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ABsTrACT. The Bloch-Kato conjecture predicts a far-reaching connection between orders of vanishing of L-
functions and the ranks of Selmer groups of p-adic Galois representations. In this article, we consider the
four-dimensional, symplectic Galois representations arising from automorphic representations 7 of GSp, (Ag)
with trivial central character and with the lowest cohomological archimedean weight. Under mild technical
conditions, we prove that the Selmer group vanishes when the central value L(7, spin, 1/2) is nonzero. In the
spirit of bipartite Euler systems, we bound the Selmer group by using level-raising congruences to construct
ramified Galois cohomology classes. The relation to L-values comes via the GSpin; — GSpin, periods on
a compact inner form of GSp,. We also prove a result towards the rank-one case: if the w-isotypic part of
the Abel-Jacobi image of any of Kudla’s one-cycles on the Siegel threefold is nonzero, it generates the full
Selmer group. These cycles are linear combinations of embedded quaternionic Shimura curves, and under the
conjectural arithmetic Rallis inner product formula, their heights are related to L' (7, spin, 1/2).
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0. INTRODUCTION

0.1. Main results. Let 7 = ®'m, be a cuspidal automorphic representation of GSp,(Ag) of trivial central
character and conductor N (7), such that 7., belongs to the discrete series L-packet of parallel weight (3, 3).
In particular, 7 appears in the étale cohomology of the GSp, Shimura variety with trivial coefficients. Let
FE be a sufficiently large coeflicient field; then we have a compatible family of p-adic Galois representations

pryp + Go — GSpy(Eyp)

indexed by primes p|p of F, and normalized so that the similitude character of pr , is cyclotomic. Let V ,
be the underlying four-dimensional Ej,[Gg]-module of p ,, and consider the Bloch-Kato Selmer group

HH(Q, Virp) =ker | H(Q, Vrp) = H'(Qp, Ve ® Beris) x [ [ H' (g, Vp) | »
t#p

where Ig, is the local inertia subgroup. The Bloch-Kato conjecture applied to V. , predicts
dimpg, H}(Q, Virp) = ordg_y o L(m, spin, 1/2),

where the L-function is normalized so that s = 1/2 is the central value. Our first main result proves many
cases of the Bloch-Kato conjecture for V7 ;, in rank zero.

Theorem A (Theorem 9.1.4). Suppose 7 is not CAP or endoscopic, and for some (| N (7), 7y has a local
Jacquet-Langlands transfer to the compact inner form of GSpy g, Let p|p be a prime of E such that:

(1) mp is unramified.

(2) The residual representation p,. ,, is absolutely irreducible and generic (Definition 2.7.3).

(3) There exists a prime q { N(r) such that ¢* # 1 (mod p), and Prp(Froby) has eigenvalues

{g,1,,q/0}
with o & {:i:l, +q, ¢°, q_l}.
Then
L(m,spin, 1/2) #0 = H}(Q, Vep) =0.
Remarks. (i) The conditions (1) and (2) are always satisfied for cofinitely many p. Condition (3) is

always satisfied for the primes p lying over a set of rational primes of positive Dirichlet density; it is
satisfied for all but finitely many p under conditions listed in Theorem C.4.11.
(ii) When p > 5, which is necessary for (3), 7 is CAP or endoscopic if and only if V. , is reducible.
(iii) For all but finitely many of the primes p satisfying the conditions in Theorem A, we are able to
strengthen the result to the vanishing of the dual Selmer group H } (Q,Vap/Tryp), where Ty, C Vi
is a Galois-stable lattice; see Definition 9.3.7 and Corollary 9.3.9.

For instance, from Theorem A we can deduce the following:
Corollary B (Corollary 9.3.10). Suppose 7 is not CAP or endoscopic, and there exists a prime £|N (1) such
that 7y is of type lla in the notation of [95]. Then
L(ﬂ-7 spin, 1/2) 7& 0 = H}(Q’ Vﬂ'vP/Tﬂ'»P) =0
for all but finitely many .
In §9.4, we give applications of Theorem A to certain 7 arising by automorphic induction; this gives new
results towards Bloch-Kato for Hilbert modular forms over real quadratic fields of non-parallel weight (2, 4)

(including CM forms), and for twists of classical modular forms of weight 3 by certain Hecke characters of
imaginary quadratic fields.



BLOCH-KATO FOR SOME FOUR-DIMENSIONAL SYMPLECTIC GALOIS REPRESENTATIONS 3

Our second main result concerns the rank one case of Bloch-Kato for V7 ,. To state it, let V' be a quadratic
space of signature (3, 2), and suppose 7 admits a Jacquet-Langlands transfer IT to the inner form GSpin (V") of
GSpy; for instance, if V' is split, then GSpin(V') = GSp, and we can take IT = 7. Let K C GSpin(V)(Ag)
be a neat compact open subgroup such that Hff # 0, and let Sh (V') be the Shimura variety for GSpin(V')
at level K, which is a classical Siegel threefold when V' is split. Let p|p be a prime of F; then we have

I @ Vep(-2), i=3,

(0.1) H, (Shyc (Vg Bp)[ILy] = {0 i#3.

In particular, if CH?(Sh K(V))mﬁf denotes the Chow group of codimension-two algebraic cycles, localized
at the maximal ideal of an appropriate Hecke algebra corresponding to the eigenvalues of 7w, we have an
Abel-Jacobi map

Oasn; : CH*(Shic(V)m,, — H(Q, Hg, (Shic(V)g, Ep(2))[11¢])

0.2)
= H}(Q, Vrp) ®IIF.

We consider the codimension-two Kudla cycles
0.3) Z(T, p) € CH*(Shg(V)),

which are indexed by the data of a 2 X 2 symmetric, positive-semidefinite matrix 7" and a test function
peSVigA +,Z). When T is nondegenerate, Z(T', ¢) is a linear combination of Shimura curves over Q,
embedded into Shy (V') by GSpin(V')(A ¢)-translates of group maps of the form

GSpin(1,2) — GSpin(3, 2);

conversely, any such embedded Shimura curve can be written as a Kudla cycle for some 7" and .

Theorem C (Theorem 12.3.1). Suppose 7 is not CAP or endoscopic, and its base change to GL4(Aq) does
not arise by automorphic induction from an imaginary quadratic or quartic CM field. Let p|p be a prime of
E satisfying (1)-(3) from Theorem A. Then for any Kudla cycle Z(T, ) € CH?(Shx (V)),

Oasa, (Z(T, ) #0 = dimg, H}(Q, Vyy) = 1.

We now explain the relation of the Bloch-Kato Conjecture to Theorem C, in which L-values do not directly
appear. According to the resolution by Bruinier and Westerholt-Raum of Kudla’s modularity conjecture [15],
the formal g-series

(0.4) O, = >  Z(T,9)q"
TeSym,(Q)>o

lies in CH?(Shg (V) ®z M /9.9, where Ms 5 5 is the space of holomorphic Siegel modular forms of de-
gree 2 and weight 5/2. Let f € Ms, o generate the automorphic representation of the metaplectic group
Mp,(Ag) corresponding to IT under the generalized Shimura-Waldspurger correspondence of Gan-Li [33];
then the Petersson inner product ©,(f) := (O, f) lies in CH?(Shy (V))c. The still-conjectural® arithmetic
Rallis inner product formula proposes that, up to some local factors depending on ¢ and f, the derivative
L'(m,spin, 1/2) is related to the height of the cycle ©,(f) (suitably interpreted). Assuming Beilinson’s
conjecture on the injectivity of the p-adic Abel-Jacobi map, Theorem C could then be reformulated as

L' (w,spin, 1/2) # 0 = dimp, H}(Q, Vrp) = 1,

which is consistent with the Bloch-Kato conjecture.

IBut see the important progress towards this result by Li-Zhang [63], and the unitary case proved by Li-Liu [61, 62].
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0.2. Overview of the proofs. Before giving more detailed sketches below, we briefly indicate the methods
of proof of Theorems A and C. Pursuing a strategy initiated by Bertolini and Darmon for elliptic curves
[7] — and later extended to many new contexts by other authors [24, 26, 66, 67, 68, 69, 120] — we bound
the Selmer group by constructing ramified Galois cohomology classes through level-raising congruences
and special cycles on Shimura varieties for ramified GSping groups. Proving the classes we construct are
ramified is the most delicate part: by a calculation on the special fiber, the ramification is essentially measured
by linear combinations of compact GSpins — GSping periods for a Jacquet-Langlands transfer of 7.2 To
access the underlying representation theory of these periods and relate them to L-values, we interpret them
as the Fourier coefficients of certain theta lifts in M55 5.

0.3. Sketch of the proof in the rank zero case. Let us explain the main ideas involved in the proof of
Theorem A. Fix a Gg-stable lattice Ty C V; p, and let T ,, := 17 / p"Tx p for n > 1. The mechanism for
bounding the Selmer group is a collection of auxiliary Galois cohomology classes

ﬂn(Q) € Hl(@a Tﬂ’,n)a

indexed by primes ¢ satisfying appropriate level-raising congruence conditions modulo p™, and having the
following two properties:

(1) The restriction Resy £,,(q) is unramified for all £ { N ()q, and crystalline for ¢ = p.
(2) Under the assumption L(7,spin, 1/2) # 0, Res, ky(q) is ramified (if n is sufficiently large).

Given such a system of classes, a standard argument using Poitou-Tate duality shows that H } (Q, Vzp) van-
ishes.

