonoid of G generated by the U±α,≥0 for all simple
roots α, and by T>0 the submonoid of G generated by the Tα,>0, then the totally
nonnegative part of G is defined as:

G≥0 = U−≥0T>0U
+
≥0.

This is again a monoid, and a classical theorem due to Whitney [20] shows that,
when G = GLn, then G≥0 consists exactly of the positive matrices in the sense of
Schoenberg.

To return to flag varieties, the totally nonnegative part of G/B+ is by definition

(10) (G/B+)≥0 =
{
uB+ : u ∈ U−≥0

}
,

where the closure is in the analytic topology. By [12, Proposition 8.12], G≥0 pre-
serves (G/B+)≥0 under the group action. However, it is not true that (G/B+)≥0

is the image of G≥0 under the projection to G/B+. In other words, taking the
closure in the flag variety is a truly nontrivial operation.

For each v ≤ w, the nonnegative part of the cell Rv,w is defined as:

(11) R>0
v,w = Rv,w ∩ (G/B+)≥0.

Lusztig conjectured [12] that each R>0
v,w is a semi-algebraic cell, i.e. isomorphic to

R`(w)−`(v)
>0 . The following theorem resolves this conjecture in a completely explicit

way.

Theorem 5.6.1 ([14], Theorem 11.3). Let w be a reduced expression for w ∈
W with factors sα1

, . . . , sαn , and suppose v ≤ w. Let v+ be the unique positive
subexpression for v in w. Then R>0

v,w ⊂ Rv+,w, and, if G>0
v+,w ⊂ Gv+,w(R) is the

pre-image of R>0
v,w, then ρv+,w induces an isomorphism

(R>0)`(w)−`(v) ∼−→ G>0
v+,w.
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Remark 5.6.2. Since Gv+,w(R) is the set of products

g = g1 · · · gn, gi =

{
yαi(ti), ti ∈ R∗, if i ∈ J◦v+

ṡαi , if i ∈ J+
v+
,

the theorem says that the positive part of Rv,w is exactly the image of the subset
of Gv+,w where all the parameters ti are positive.

Note that G>0
v+,w 6⊂ G≥0 in general; but if v = 1, then the inclusion clearly holds.

In the rest of this section, we describe some of the tools used in the proof.

5.7. Minors. Marsh and Rietsch use a method they call the “generalized chamber
Ansatz” to construct an inverse to the isomorphisms

(12)
(
A1
)J−v × (A1 − {0}

)J◦v ∼−−−→
ρv,w

Gv,w
∼−→ Rv,w.

This is a key step in the proof of Theorem 5.6.1, because it allows one to extract
the parameters ti, mi using only information about a point in G/B+. Perhaps
unsurprisingly, doing so requires a generalization of matrix minors from SLn to our
group G.

Definition 5.7.1 ([14], Definition 6.2). Let λ be a dominant weight and Vλ the
corresponding highest weight representation with highest weight vector ξλ. For
w,w′ ∈W , define

∆wλ
w′λ : G→ A1

to be the map sending g to the ẇξλ-component of gẇ′ξλ.

Actually, one should check that this is well-defined, i.e. depends only on wλ,
w′λ, and g. First of all, λ can be recovered from wλ because any weight is in the
Weyl group orbit of a unique dominant weight; and ẇξλ can be recovered from wλ
and λ since, if sα stabilizes λ, then ṡα ∈ UαU−αUα stabilizes ξλ [14, Lemma 6.1].

As an example, one may check directly that if G = SLn, and λ = ωi is a
fundamental weight, the ∆wλ

w′λ compute exactly the minors of g.

Remark 5.7.2. Suppose zẇB+ ∈ Rv,w, where w is a reduced expression for w
and z ∈ U+; we claim

∆
w(i)λ

v(i)λ
(z) 6= 0

for all indices 0 ≤ i ≤ `(w) and any dominant weight λ. Indeed, by definition
zẇ(i)B

+ ∈ B−v(i)B
+, so, for any highest weight λ, the vector zẇ(i)ξλ has nonzero

component in the v(i)λ weight space.