As indicated in §0.2, we obtain the classes k,(q) by level-raising congruences from special cycles on
Shimura varieties for ramified GSping groups. More precisely, fix the prime ¢| N (7) such that 7, has a local
Jacquet-Langlands transfer (we will see later that this is crucial for the argument). Let V,, be the unique five-
dimensional quadratic space of signature (3, 2) and trivial discriminant that ramifies precisely at ¢ and ¢; one
exists by the local-global classification of quadratic forms. On the corresponding GSpin Shimura variety
Sh(V,¢) we have the codimension-two Kudla cycles Z (T, p) € CH?(Sh(V,;)) as in §0.1. (For simplicity,
we suppress the choice of level structure.) After localizing at the maximal ideal m of the Hecke algebra
corresponding to p ,,, the main result of [42] implies that H*(Sh(Vyg),Op)m = 0, where O C E is the
ring of integers — this is the most crucial way that the condition (2) of Theorem A enters the argument. In
particular, one has an Abel-Jacobi map

OAJm : CHQ(Sh(V;ﬂ))m - Hl(@a He?)t(Sh(Vqﬁ)a Op(2))m)-

However, it is no longer true that V;. , appears in the étale cohomology I (Sh(Vye)g, E), because, as g
is unramified, = does not have a Jacquet-Langlands transfer to GSpin(Vy,).
Instead, we construct level-raising maps (see below)

Op, - Hgt(Sh(‘/qZ)a OP(Q))m — Tﬂ,n-
Then we obtain a family of Galois cohomology classes
kn(q, T, @, an) = ay 0 aAJ,m(Z(T, ©)) € Hl(Qv Tﬂ,n)v

for varying T'and p € S (Vq% ®Ay, 7). Any k,(q, T, @, o) will satisfy the property (1) above, as long as the
level structure for Sh(Vj) is chosen to be hyperspecial outside N (7)g. The proof of (2) is far more subtle,
as we explain below, and we are only able to show that some k,,(q, T, ¢, o) is ramified at g; in particular,
the choice of T' cannot be made explicit. Once we have any ramified class, however, we can use it as the class
called x,,(q) above.

20ra congruent automorphic form to 7, in the case of Theorem C.
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0.3.1. Ramification and the relation to L-values. Let V; be the unique five-dimensional, positive-definite
quadratic space of trivial discriminant that ramifies only at £. By the assumption that 74 has a local Jacquet-
Langlands transfer, one can find a function

(0.5) Br + GSpin(Vy)(Q)\ GSpin(Vy)(Ay)/K — O

with the same spherical Hecke eigenvalues as 7, where K is a sufficiently small compact open subgroup, with
K, hyperspecial. We abbreviate this double coset space as Sh(V;). Because 7 has trivial central character,
L= descends to an automorphic form on SO(V}); in particular, for any ¢ € S (ng ® Ay, Z), one can consider
the classical theta lift

Oy (Br) € Ms)92 ®7 O.

The classical Rallis inner product formula computes the Petersson norm of O (5x):

0.6) <@<p(57r)7 Gw(ﬁw» = <57r7 /87r> - L(m, spin, 1/2)

up to local factors depending on ¢ and 5.

On the other hand, the Fourier coefficients of ©,(3x) can be computed as GSping-periods of . In fact,
for T € Symy(Q)>0 and ¢ € S(V? @ Ay, Z), one can define Z(T, ¢) € Z[Sh(V;)] analogously to Kudla’s
cycles in (0.3), arising from group embeddings GSpin; < GSpin(V;). Then we have:

@w(/ﬁw) = Z BW(Z(T7 (P))qT-

TeSym,(Q)>0

In particular,
(0.7) L(m,spin, 1/2) #0 < 3T, ¢s.t B(Z(T,p)) # 0.

The connection to Galois cohomology classes comes from the following (idealized) identity, for a certain
choice of «,:

(0.8) Resg wn(q, T, 01 @ @™, o) = Bx(Z(T, 07 @ ™))  (mod p™).

Here 97 € S(V;,® A%, Z) ~ S(V? @ A}, Z) is any test function, o)™ € S(V,7,®Q, Z) is designed so that
Z(T, p?@pg™™) € CH?(Sh(V,;)) will have a reasonable integral model over Zg) —infact, Z(T, p? @ ™)
is a linear combination of quaternionic Shimura curves ramified at ¢, with the usual maximal compact level
structure — and ;™" € S (V£2 ® Qg,Z) is an explicit test function whose origin is described in the next
paragraph. Finally, to make sense of the identity (0.8), we use that H! (Ig, TW,n)F\“’bq:1 is free of rank one
over O/p", by the congruence conditions imposed on ¢; so we are viewing both sides as elements of O/p™.

The main tool for proving (0.8) is an analysis of the weight spectral sequence for a semistable integral
model of Sh(Vg¢) over Z,); this is obtained by blowup from the canonical PEL model, which has ordinary
quadratic singularities. The double coset space Sh(V7) enters the picture as the indexing set for the irreducible
components of the (two-dimensional) supersingular locus of the special fiber of Sh(V,,), and indeed g™
arises from considering the intersections of the special fiber of Z (7', o7 ® gogam) with various strata in the
supersingular locus. (Of course, for this discussion to be accurate, the level structures for Sh(V,,) and Sh(V;)
are chosen to be compatible away from q.)

However, even once we have proved (0.8), one major obstacle remains to proving that at least one of the

classes Resg i, (¢, T, ¢4 ® o, o, is ramified. From (0.7), one can deduce that there exists ¢? and 7" such

that B, (Z(T, 7 @ ¢P")) # 0 (mod p™) for sufficiently large n, where " is the indicator function of a

self-dual lattice. Unfortunately, although @™ is invariant by a hyperspecial subgroup K, of GSpin(V)(Q,),

it is not equal to ¢iP". To get around this, we give a criterion on K. q-invariant functions ¢, € S(VZ®Q,, Z)
under which we can prove:

09)  Be(Z(T.¢" © ") #£0 (mod p") — 3T’ st Bo(Z(T',¢" @ p,)) 0 (mod p"),
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The function go}lmr satisfies the criterion, so indeed we can use (0.7), (0.8), and (0.9) to obtain the local

ramification of some class Resq kn(q,T”, ¢, ). The lack of control over 7" (in particular its possible
dependence on ¢) is the reason that we must consider the full family of classes x,,(q, T, @, o).
The proof of (0.9) uses that the theta lift map

O_(Bx) : S(VP @ Ay, Z) — Ms/39 ®7 0

factors as a product of local maps, defined purely in terms of the local Weil representation. Thus (0.9) can be
reduced to a local question about the mod-p Weil representation of Mp,(Q,) x SO(V;)(Qq) on S(V;, ).

0.3.2. Level-raising. In the discussion above, we asserted the existence of a level raising map

(0.10) oy He (Sh(Vie), O (2))m — T

ram

such that the classes (g, T, p? ® g ay,) satisfy the identity (0.8). We now explain the construction of
v, in more detail. The weight spectral sequence for Sh(V;,) gives rise to a diagram of the following form:

Frob,=1
My (T, B (Sh(Vag)g O@)n) —— H' (T, HA(Sh(Vy)g, 0@)m)

©10 OpISh(Vl, /(1)

O/pn ~ H! (IQq , Tw,n)FrObq:17

where T}; is a certain spherical Hecke operator measuring the level-raising congruence at the prime ¢q; M_4
refers to the monodromy filtration; and the equality in the bottom row uses the level-raising condition on
q. Any level-raising map as in (0.10) induces a map «, 4 as in (0.11), not necessarily making the diagram
commute.

Using an idea of Scholze [98] on “typic-ness” of Galois modules, we show that the data of a Hecke-
equivariant o, » is actually equivalent to the data of cv,,. Moreover, the identity (0.8) is more or less equivalent
to the commutativity of the diagram (0.11). So our task is to find the Hecke-equivariant dashed arrow in (0.11)
lifting B, o €.

One approach to finding the lift in (0.11) would be Taylor-Wiles patching, in the spirit of [65]. This would
show that H, g’t(Sh(%g)@, O)n is free as a Hecke module, and as a byproduct that the top arrow in (0.11) is
an isomorphism. However, the drawback of the patching argument is that it requires some strong “residual
ramification” conditions on py .|, for primes | N (m); in general, one expects that the Hecke-module
structure of H3, (Sh(Vge)g: O)m may be more complicated.

Instead of taking this route, our method still uses Galois deformation theory, but now only to obtain a
rather coarse quantitative control on the possible congruences between 3, o £ and other Hecke eigensystems
in H'(Ig,, H,(Sh(Vye)g, Op(2))m). Indeed, if there were no congruences at all, then (0.11) would just be
a diagram of O/p"™-modules, and the lift «;, . would exist for trivial reasons. In general, we are able to lift
B0 only after multiplying by a generator of p©, where C'is essentially the length of a certain adjoint Selmer
group for T’ ,,. We can control C' using a theorem of Newton and Thorne [83, 110] that H } (Q, ad® pw) = 0;
since C'is independent of n and ¢ (and actually O for cofinitely many p) its appearance causes no harm in the
argument.’

3We remark that the theorem of Newton and Thorne still uses Taylor-Wiles patching, but in a more flexible context.
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0.4. Sketch of the proof in the rank one case. Let V' be the quadratic space from §0.1. For an auxiliary
prime ¢ satisfying a level-raising congruence condition, we consider the “nearby” quadratic space V;, , which
has trivial discriminant and signature (5, 0), and is ramified precisely at ¢; and the primes of ramification for
V.

The key point to prove Theorem C is to produce a Hecke-equivariant map of the form

(0.12) By = Sh(Vyy) = O/p" st 3T, o with 8g, (Z(T, ¢)) # 0,

where o lies in S(V,> ® Ay, Z), Sh(V, ) is a finite double coset space like the one in (0.5), the Hecke module
structure on O/p"™ is given by 7, and again the choice of level structure is suppressed for simplicity. Once
we have f3,,, a similar argument to the proof of Theorem A allows us to produce a Galois cohomology class
kn(q1q2) € HYQ, T, =n) Which is ramified at go, crystalline at p, and unramified at ¢ for £ { N (7)q1q2. This
class is then used as the input to the duality argument to bound H } (Q, Vap).

Let Z(T, p) € CH?(Sh(V)) be the class from Theorem C with Oasn, (Z(T,p)) # 0. The idea to find

Bq, s to study the special fiber of Sh(V') at ¢y, a prime of good reduction. The supersingular locus is purely
one-dimensional, indexed by a Shimura set Sh(V;, ). We have the Abel-Jacobi map on the special fiber:

(0.13) Oasm : CH*(Sh(V)g,, ) = H' (Fg,, H (Sh(V) g, Op(2))m)-
Restricting (0.13) to supersingular cycles gives a map
0.14) aAJ,m,ss : Z[Sh(wh )] - Hl(Fql ’ Hgt(Sh(V)@a OP(Q))m)-

Composing with a map H, (Sh(V)g, Op(2))m — Trp, cf. (0.1), and noting that H'(Fy,, Ty ) is free of
rank one over O/p™ when ¢ satisfies the level-raising congruence condition modulo p™, we obtain our 3y, .

Using the Chebotarev density theorem and the local-global compatibility of the Abel-Jacobi map, one
can ensure Ja5m(Z (T, ¢)r,, ) is nonzero for a good choice of g;. Now, if the special fiber Z(T', ¢)r,, were
purely supersingular, then we could identify this local Abel-Jacobi class with the image of a special cycle
in Z[Sh(V4, )] under f3,,, and obtain the nonvanishing (0.12). (This is the strategy of [7], where the role of
Z(T, ) is played by a Heegner point.) Unfortunately, such is not the case for general Z (T, ¢).*

Instead, we use an auxiliary GSpin, Shimura variety S such that Z(T,¢) C S C Sh(V'). On the special
fiber of S, the supersingular locus is one-dimensional, and — by [111] — any one-cycle is cohomologically
equivalent to a linear combination of supersingular cycles, at least after the application of a certain GSpin,-
Hecke operator Ty, . We leverage this to rewrite am(Tq, - Z (T, ¢)r,, ) as the image of some Z(7', ¢') under
8AJ,m7SS, with QOI € S(Vf1 & Af, Z).

Now it remains to choose g1 so that daj m(Tq, - Z(T', ¢)r,, ) is nontrivial. For this choice to be possible, we
need some non-entanglement between p , and the Galois representations appearing in the cohomology of S,
which are closely related to Hilbert modular forms. In particular, the support of Z(T', ¢) in the cohomology
of .S needs to avoid some problematic Hecke eigensystems associated to CM forms. To ensure this, we use a
version of the modifying-the-test-function trick from (0.9), this time at (non-level-raising) auxiliary primes
¢ # q1, q2. Since the trick uses representation theory, it relies on the modularity conjecture recalled after the
statement of Theorem C. (The subtleties that appear in this part of the argument prevent us from bounding
the dual Selmer group H } (Q, Vzp/Tr ) in the context of Theorem C, in contrast to the rank zero case.)

One final difficulty that arises in the proof of Theorem C is the application of the level-raising arguments
in §0.3.2 to 3,,. Since 3, does not lift to a characteristic-zero Hecke eigenfunction in general, we cannot
directly apply the theorem of Newton and Thorne to produce the lift in the diagram (0.11). Instead, we use
the relative deformation theory developed by Fakhruddin, Khare, and Patrikis, along with a certain control of
level-raised adjoint Selmer groups, to show that either 3, lifts to an eigenfunction, or the Hecke eigensystem
of 7 is congruent modulo p” to that of an automorphic representation 7’ ramified at q; and qo; in either case,
we leverage the congruence to solve the lifting problem in (0.11). It is at this step that the extra hypothesis in

4One could imagine modifying ¢, to ensure a purely supersingular special fiber, and applying a version of (0.9) to ensure that
Z (T, ¢) remains nontrivial under this change of test function. Somewhat to our surprise, this strategy fails: any appropriate choice
of ¢, fails the criterion under which we prove (0.9).
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Theorem C (that 7 does not arise from certain automorphic inductions) enters the argument; if the image of
the Galois representation p; p is too small, then we are unable to control the adjoint Selmer groups needed
to apply Fakhruddin, Khare, and Patrikis’ method.

0.5. Comparison to other work. When 7, is Borel-ordinary with respect to p, and under a slightly different
large-image condition, Theorem A can be deduced from the main result of [71], which also covers more
general weights. However, the existence of ordinary primes is still an open problem for general automorphic
representations of GSp,, so the ordinarity hypothesis is potentially a serious one.

As indicated in §0.2, this article fits into an extensive literature of bounding Selmer groups using level-
raising congruences (the method of “bipartite Euler systems”). Compared to these works, one of the main
underlying difficulties to prove Theorem A is the non-factorizability of GSpins — GSpiny period integrals,
which is ultimately responsible for the appearance of the exotic test function ¢y™" (rather than the indictor
function of a self-dual lattice or a translate of such by the spherical Hecke algebra) in the identity (0.8). An-
other way to formulate this obstruction is in terms of spherical functions and Hironaka’s conjecture [45, 128].
To our knowledge, the only prior work on bipartite Euler systems facing this challenge was the recently ap-
peared PhD thesis of Corato Zanarella [27]. Interestingly, rather than our change-of-test-functions technique,
the issue in op. cit. is resolved using derived algebraic geometry; in our context, the analogous idea would
be to work with Z (T, p? @ ™) for more general ;*™, even in the absence of a good integral model.

Another novel aspect in the present work is in finding the 3;, in (0.12). To our knowledge, the idea of
using intersection theory on the special fiber of an auxiliary Shimura variety S, in which the supersingular
locus and the special cycle are of complementary dimension, is a new one.

Finally, we warn the reader that the “first and second reciprocity laws” (corresponding to finding ., (q)
and f3,, , respectively, in the discussions above) in the table of contents are named only by analogy to [7]. In
both cases, the full reciprocity law would constitute an equality, where we only prove an inequality, and that
only up to a bounded error. The exact statements are Theorems 8.5.1 and 11.2.6.

0.6. Comments on the endoscopic case. An automorphic representation 7 as in the beginning of §0.1
is called endoscopic associated to a pair (7, m2) of cuspidal automorphic representations of GL2(Ag) —
necessarily arising from classical modular forms of weights 2 and 4, respectively, and trivial nebentypus
characters — if the associated Galois representations satisfy

(015) )07r,p = ,071'1,[3 tH pﬂ'g,p

for one, or equivalently all, primes p of £. Here we normalize pr, , : Gg — GL2(E}) to have cyclotomic
determinant; also let V, , be the underlying Galois module. The set of 7 satisfying (0.15) is by definition
the endoscopic L-packet II(y, m). If V' is a quadratic space of signature (3,2) and II = Iy ® Il is an
automorphic representation of GSpin(V')(Aq) nearly equivalent to the members of II(7, 72), then we have

I ® Vi p(=2), i =3, Ty generic,
(0.16) H(Shg (V)gs Ep)[y] = { T @ Vi, 5(—2), i = 3, Tl holomorphic,
0 i # 3.

Note here that 1, is uniquely determined by II; via the Arthur multiplicity formula, which is known in this
case [21]. In particular, we still have a well-defined map

(0.17) Oasm, : CH*(Shi (V) = I @ (HH(Q, Vayp @ Virap)) -

The analogue of Theorem C is now:

Proposition D (Theorem 12.3.2). Suppose w1 and wo are non-CM, and p|p is a prime of E such that:

(1) m p and 73, are unramified.
(2) The residual representations py, , and pr, , are both absolutely irreducible, and pr, , © pr, , IS
generic (Definition 2.7.3).
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(3) For both i = 1,2, there exists a prime q t+ N(w) such that ¢* # 1 (mod p), p,, ,(Frobg) has
eigenvalues {1, q}, and p,., . ,(Froby) has eigenvalues {c, q/a} with o & {:tl, +q, ¢, q_l} .
Suppose as well that

() H}”(Qa Vi @ Vi p(=1)) = 0.
Then for any Kudla cycle Z(T, ) € CH?(Shg (V)),
Oas, (Z(T, ) #0 = dimpg, H{(Q, Vr, ) + dimp, H{(Q, Vi) = 1.

Remarks. (i) The conditions (1)-(3) hold for cofinitely many p (Lemma 4.1.5 and Proposition C.4.12).

(ii) The condition (x) is always expected to hold, by a classical result of Shahidi on nonvanishing of

Rankin-Selberg L-values [100]. Unfortunately, we remark that (x) does not follow from the main

result of [60], which applies only to Rankin-Selberg convolutions of modular forms with different

central characters. The role of (x) in the proof is to control congruences to non-endoscopic auto-
morphic representations of GSping groups.

(iii) Consider the case when V is split, so that Shx (V) is a classical Siegel threefold, and 7 is associated
to an elliptic curve E over Q. In particular, the Abel-Jacobi map (0.17) gives a way to construct
classes in H} (Q, T, F) from special cycles on Siegel threefolds. Weissauer asked in [124] how such
classes related to the classical theory of Heegner points, a question to which Proposition D provides
a partial answer: like the Selmer classes coming from Heegner points, these Abel-Jacobi classes can
be nonzero only if E has rank one (at least modulo the assumption on Rankin-Selberg convolutions).

(iv) In the text, we prove a stronger version of Proposition D that includes some CM cases.

Similarly, the methods used to Prove Theorem A can also be used for endoscopic representations under
the condition (x). This case is included in Theorem 9.2.4 for completeness, but note that the result gives
nothing new beyond Kato’s work [48].

0.7. Organization of the paper. In §1, we lay out the notational conventions for the article and cover pre-
liminary materials on involutions, Clifford algebras, and Selmer groups. In §2, we collect the necessary
background results related to automorphic representations, Galois representations, and Shimura varieties.
The most important role of this section is to make some of the results of [96] (on global Jacquet-Langlands
transfers for inner forms of GSp,) unconditional on Conjecture 7.5 of op. cit. In §3, we define Kudla’s cycles
Z (T, v) and their analogues on compact GSpin groups, and explain their relation to classical theta lifts. In
§4, we define the Galois cohomology classes and special periods used in the Euler system arguments. In §5,
we use the mod-p theory of the Weil representation to prove the change-of-test-functions criterion explained
above in (0.9); this is one of the most crucial (and technical) parts of the argument.

In §6, we turn to geometry, studying a ramified Rapoport-Zink space for GSpins. This section is based
on [118], although we need more details on intersection theory for our applications to special cycles. In §7,
these results are applied to study the special fiber of the ramified GSpin; Shimura variety, and compute the
local part of the Abel-Jacobi image of special cycles. (Some of the results in this section are generalizations
of those in [119].) In §8, we perform the level-raising and complete the program described in §0.3 above.
In §9, we prove the main results in the rank zero case. In §10, we study special cycles on the special fibers
of GSpin, and GSpin; Shimura varieties with good reduction. In §11 and §12, we prove our main result in
the rank one case.

The paper contains three appendices: in the short Appendix A, we explain the relation of the cohomology
of GSpin, Shimura varieties to Hilbert modular forms, which is well-known but for which we were un-
able to find a suitable reference. In Appendix B, we develop a general framework for deformation-theoretic
characteristic-zero level raising of GG-valued Galois representations, using ideas from [29]. These results
are most important for the proof of the rank one case. In Appendix C, we prove some large-image results
for the p-adic Galois representations that appear in the article, which are necessary for various Chebotarev
arguments.