The explicit inverse to (12) is:

Theorem 5.7.3 ([14], Theorem 7.1). With notation as above, suppose that z ∈ U+

and zẇB+ ∈ Rv,w(k). Then, by Proposition 5.5.3, zẇB+ = gB+ for some g =
g1 · · · gn, where

gi =


xαi(mi)ṡ

−1
αi , if i ∈ J−v

yαi(ti), ti 6= 0 if i ∈ J◦v
ṡαi if i ∈ J+

v ,

and ti,mi are considered as parameters in k. We have:
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(i) For each i ∈ J◦v,

ti =

∏
β 6=αi ∆

v(i)ωβ
w(i)ωβ (z)−〈αi,β

∨〉

∆
v(i)ωαi
w(i)ωαi

(z)∆
v(i−1)ωαi
w(i−1)ωαi

(z)
,

where in the numerator β ranges over simple roots, ωβ is the corresponding
fundamental weight, and β∨ is the coroot.

(ii) For each i ∈ J−v and with the same conventions,

mi =
∆
v(i−1)ωαi
w(i)ωαi

(z)∆
v(i−1)ωαi
w(i−1)ωαi

(z)∏
β 6=αi ∆

v(i)ωβ
w(i)ωβ (z)−〈αi,β∨〉

−∆
v(i−1)ωαi
sαiωαi

(g1 · · · gi−1).

The proof is somewhat involved, but we will give some indications, starting with
a simple lemma.

Lemma 5.7.4 ([14], Lemma 7.3(1)). With notation as above, suppose λ is a dom-
inant weight. Then:

∆
v(i)λ

w(i)λ
(z) =

1

∆
w(i)

λ (g1 · · · gi)
.

Proof. By Proposition 5.5.3,

g1 · · · giB+ = πww(i)
(gB+) = πww(i)

(zẇB+) = zẇ(i)B
+.

So in the highest weight representation Vλ, the lines spanned by zẇ(i)ξλ and
g1 · · · giξλ agree. It follows that:

∆
v(i)λ

w(i)λ
(z)

∆
v(i)λ

λ (g1 · · · gi)
=

∆
w(i)λ

w(i)λ
(z)

∆
w(i)λ

λ (g1 · · · gi)
.

Since z ∈ U+ and g1 · · · gi ∈ U−v̇(i) by Proposition 5.5.3, we have

∆
v(i)λ

λ (g1 · · · gi) = ∆
w(i)λ

w(i)λ
(z) = 1,

and the lemma follows. �

Similar formulas can be proven for the other minors appearing in Theorem 5.7.3.
The upshot is that all of ∆

v(i)ωβ
w(i)ωβ (z), ∆

v(i−1)ωαi
w(i−1)ωαi

(z), ∆
v(i−1)ωαi
w(i−1)ωαi

(z), etc. can ulti-
mately be written in terms of the partial products g1 · · · gi. These minors can then
be calculated directly in terms of the parameters ti,mi, and the theorem is reduced
to a difficult but tractable exercise in algebra. Notice that Proposition 5.5.3 is an
essential input, not just motivation: one needs to know that the parameters ti,mi

exist in order to compute them. This is the origin of the name “ansatz.”
The link between Theorem 5.7.3 and positivity is the following fact, which recalls

the classical definition of positivity:

Lemma 5.7.5 ([14], Lemma 11.4). If k = R and zẇB+ ∈ (G/B+)≥0, where
z ∈ U+, then

∆vλ
wλ(z) ≥ 0

for all v ∈W and all dominant weights λ.

The key point in the proof of Theorem 5.6.1 is the following. One shows, using
the formulas of Theorem 5.7.3 and some related identities, that if zẇB+ = gB+

for any g ∈ Gv,w with v+ 6= v (or any g ∈ Gv+,w with a negative parameter ti),
then z must have some negative minor.
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