10 NAOMI SWEETING

0.8. Acknowledgements. I wish to thank my PhD advisor, Mark Kisin, for his encouragement and advice
while I worked on this project. I am also grateful to Chris Skinner, Wei Zhang, Alice Lin, Salim Tayou,
and especially Murilo Corato Zanarella for helpful conversations. Thank you to Karen Schlain for help with
typesetting. This work was supported by NSF grants DGE-1745303 and DMS-2401823.

1. PRELIMINARIES

1.1. Notation.

1.1.1. Number fields and Galois groups. Let L C Q be a number field.

e We denote by Oy, the ring of integers. If p C Oy, is a prime, then we write O, and L, for the
respective completions, and @, for a uniformizer of O,.

e Let G, == Gal(Q/L) be the absolute Galois group. If S is a finite set of places of L, we denote by
L the maximal unramified-outside-S extension of L, and set G, s == Gal(L°/L) C Gp. Ifpisa
prime of L, we also write G, for the absolute Galois group of Ly, with inertia subgroup I, C Gp,.

e Forany p, Xp.cyc : G — Z, denotes the p-adic cyclotomic character. We normalize the definition
of Hodge-Tate weights so that vacyc\(;@p has weight one.

1.1.2. Adele groups and class field theory.

o For a number field K, let A be the adele ring; when K = Q we typically write A = Ag. For a
finite set S of places of Q, we write

As=J]Qn A°=T]Qn A7= J] Q.

veS vgS vgSU{oo}

e If 7 = ®, 7, is an irreducible admissible representation of G(A) for some Q-group G, then for a
squarefree integer D, 7T]1c) denotes ®2w7rg, and 7p denotes Qg pTe- The similar notations ﬂf , TS
hold for finite sets of primes S.

e For any prime p, let (p) € A? be the image of p under the natural inclusion Q — Af.

e We always normalize the reciprocity maps of class field theory to send uniformizers to geometric
Frobenius.

e For any number field L and finite-order character x : L*\A} — k*, with k a field, we write
rec(x) : G, — k> for the pullback by the reciprocity map.

1.1.3. Coefficient rings. For coefficient rings, we will often use a discrete valuation ring O which is a finite
flat extension of Zj,, with uniformizer z. In this context:

e We denote by CNL the category of complete local Noetherian O-algebras with residue field O /.
e For any torsion O-module M and any m € M, ord,(m) > 0 denotes the least integer such that
o= (m) gy — 0,

1.1.4. Symplectic groups.
0, I,

° Foranyn,leth:< I 0
—in n

> € GLay(Z), where 0,, is the n x n matrix of zeros and I,, is the

n X n identity matrix.
e Define the algebraic group GSps,, over Z by

(1.1) GSpy,(R) = {(9:A) € GLan(R) x R* : gQg" = \Q}

for any ring R.

e We have the natural similitude character v : GSp,,, — G,,,, and the symplectic group Sp,,, C GSps,,
is the kernel of v.

e For any prime p, we write (p) € GSp,,,(A) for the scalar matrix corresponding to (p) € AF.



BLOCH-KATO FOR SOME FOUR-DIMENSIONAL SYMPLECTIC GALOIS REPRESENTATIONS 11

1.1.5. GSpin groups. Let V be a quadratic space over a field F.

e We denote the pairing V' x V' — F by (v,w) — v - w.

e The Clifford algebra of V' is the associative F-algebra C'(V') generated by v € V, subject to the
relation

v? = (v-v)l.

There is a natural Z /27 grading on C'(V'), with respect to which the plus part is denoted C* (V).

e We denote by * the natural involution on C'(V'), determined by v* = v. Then GSpin(V') is the
algebraic group over F' defined by

GSpin(V)(R) = {(g, N e (CHV)®R)" x R : gg* = )\}.

The natural similitude character is again denoted v.
o If ' = Q, then for any prime p we again denote by (p) € GSpin(V)(Ay) the scalar element
peCH(V)~.

1.1.6. Quaternion algebras and quadratic spaces.

e For a squarefree integer D > 1, let Bp be the quaternion algebra over Q which ramifies at the factors
of D, and possibly at infinity. Let *p be the standard involution on Bp. We also denote by *p the
involution on M,,(Bp) given by the composite of * and transposition.

e For all squarefree D, let

(1.2) Vp = ‘]\42(BD)*D:1,tr:O7

which is a 5-dimensional quadratic space of trivial discriminant, whose Hasse invariant coincides
with that of Bp. The signature of Vp is (5,0) or (3,2) when Bp is ramified or split at infinity,
respectively.

e We note that GSpin(Vp) is an inner form of GSpin(V;) = GSp,.

1.1.7. Algebraic geometry.

e For a closed subscheme X of a scheme Y, we denote by Ny /vy the normal sheaf.
e If X is a scheme, X,.q C X denotes the maximal reduced subscheme.

1.1.8. Miscellaneous.
e For a squarefree integer D > 1, we denote by div(D) its set of prime factors, and let o(D) =

#div(D).

e Suppose V is an F-vector space for a nonarchimedean local field F' with ring of integers Op. For
two Op-lattices A C A’ of V, the notation A C,, A’ means that A’/ A has Op-length n.

e For any group G, we let Zg C G denote the center.

e For a prime p, let Z, be the Witt vectors of F,,.

1.2. Central simple algebras and involutions.

1.2.1. Let M be a central simple algebra over a field F' of characteristic zero. Throughout this paper an
involution on M will be understood to mean an involution of the first kind, i.e. fixing F'. Such involutions
fall into two categories: main type or nebentype (also called symplectic and orthogonal type [51]). For
example, the transpose involution on M = M (F) is of nebentype; the standard involution on a quaternion
algebra is of main type. For later use, we now recall some basic facts.

Proposition 1.2.2. Let (M, 1) and (Ma, x2) be two central simple algebras equipped with involutions.
The induced involution 1 ® *9 on M is of nebentype if and only if x1 and o are of the same type.

Proof. This is [51, Proposition 2.23]. O
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1.2.3. Suppose F' = R or Q, and recall that an element p € M is called totally positive if it has strictly
positive eigenvalues as an endomorphism of M.

Proposition 1.2.4. Let M = M, (R) or M, (H), and suppose M is equipped with a positive involution x,
i.e. such that tr(a*a) > 0 for all 0 # a € M. Then the positive involutions on M are those of the form

a— patpt,

where u* = u and either p or —u is totally positive. In particular, all positive involutions on M have the
same type.

Proof. This is [115, Proposition 8.4.7 and Lemma 8.4.12]. ([l

1.2.5. The tensor product of two quaternion algebras is called a biquaternion algebra (BQA). Involutions of
nebentype on rational BQAs are particularly simple:

Lemma 1.2.6. Let M be a BOA over Q, and let 1, o be two involutions of M of main type. If either M @ R
is split, or x1, *9 are both positive, then there exists an element g € M* such that

Int(g) o %1 = %9 o Int(g).

In particular, conjugation by g defines an isomorphism (M, x1) =~ (M, *2).

Here, Int(g) is the automorphism a + gag~"' of M.

Proof. By the Skolem-Noether theorem, there exists h € M * such that Int(h) o ¥; = 9. The condition on
g in the lemma is equivalent to h = Ag*1 g, for some A\ € Q*. By [51, Theorem 16.19], there exists such a g
if and only if the Pfaffian norm of h (with respect to *1) belongs to (Q*)% Nrd(M*). If M ® R is split, then
Nrd(M*) = Q*, so we are done. If M ® R is not split, then Nrd(M*) = QZ,, and it suffices to show that
the equation h = Ag*!g has a solution over R. Assuming without loss of generality that *; is the standard
involution on M ® R ~ My(H), this can be checked directly using Proposition 1.2.4. U

1.2.7. Let F' be a nonarchimedean local field with ring of integers O, and let B be the unique nonsplit
quaternion algebra over Or. We denote by O p the unique maximal O p-order in B, with uniformizer 7 € Op
and natural valuation ord,.

Proposition 1.2.8. Suppose g € GL,,(B) satisfies
9M,(Op)g~" = My (Op).
Then, up to rescaling by an element of F*, we have either g € GL,,(Op) or g € 71 GL,(Op).

Proof. Suppose g is given by the matrix (g;;) and g~' is given by the matrix (hx;). Let aj), be the matrix

with a 1 in the jk position and Os elsewhere; since gai, g~' € M, (Op), we see that
(1.3) gijhkl S OB, for alli,j,k,l.

Without loss of generality, by rescaling g, we may assume g;; € Op for all 7, j but ord,(g;;) < 1 for some
i,j. If hjj € Op for all 4, j, then g € GL,,(Op), so suppose without loss of generality that ord,(hy;) < 0
for some k, [. It follows from (1.3) that ord,(g;;) > 1 for all 4, j, with equality holding for some ¢, j, and
ord,(hg;) > —1 for all k,[; in particular, g € 7 GL,,(Op). O

Motivated by Proposition 1.2.8, we make the following definition.
Definition 1.2.9. An involution * of M, (B) stabilizing M, (Op) is called of unit type if it is of the form

a* = ga'g~! for some g € GL,(Op), and of non-unit type if it is of the form a* = ga'g~! for some
g € mGL,(OpB).
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Similarly, if B is a quaternion algebra over Q and p is a prime such that B ® Q, is not split, let Ogp C B
be the unique maximal Z,)-order. Then an involution * of M, (B) stabilizing M, (Op)is called of unit or
non-unit type according to whether the induced involution on M, (B) ® Q, is of unit or non-unit type.

Remark 1.2.10. By Proposition 1.2.8, an involution  of M,, (B) stabilizing M,,(Op) induces an involution
on M, (Op /), which acts trivially on the center of M,,(Op /) if and only if * is of non-unit type.

1.2.11. The same proof as Proposition 1.2.8 also shows:

Proposition 1.2.12. Let F' be a nonarchimedean local field with ring of integers Op. If g € GL,,(F) satisfies
9Mn(Or)g~" = M (Or),
then we have g € F* GL,,(Op).

1.3. PEL data.

1.3.1. Recall the notion of a PEL datum D = (B, *, V, ) from [77, Chapter 8], and set C' = Endp(V).
Then C'is equipped with an involution ¢ — ¢/, the adjoint with respect to ¢, and the Q-group Gp associated
to D is defined by
Gp(R) ={(9,\) € (C®R)* x R* : g¢' = \}.
To D, there is associated the reflex field £ = Ep, and, for any compact open subgroup X C Gp(Ay), a
moduli functor My over E. Let us briefly recall the definition of Mg, for which more details can be found
in [52, p. 390]. For a connected scheme S — Spec E, M (.S) is the set of isomorphism classes of tuples
(A, 1, \,n) where:
e A/S is an abelian scheme up to isogeny;
e 1 : B — End’(A/S) is an embedding satisfying the Kottwitz determinant condition derived from
D;
e \: A — AV isaquasi-polarization such that t(b*)¥ o A = Ao () forall b € B;
e 7 is a K-level structure for A, i.e., for any geometric point s of S, a (.S, s)-stable K-orbit of
isomorphisms
n: Hl’ét(AS,Af) 1) V ®Q Af
respecting the actions of B and the symplectic pairings on both sides up to a scalar.

If K is neat, then M is represented by a smooth quasi-projective scheme over F.

1.3.2. Let pbe aprime. A self-dual p-integral refinement & of D is the additional data of a x-stable maximal
Z(p)-order Op C B and a self-dual Opg-stable Z(p) -lattice A C V. (This is a special case of the notion in
[93, §6].) For a compact open subgroup K? C GD(A’}), the corresponding moduli problem M g» is defined
as follows. For a connected scheme S — Spec O ® Z;,), Mg»(S) is the set of isomorphism classes of
tuples (A, ¢, A, nP) where:

A/S is an abelian scheme up to prime-to-p isogeny;

t:Op — End(A/S) ® Zy) is an embedding satisfying the Kottwitz condition;

A: A — AV is a prime-to-p quasi-polarization such that ¢(b*)¥ o A = X o ¢(b) for all b € Op;

nP is a KP-level structure, i.e., for any geometric point s of S, a 71 (.9, s)-stable KP-orbit of isomor-
phisms

n: H17ét(AS7A?) =V ®g AI}
respecting the actions of B and the symplectic pairings on both sides up to a scalar.

If K7 is neat, then M is represented by a quasi-projective scheme over O ® Z,. Its generic fiber is
Mkrk,, where K, = Stabg,,q,)(A).
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Lemma 1.3.3. Let S be a scheme and B a simple Q-algebra with involution x of the first kind. Suppose
given an abelian scheme A/ S with an embedding of Q-algebras

t: B < End’(4/8S),
and a quasi-polarization \ : A — AV such that
L(b*) o A= Xou(b), VbE B.
Then for any totally positive g € B> with g* = g, A o g defines a quasi-polarization of A.
Proof. It suffices to prove the lemma when S = Spec k with k an algebraically closed field. In this case, by
the discussion in [78, Chapter 21, Application III], it suffices to show that g has strictly positive eigenvalues

on End’(A). But this follows from the positivity of the eigenvalues on B, because End’(A) is a semisimple
QQ-algebra containing B, and any such is a product of copies of B as a B-module. g

The following corollary is immediate.

Corollary 1.3.4. Let D = (B, *,V, 1) be a PEL datum, where B is a simple Q-algebra and * is an involution
of the first kind. Suppose given a totally positive g € B> such that g* = g, and let Dy = (B, %4, V, 1),
where x4 := g o *x o g and

Vy(z,y) =p(z, g y), Vo,yeV.
Then Gp = Gpg, and, for all K C Gp(Af), there is a canonical isomorphism

Mp g — Mp, i
defined by
(A, e, \,n) = (A, 1, Ao0g,7m).

If 2 = (Op,*, A1) is a self-dual p-integral refinement of D and g lies in O}, then Dy = (Op, *¢, A, g)
is a self-dual p-integral refinement of Dy and the above isomorphism extends to an isomorphism of integral
models

Ma kv = Mg, ko

for all compact open KP C GD(AIJZ).

We also deduce:

Corollary 1.3.5. Let B be an indefinite quaternion algebra over Q, with Op C B a maximal Zy,)-order, and
fix an integer n > 1. Let * be a positive involution on M, (Op), of non-unit type if B ® Q, is ramified. Then
there exists an abelian scheme A over Spec Zp of dimension 2n with supersingular reduction, a prime-to-p
quasi-polarizon \ : A — AY, and an embedding v : M,,(Op) — End(A) ® Z,), such that

L(b*)Y o A= Xowu(b), Vbe M,(Op).

Proof. Using Lemma 1.3.3 along with Propositions 1.2.8 and 1.2.12, we reduce to the case that a* = o/ for
all « € M,,(Op), where t is a positive involution on O g, of non-unit type if B ramifies at p. Thus it suffices
to prove the corollary when n = 1, in which case it is well-known from the classical theory of Shimura
curves; see the discussions in [12, Chapter III]. O

1.4. PEL data for GSping , groups.



BLOCH-KATO FOR SOME FOUR-DIMENSIONAL SYMPLECTIC GALOIS REPRESENTATIONS 15

1.4.1. In this article, we will consider PEL data that arise in the following way. Let D > 1 be squarefree
with (D) even, and let ¢ be a prime, possibly with ¢|D. Suppose fixed a maximal Zg)-order Op C Bp,

with a nebentype involution *, and an embedding Zq — C.

Definition 1.4.2. (1) An (Op, *)-triple is a triple (Ay, to, Ag), Where:
(a) Ao is an abelian scheme over Spec Z, of rank 4 with supersingular reduction;
(b) 10 is an embedding Op — End(Ag) @ Zy);
(¢) Ao : Ayg — Ay is a prime-to-q polarization, such that
to(a®)Y o Ng = Ag o 1p(a), Va € Op.
(2) Given an (Op, *)-triple as above, we set H := H1(A(C),Q), with its canonical symplectic form
Y. Let A C H be the lattice H1(Ao(C),Zg)). The PEL datum associated to (Ao, ¢, Ao) is defined
by
D = (BD7 *7 Haw)v

with self-dual g-integral refinement

'@ - (OD7*7A7¢>'

1.43. Let D - g := Dq/ ged(D, q). Given an (Op, *)-triple (Ag, to, Ao):
e H is a Bp-module, and End(H, Bp) is isomorphic to Ms(Bp). The adjoint involution  on
End(H, Bp) is of main type (by Proposition 1.2.2, because the adjoint involution on End(H) =
Bp ® End(H, Bp) is of main type).
e Set Ay = (AO)E’ with its induced O p-action 7y and polarization \g. Then End®(4y,7) is iso-
morphic to My(Bp.q), and its Rosati involution t is positive, hence of main type by Proposition
1.2.4.

Definition 1.4.4.
(1) A g-adic uniformization datum (Ao, 1o, Ao, ip,ip.q) for (Op, *) is an (Op, )-triple (Ao, Lo, Ao) as
above, along with a choice of isomorphisms of algebras with involution:
iD : (EDd(H, BD), T) :> (MQ(BD)v *D)v

iD.q : (EndO(ZO,Zo), J[) = (MQ(BD.q), *D-q)'
(2) A g-adic uniformization datum (x, Ao, Lo, Ao, iD, ip.q) for Vp is a choice of positive nebentype invo-
lution * on Op — of unit type if ¢| D — and a uniformization datum (Ao, 0, Ao, ip,ip.q) for (Op, *).

Recall here that Vp was defined in (1.2).

Remark 1.4.5. (1) Given any (Op, *)-triple (Ao, to, \o), the choices in Definition 1.4.4(1) exist by
Lemma 1.2.6.
(2) Given a g-adic uniformization datum (x, Ao, 9, Ao, ip, ip.q) for Vp, we also obtain isomorphisms

End(H, Bp)!="=0 = Vb, End®(Ay, 7)== = Vp.,.
The former determines an isomorphism
Gp = GSpin(Vp).
Moreover, the action of End(Ag,7) on
HLét(ZO,A;]c) = HI(AO((C),A;’C)

>~

induces an isomorphism Vp.q®gA% = Vp®gA$. Inturn, this induces an isomorphism GSpin(Vp)(A%)
GSpin(Vp.q) (A%).
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1.5. Local conditions and Selmer groups.

1.5.1. In this subsection, O is the ring of integers of a finite extension £/Q,, and w € O is a uniformizer.

Notation 1.5.2.

(1) Suppose M is a finite free O-module with an action of Gg,, where £ may be equal to p. We consider
the Bloch-Kato local conditions

H}(QE,M) = ker (Hl(Qg,M) N Hl(@£>M®Qp)) '

H}(ny M ® Qp)

(2) Globally, if M is a finite free O-module with Gg-action, let

H}Q, M) = ker <H1 (Q, M) — H il gi )

(3) Suppose ¢ # p. For an unramified, finitely generated O-module M (either finite or infinite) with
G,-action, we let

H}(QbM) = unr(Qf7 )

Remark 1.5.3. Notations 1.5.2(1,3) are consistent because, when M is free over O and unramified as a
Gg,-module, the map H*(I,, M) — H'(I;, M ® Q,) is injective.

1.5.4. Fix integers a < 0 < b. Recall that a finite Z,[Gq, ]-module M is said to be torsion crystalline with
Hodge-Tate weights in [a, b] if there exists a crystalline Q,[G,]-module V' with Hodge Tate weights in [a, b],
and two Gg,-stable lattices Ty C Tp C V/, such that M = T5/T. A finitely generated Z, |G, ]-module M
is torsion crystalline with Hodge-Tate weights in [a, b] if M /p™ is so for all n > 1.

If M is torsion crystalline with Hodge-Tate weights in [a, ], let

H},tors((@pv M) - HI(QP’ M)
be the subspace of cohomology classes such that the corresponding extension
0= M —=x—7Z,—0

is torsion crystalline with Hodge-Tate weights in [a, b]. If M is an O[Gg,|-module, then H} . (Qy, M) is
an O-submodule of H1(Q,, M).

Proposition 1.5.5. A finite free O[Gq,|-module M is torsion crystalline with Hodge-Tate weights in |a, b]
if and only if M ® Q, is crystalline with Hodge-Tate weights in [a,b]. In particular, if M is a finite free
O[Gq,]-module, then H}(@p, M) = ftors(Qp’ M).

Proof. This is [64, §7.3].5 O

Notation 1.5.6. We will from now on write H } (Qp, M) in place of H }»t ors(Qp, M) for any finitely generated
O-module M with Gg,-action; by Proposition 1.5.5, this is consistent with Notation 1.5.2(1).

1.6. Duality.

3In fact, for the main results it suffices to assume b— a < p — 1, in which case Proposition 1.5.5 is due to Breuil [14, Proposition
6].
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1.6.1. Let ¢ be a prime, possibly equal to p. If M is a finite free O-module with Gg,-action, let M* =
Homo (M, O(1)). Similarly, if M is alocally compact O-module with Gg,-action, let M = Homo (M, E/O(1))
be the Cartier dual. We have the local Tate pairings

(1.4 (0ot HY(Qg, M) x H' (Qg, MY) — H*(Qqy, E/O(1)) = E/O
and
(1.5) (et HY(Qp, M) x H(Qq, M*) — H*(Qy, O(1)) = O.

The former is perfect, and the latter is perfect modulo torsion. We recall the following standard fact.

Lemma 1.6.2. Suppose M is a finite free O-module with Gg,-action. Then the subspaces H} (Q¢, M) and
H}(Qg, M™) pair to zero under the local Tate pairing (1.5).

Proof. When O = Z,, the result follows from [9, Proposition 3.8].6 To reduce to this case, note that M ™ is
canonically isomorphic to M’ := Homg, (M, Z,), and we have a commutative diagram:

HNQe, M) x HAQq, M*) 02,

I I

V=0
HY(Qe, M) x HHQp, M) 2053

—

S

Since H}(Q@, M*) C HY(Qg, M*) is O-stable and the trace pairing O x O — Z, is nondegenerate, the
lemma follows. O

Lemma 1.6.3. Fix integers a < 0 < b, and let M be a finite free O-module with [Gq,]-action which is
torsion crystalline with Hodge-Tate weights in [a, b]. Then:

(1) We have @H}(Qp, M/w") = H}(Qp, M).
(2) Foralln > 1, there exists m > n such that

im (H}(Qm M/w™) — H}(va M/w")) = im (H}(Qzﬂ M) — H}(va M/w")).
(3) Foralln > 1, there exists m > n such that the local Tate pairing
() Hl(Qp,M/w") X Hl(@p,M*/w") - O0/w"
vanishes when restricted to

im (H}(Qp, M/@w™) = Hj(Qp, M/w")) x im (H(Qp, M* /™) — H}(Qp, M* /")) .

Remark 1.6.4. When 2(b—a) < p—2and O = Z,, we may take m = n in the final part by [84, Corollary
6.1].
Proof. The first part is clear from Proposition 1.5.5, and it follows that
Nmzn im (H}(Qp, M/@w™) — H}(Qp, M/w™)) = im (H}(Qp, M) — H}(Qp, M/=").
Since H } (Qp, M /w") is a finite O-module, it is clear that (2) holds.

For (3), take m sufficiently large to satisfy (2) for both M and M*. The assertion then follows from Lemma
1.6.2 and the commutativity of the diagram:

6Although loc. cit. assumes M ® Q,, is de Rham when £ = p, this is needed to show that H} (Q¢, M) and H}(Qz, M™) are
exact annihilators; the proof shows that they annihilate each other in general.
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HY(Q,, M) x HY(Qy, M*) —— O

! J

HY(Qp, M/w") x HY(Qp, M* /w") —— O/w™.

2. AUTOMORPHIC REPRESENTATIONS, HEecke ALGEBRAS, AND SHIMURA VARIETIES

2.1. Hecke algebras and Galois representations. Let G be a split, connected, reductive algebraic group
over Z[Sy 1] for a finite set of primes Sp, with Borel subgroup B = TU C G and Weyl group W. For
simplicity, we assume that the derived subgroup of G is simply connected.

Definition 2.1.1.

(1) For a prime ¢ & Sp and a ring R, let T ¢ r denote the spherical Hecke algebra of compactly sup-
ported, R-valued, G(Z,)-biinvariant functions on G(Qy). For a finite set S O Sy and a ring R,

TS r —®TG’£R

(s
(2) Let P = M N C G be a parabolic subgroup. For all ¢ ¢ S, we define a natural map
S$ : Taor — Tauer
by
SG(m) = [ femnyan
N(Qp)
where the Haar measure on N (Qy) gives volume 1 to N (Zy).

When R = Z, we drop it from the notation.

Proposition 2.1.2. We have a commutative diagram of functors

Laizy)

R[M(Q@)] Mod —— TMg R — Mod
.1) l” Ind l(sng} :

G(Zz)

R[G(Qf ] Mod —— TGZR MOd

where t — Ind denotes the unnormalized parabolic induction.
Proof. This follows from combining Lemmas 2.4, 2.7, and 2.9 of [82]. ]

Notation 2.1.3. Let 7 C G be the dual torus to 7. We write X*® and X, for the character and cocharacter
groups of any split algebraic torus.

Definition 2.1.4. Suppose now that R is a Z[¢'/2, /~1/2]-algebra and recall the Satake transform
RIX*(T)We =T
22) [(X*(T)] G.LR

A [C/\].

(I) If m C Tg e g is a maximal ideal with residue field k, the Satake parameter for m is the unique
element

Satc,(m) € T(k)/We
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such that, for any A € R[X*(T)]"e, A(Satg¢(m)) = [cx] (mod m). A maximal ideal m C ’]I‘g’R
defines a maximal ideal of each T¢ g with £ ¢ S; we denote by Satg ¢(m) the corresponding
element of T'(k) /Wy, for each £ & S.

(2) Let pg € Xo (f ) = X*(T) be the half-sum of positive roots. A normalization of the Satake trans-
form for G (cf. [41, §8]) is a choice of element wg € Xo(Zg) such that

we = pe (mod 2X,(T)).

2.1.5. For the rest of this subsection, we assume that R is a Z,2-algebra, with a fixed choice of square root
(12 ¢ L,y for any £ # p.

Definition 2.1.6. Let S D S be a finite set of primes.
(1) Given a maximal ideal m C Té r, With residue field %, a semisimple Galois representation

P - Go — G(F)

is said to be associated to m (with respect to a normalization w¢ of the Satake transform) if for all
but finitely many ¢ & S, ﬁm|G@[ is unramified and

P (Frob-1)* ~ we (071/?) - Sat o(m);

here ~ denotes G/(k)-conjugacy. If this holds for all ¢ & S U {p}, then p,, is said to be strongly
associated with m.

(2) If there exists a Galois representation (strongly) associated to m, then m is said to be (strongly) of
Galois type.

Note that whether m is (strongly) of Galois type is independent of the choice of normalization; the corre-
sponding representations p,, differ by the composite of x;;”“ and an algebraic cocharacter of Z a

Example 2.1.7. Suppose 7 is an automorphic representation of GSp,(A), unramified outside .S, and fix an
isomorphism ¢ : @p = C. This determines a distinguished square root AR @ for all /. Moreover, the

Hecke action on ¢~ !7° defines a maximal ideal m, C TéSp o If 7 is relevant in the sense of Definition
4,p

2.2.5 below, then the representation p,, of Theorem 2.2.10 is strongly associated to m, with respect to the
normalization given by the scalar subgroup G,,, — GSp,.

Definition 2.1.8. Let S D Sp be a finite set of primes. A maximal ideal m C TG r With residue field £ is
said to be Eisenstein if there exists an associated p,, (with respect to any normahzatlon) which factors as

Pt Go — M(k) < G(k)
for some standard parabolic subgroup P = M N C G.
Proposition 2.1.9. Let S O Sy be a finite set of primes. Suppose for some proper parabolic subgroup

P = MN C G, my C T%,R is a maximal ideal of Galois type. Then m = (S§))*my C Tg:,R is
Eisenstein.

Proof. Fix normalizations wj; and wg of the Satake transform for M and G, respectively. Also let dp €
Xe(Z77) be the dual of the character
det(ad(—)|N) : M — Gy,

By the well-known compatibility of the Satake transform with normalized parabolic induction, combined
with Proposition 2.1.2, Satg¢(m) € T(k)/We is represented by any representative of Satpse(mas) -
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dp(01/2) € T(k)/Way. It follows that
B = Py © (XT)™ : Gg = M (k) = G(k)

is associated to m, where
_ wg—wy —dp
Hence m is Eisenstein.
]

2.1.10. The case of G = GSpy. When G = GSp,, the Hecke algebra T ¢ r can be identified with the poly-
nomial algebra R[T} 1,72, (¢)], where the generators correspond to the following double coset operators:

¢
1
Ty =1 | GSpy(Zy) /1 GSpy(Ze) | »
1
/
14
Tro =1 | GSpy(Zy) 1 GSpy(Ze) | »
1
V4
V4
<€> =1 GSP4(Z6) / GSP4(Z6)
V4

The Satake parameter of a maximal ideal m C Tgsp, ¢, With residue field & can be identified with the data
of an element v € k — the similitude factor of Satgsp, ¢(m) — together with the multi-set {«, 8, v/, v/ B} of

elements of k — the eigenvalues of Satgsp ,,¢(m) in the standard four-dimensional representation of GTS-EL =
GSp,. We will abusively write the Satake parameter as {«, 8, v/, v/S}; in general, v is not always deter-
mined by this unordered set.

The relation to Hecke eigenvalues is given explicitly in this case by

Tyy = *(af/v+a/f+ Bla+v/af) + (£ = 1) (mod m)
(2.3) T2 =02 (a+B+v/a+rv/8) (modm)
(¢) =v (mod m).

When it is clear from context that G = GSp,, the subscript G in Hecke algebras and Satake parameters

may be omitted from the notation.

2.2. Automorphic forms and Galois representations. Let F' be a totally real field. If we fix a prime p and
an isomorphism ¢ : Q, = C, then to each archimedean place v|oo of F, we can associate an embedding
v F @p.

Theorem 2.2.1. Suppose  is a unitary, cuspidal automorphic representation of GLa(AF) associated to a
Hilbert modular form of weight (2kv)v|o@ where v runs over archimedean places of F' and k,, > 1 for all v.

Then for every isomorphism v : @p =5 C, with p a prime, there exists a Galois representation

Pro - Gr — GLQ(@p)

with the following properties.
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(1) pr.lc r, IS potentially semistable for all v|p, and for all nonarchimedean primes v of F':

_ 1
LWD(me‘GFU)F %~ rec(my, @ | - [2).

Moreover this Weil-Deligne representation is pure of weight —1. B
(2) For each place v|oc of F, the Hodge-Tate weights of pr,, with respect to the embedding 1*v : F' — Q,
are 1 — k, and k,.

(3) The similitude character of py,, is P

rec(wr) Xp,cye, Where wy is the central character.

Here rec is the usual local Langlands correspondence for GL,,, normalized to coincide with the reciprocity
map of local class field theory when n = 1.

Proof. Note that the purity in (1) follows immediately from the claimed identity of Weil-Deligne represen-
tations and the Ramanujan conjecture for 7 [8].

The existence of p, , with the property (1) for all v { p was proved by Carayol [19] under the assumption
that either [F' : Q] is odd, or 7, is square-integrable for some finite prime v of F'. In general, p, , was
constructed by Taylor [107], and the proof of (1) for v t p follows the argument of [127, Theorem 2.1.3].
Finally, the property (1) for v|p, along with (2), were established in general by Skinner [103] (except that our
normalizations of Hodge-Tate weights and reciprocity maps are inverted from loc. cit.). The property (3) is
an immediate corollary of (1). U

Definition 2.2.2. An automorphic representation 7 of GLa(A ) has (strong) coefficient field Ey C C if Ey
is a number field and, for all primes p and isomorphisms ¢ : @p = C, pr,. is defined over the p-adic closure
of 1 71(E}p). In this case, it depends only on the prime p of Fy induced by C, and we obtain a well-defined

prp : Gp — GLa(Ey,) such that p,, is the extension of scalars of py .

Remark 2.2.3. The argument of [23, Proposition 3.2.5] shows that strong coeffient fields exist in the situation
of Theorem 2.2.1.

Notation 2.2.4. Let 7 be as in Theorem 2.2.1, and let Ej be a strong coeflicient field of 7. Fix a prime p of
Ey with residue field k(p).

(1) Write V. , for the underlying Ey |G p|-module of py .
(2) Let Ty, C Vi be a Gp-stable Op, p-lattice. Then the k(p)[G p]-module T’ , depends only on Vj ,
up to semisimplification. We write

Pryp : GF — GLa(k(p))

for the corresponding semisimple Galois representation.
(3) When p is clear from context, it may be dropped from all subscripts in the above notations.

We now turn to automorphic representations of GSp,,.

Definition 2.2.5. An automorphic representation 7 of GSp,(A) will be called relevant if:

e 7 is cuspidal and not CAP, and has unitary central character.
e T belongs to the discrete series L-packet of weight (3, 3).

2.2.6. If 7 is an automorphic representation of GSp,(A), then for all £ such that 7, is unramified, recall that
we write the Satake parameter of 7, as a multiset of four complex numbers of the form { a, B, va"t,vp! }

If 7 has central character wy, then v = wy((¢)) = rec(wy)(Frob, ).

Definition 2.2.7. A cuspidal, non-CAP automorphic representation 7w of GSp,(A) is endoscopic associated
to an unordered pair (71, 72) of cuspidal automorphic representations of GL2(A) with the same central
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character if the following holds: for all but finitely many primes /, if m; , are both unramified with Satake
parameters {«;, v/«; }, then 7y is unramified with Satake parameter {1, ag, v/aq, v/ag}.

2.2.8. In this case, m; and 79 are necessarily distinct by [126, Lemma 5.2], and the central character of 7 is
the common central character of the ;. In the literature, the property in Definition 2.2.7 is often called being
weakly endoscopic, and being endoscopic requires a stronger compatibility condition of local Langlands
parameters at all finite places; however, the distinction is unimportant, cf. the results of [126, §5].

Lemma 2.2.9. Suppose 7 is an endoscopic automorphic representation of GSp,(A), associated to a pair
(1, m2) of automorphic representations of GLo(A). Then 7 is relevant if and only if w1 and 79 are unitary
with discrete series archimedean components of weights 2 and 4 in some order.

Proof. Recall 7 is cuspidal and not CAP by definition. Also, 7 clearly has unitary central character if and
only if 1 and 7y are unitary, so it suffices to consider the archimedean weights.

Consider the representation 7 oo X 73 oo 0f GSO22(R) = (GL2(R) x GL2(R))/R*; by [126, Lemma
5.6], s belongs to the local L-packet attached to 71 o, X 72 o via the known Langlands parametrization
for real groups and the map of dual groups

L'GS0s,2 = (GL3 xg,, GL2)(C) — GSpy(C) = GSpy -

We conclude that 7, belongs to the desired discrete series L-packet if and only if 71 o, and 72  are discrete
series of weights 2 and 4 in some order.
]

Theorem 2.2.10. Let w be a relevant automorphic representation of GSp4(A), and fix a prime p along with
an isomorphism 1 : Q, =5 C. Then there exists a semisimple Galois representation

pru: Go = GSP4(@p)

with the following properties.
(1) pr, |G@p is potentially semistable, and for all primes ¢,

_ 1
LWD(me‘G@E)F % ~recgr(me @ |- [2).

Moreover this Weil-Deligne representation is pure of weight —1.
(2) The Hodge-Tate weights ofpm\(;@p are {—1,0,1,2}.

(3) The similitude character of py,, is P

rec(wr) Xp,cye, Where wy is the central character.
Here recq is the Gan-Takeda local Langlands correspondence of [36], which associates to an irreducible
admissible representation of GSp,(Q/) a GSp,(C)-valued Weil-Deligne representation.

Proof. Suppose first that 7 is endoscopic associated to a pair (71, m2) of automorphic representations of
GL2(A). By Lemma 2.2.9 and Theorem 2.2.1, we can take

P = Pri D Pra
under the natural embedding GL2 x¢,, GL2 — GSpy; this satisfies (1) by Theorem 2.2.1(1) combined with
[126, Corollary 5.1, Theorem 5.2(3)] and the construction of recg in [36]. Then (2) and (3) are satisfied by
Theorem 2.2.1(2, 3).

Now suppose 7 is not endoscopic. By [96, Proposition 10.1] combined with [125, Theorem 1], we may
assume without loss of generality that 7 is globally generic. Under the extra hypothesis that 7, is Steinberg
for some v # p, and omitting the case £ = p of (1), the theorem then follows from the main result of [105],
except that we have twisted the p, , of loc. cit. by (x7°)%. The extra hypothesis in [105] is needed only to
appeal to the results of Taylor-Yoshida [109], and has since been removed by work of Caraiani [17]. Similarly,
the proof in [105] of (1) for ¢ # p extends to the case £ = p with the additional input of [18]. ]
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Notation 2.2.11. In the setting of Theorem 2.2.10, we write V. , for the underlying four-dimensional Galois
module of py ,.

Lemma 2.2.12. In the situation of Theorem 2.2.10, suppose p > 3. Then Vy , is reducible if and only if  is
endoscopic.

Proof. This is [123, Theorem 3.1]. O

Definition 2.2.13. A relevant automorphic representation 7 of GSp,4(A) has (strong) coefficient field Ey C
C if Ey is a number field and, for all primes p and isomorphisms ¢ : Q, — C, pr,, is defined over the
p-adic closure of : 71 (Ej). In this case, it depends only on the prime p of Ey induced by ¢, and we obtain a

well-defined prp : G — GSpy(Eop ) such that pr, is the extension of scalars of p ;.

Lemma 2.2.14. If 7 is a relevant automorphic representation of GSp4(A), then a strong coefficient field F
exists for .

Proof. 1f 7 is endoscopic, this is clear from Remark 2.2.3, so assume otherwise.
Letr : GSp, < GLy4 be the natural embedding, and let .~ ( Ey ) be the p-adic closure forany ¢ : Q, = C.

By the argument of [23, Proposition 3.2.5], there exists a number field Fy such that, for all ¢ : @p = C,

T 0 pr, is defined over t ~1(Ey) and p,(g) has distinct eigenvalues in L—l(Eo)X for some g € Gg.

It suffices to check pr, is defined over :~1(Ej) whenever p > 3. For this, let G be the absolute Galois

group of t=1(Ep). For all o € G, we have
Pg,L = h(U)Pﬂ,Lh(U)_I

for some h(o) € GL4 (@p). Using the absolute irreducibility from Lemma 2.2.12 and Schur’s lemma, we
conclude k(o) € GSpy(Q,), and o — h(o) defines a cocycle h € H'(G,PGSp,(Q,)). The class of h
determines an inner form H of GSp, over :~1(Ej) such that p, , can be conjugated to lie in H (:~1(Ep)).

However, since p,,(g) has distinct eigenvalues in :~!(Ep) for some g € Gg, H must be split, and this
completes the proof. (Il

2.2.15. Analogously to Notation 2.2.4, we make the following notations.

Notation 2.2.16. Let 7 be as in Theorem 2.2.10, and let Ej be a strong coefficient field of 7. Fix a prime p
of Ey with residue field k(p).

(1) Write Vy , for the four-dimensional underlying Ej ,[Gg]-module of py ,.
(2) Let Ty C Vi be any Gg-stable Oy-lattice; we define T'r, := (T} /w0p)*°, which depends only
on V7 ,. We also write

Pyt G — GLa(k(p))

for the corresponding semisimple Galois representation.
(3) When p is clear from context, it may be dropped from all subscripts in the above notations.

Lemma 2.2.17. Suppose T is a relevant automorphic representation of GSp4(A). Then there exists a base
change BC(m) to an automorphic representation of GL4(A), such that for each place v,

rec(BC(m),) = r orecgr(my),

where
r: L GSp, = GSp,(C) — CL4(C) =L GLy

is the natural embedding of dual groups. Moreover BC(r) is cuspidal if and only if 7 is non-endoscopic.
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Proof. If  is endoscopic associated to (71, m2), then there exists a non-cuspidal base change, which is the
isobaric sum m; H m9; the compatibility with local Langlands parameters is by the same reasoning as the
endoscopic case of Theorem 2.2.10.

In the non-endoscopic case, the lemma follows from [96, Proposition 10.1] and its proof; note that the
endoscopic transfer to GL4 X GL1 used in loc. cit. is compatible with the Gan-Takeda local Langlands
paremeters by the main result of [21]. O

Lemma 2.2.18. Suppose 7 is a relevant automorphic representation of GSp4(A). If BC(7) is a symmetric
cube lift of a non-CM automorphic representation mo of GLa(A), then mg has discrete series archimedean
component of weight 2.

Proof. This follows from matching archimedean L-parameters using [49, Theorem B] and Lemma 2.2.17.
O

Lemma 2.2.19. Suppose 7 is a relevant automorphic representation of GSp,(A). If BC(m) is the automor-
phic induction of a non-CM automorphic representation mo of GLa (A ) with K real quadratic, then mg has
discrete series archimedean components of weights 2 and 4, in some order. Moreover the central characters
W Of To and wy of T satisfy

Wy O NmK/@ = Wryg-

Proof. The assertion on archimedean components follows from Lemma 2.2.17 and the compatibility of au-
tomorphic induction with local Langlands parameters [3, Chapter 3, Theorem 5.1]. To check the relation of
central characters, fix some prime p along with an isomorphism ¢ : @p = C. Let w§" denote the Gal(K/Q)-
twist. Then we have

Vﬂ’yb‘GK = Pro D Prsw o
Using the identities

vV —1 vV —1
Ve =Va, ®1 rec(wr) @ Xpeye, Prop = Prgs @ L rec(wry) ® Xp,cyes

and likewise for 7{", it follows that

o ® 7 (rec(wn) |y / rec(wny)) @ prge, @ 171 (rec(wn)laye/ 1ec(npr) ) = pros @ prge

Since pr,,, and Py, AT€ absolutely irreducible by Theorem C.3.2, and have different Hodge-Tate weights
by Theorem 2.2.1(2), this implies rec(wr)|ax = rec(wr,), i.e. wr o Nmp /g = Way. O

In the next lemma, if K is a quadratic field, we write BCg /g for the base change of an automorphic
representation of GL,,(A) to GL,, (A k), which exists by [3].

Lemma 2.2.20. Suppose 7 is a relevant, non-endoscopic automorphic representation of GSp,(A). If BC(m)
is the automorphic induction of an automorphic representation 7 of GLa(A ) with K imaginary quadratic
and T is not itself an automorphic induction, then o is of the form BC q(0) ® x, where o is the unitary
automorphic representation of GLa(A) corresponding to a non-CM classical modular form of weight k = 2
or 3, and x is a Hecke character of K.

Proof. By hypothesis, BC /g o BC() is an isobaric sum 7o B 7", where tw denotes the Gal(K/Q)-twist.
Considering archimedean L-parameters and using Lemma 2.2.17 combined with [3, Chapter 3, Theorem
5.1], we see that the local L-parameter of 7y at the unique archimedean place of K is of the form

o [
(2.4) — ( (z/z)”g>
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for €1,e0 € {£1}. Letw, : A* — C* and wy, be the central characters of 7w and 7, respectively; then
because BC(7) = BC(7)Y ® wy, we have
my B (m6")" =m0 ® wr 0 Nmg g B 7Y ® we 0o Nmg g
=1 ® w;ol B ® w;otw.
The archimedean L-parameter (2.4) shows that 7['[\)/ 2 1o ® wyr o Nmy /Qs and hence
(2.5) Ty 2Ty @ wr o Nmpy g = m ® w;ol.
On the other hand, computing the central character of BC(7), we have:

(2.6) W2 = Wy |x-

™
In particular, (w;oNmM g /q)/wn, is trivial when restricted to A*, hence of the form x / X*™ for an automorphic
character y of A%. Then (mp ® x~!) is isomorphic to its Gal(K/Q)-twist by (2.5), hence arises as the base
change of a cuspidal automorphic representation o of GL2(A) by [3, Chapter 3, Theorem 4.2]. Without loss
of generality, we may assume o is unitary; considering the archimedean local L-parameter of o and again
using [3, Chapter 3, Theorem 5.1], the archimedean component of o is discrete series of weight 2 or 3. We
have mp = BCg /@(U) ® x by construction. O

2.3. Shimura varieties and Shimura sets.
2.3.1. Let V be a quadratic space over Q, and recall the algebraic group GSpin(V') from (1.1.5).

2.3.2. Indefinite case. Suppose V ® R has signature (n,2). If V™~ C Vg is a negative definite 2-plane, one
obtains a map
CT(V7)~C — Ct(WR),
which induces a Shimura datum
h : Resc/r G, — GSpin(V)g.
For a neat compact open subgroup & C GSpin(V')(A ), the resulting Shimura variety Shy (V) is a smooth
quasi-projective variety over Q.

2.3.3. Definite case. If V is a positive definite quadratic space over Q, then GSpin(V')(R) is compact. For
a compact open subgroup K C GSpin(V')(Ay), let Shx (V') denote the finite double coset space

Sh (V) := GSpin(V)(Q)\ GSpin(V)(A,)/K.

2.3.4. Hecke algebras. Suppose V = Vp is one of the quadratic spaces from (1.1.6), and let O be a coeffi-
cient ring. If K =[], K, C GSpin(V)(Ay) is a neat compact open subgroup and S is a finite set of primes
of Q containing all those such that K is not hyperspecial, then T2, = Tésm,o acts on H, (Shi (V)g, O);
the cohomology is interpreted as O[Shy (V)] in the definite case. We denote by T%VD,O the quotient of T2,
defined by this action, and may drop the subscript O when it is clear from context.

2.4. Automorphic representations of GSpin; groups.

2.4.1. Recall the five-dimensional quadratic spaces Vp from (1.1.6).

Definition 2.4.2. An automorphic representation 7w of GSpin(Vp)(A) is Eisenstein if there exists a parabolic

subgroup P C GSp,, with Levi factor L, and an automorphic representation o of L(A) such that 7 is nearly
equival . GSpy(A)

quivalent to a constituent of Ind P()
The following generalizes Definitions 2.2.5 and 2.2.7.

Definition 2.4.3. For a squarefree integer D > 1, an automorphic representation 7 of GSpin(Vp)(A) will
be called relevant if:
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(1) = is not Eisenstein (in particular is cuspidal), and has unitary central character.
(2) T is trivial if o(D) is odd (in which case GSpin(Vp)(R) is a compact group); or belongs to the
discrete series L-packet of weight (3, 3) if (D) is even (in which case GSpin(Vp)(R) = GSp,(R)).

A non-Eisenstein automorphic representation 7 of GSpin(Vp)(A) is called endoscopic associated to a pair
(71, m2) of automorphic representations of GLo(A) if the condition in Definition 2.2.7 is satisfied for all but
finitely many ¢ { D.

Lemma 2.4.4. Fix a squarefree D > 1 such that o (D) is even, and suppose T is an automorphic represen-
tation of GSpin(Vp)(A) that is not Eisenstein. Then for any neat compact open subgroup K = [[ K, of
GSpin(Vp)(Ay):

(1) The natural map induces an isomorphism
H(Shg (Vp), C)[ms] = H'(Shx(Vp), C)lry].
(2) We have
H'(Shi (Vp), C)[rs] = @ m(rp @ wl) - 7f @ H'(gspy, U(2); ) # 0,

where U(2) C GSpy(R) is the maximal compact subgroup, 7l runs over cohomological repre-
sentations of GSpy(R), and m(my ® 7l.) is the multiplicity in the discrete (equivalently cuspidal)
automorphic spectrum of GSpin(Vp)(A).

(3) If m is relevant and H'(Shyc(Vp), C)[ms] # O, then i = 3.

Proof. The first part is well-known, cf. [43, Chapter 9]. Then (2) is immediate from Matsushima’s formula
and the diagram in [108, p. 293]. We now show (3). Without loss of generality, we may assume that W? #0;
in particular, because 7 is relevant, (2) implies that

2.7) H?(Shg (Vp), C)[my] # 0.

Now let S be a finite set of places of Q such that K is hyperspecial for ¢ ¢ S, and fix a prime p ¢ SU{2, 3}
along with an isomorphism ¢ : @p = C. It suffices to show

(2.8) H(Shg (Vp)g, Qp)lrf]l #0 = i=3.

For this, we argue as in [108], with the additional input of the Fontaine-Mazur conjecture for GLy. Set I/VZ
to be the 7-isotypic component’ of H}, (Shx (Vb)g: Q) with respect to the natural action of T2 ; then W*

P

is a Gg-module. We have the following facts:
(1) By Margulis’ superrigidity theorem [73, Chapter IX, Corollary 7.15(iii)], W' = 0, and clearly
WY = W6 = 0 because 7 7 is not one-dimensional.
(2) Foreach ¢ ¢ SU{p}, Froby satisfies the Eichler-Shimura relation on H* (Shk (Vp)g, Q,) by [122];
in particular, if 7, has Satake parameters {a, B,va~t vp~t }, then
(2.9)  (Frob, ' —¢32a)(Frob, ! —¢3/28)(Frob, ! —3/2va~1)(Frob, ' —£*?v3~1) = 0 on each W
(3) By Poincaré duality and part (1) of the theorem there are perfect pairings
Wi x WO = rec(wy)(—3)

for all 7, where w; is the central character of 7, cf. [108, p. 297]. ‘
(4) Again by (1) of the theorem, for all £ ¢ S U {p}, the eigenvalues of Frob, on W* are Weil numbers
of weight 7.

"Defined using ¢. We elide ¢ from the discussion to ease the burden of notation.
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Now suppose W #£ 0 for some i # 3. By (1), i # 0,1, and then by (3) we conclude that W2 # 0. If
¢ ¢ S U {p} is a prime such that Frob, has n distinct eigenvalues on W2, it has n distinct eigenvalues on
W* as well by (3), and at least one eigenvalue on W3 by (2.7). In particular, by (4) and the fact that Frob,
has at most 4 total eigenvalues by (2), we conclude that n = 1 and Froby also has at most two eigenvalues on
W3. Now the same argument as [108, Proposition 3] shows that there is a two-dimensional representation
R : Gg — GL2(Q,) — possibly reducible — with distinct Hodge-Tate weights such that (W?)*$ = R®¢ for
some e > 1, and a character y : Gg — Q,, such that (W2)* = x®? and (W*)** = (rec(wr)x;2yex ) ®?
for some d > 1. Note that w, is even because the central character of 7, is trivial, so R is odd by (3)
above. Hence by [86, Theorem 1.0.4], R is automorphic. Comparing with (2), we see that there exists
an automorphic character w of A* and an automorphic representation o of GL2(A) such that 7 is nearly
equivalent to a constituent of the representation

Indg(sfgjl ®) 5 x w,
where P C GSp, is the Siegel parabolic subgroup with Levi factor GLo X GL;. Hence 7 is Eisenstein,
which contradicts the assumption that 7 is relevant and completes the proof. (|

We will require some information about Jacquet-Langlands transfers of relevant automorphic representa-
tions between the various GSpin(Vp)(A).

Definition 2.4.5. For a tempered irreducible admissible representation 7, of GSp,(Qy), we say 7y is trans-
ferrable if it does not belong to the types I, Illa, VIa, VIb, VII, VIIIa, VIIIb, or IXa in the notation of [95].

In particular, if 7, is unramified, it is not transferrable.

Theorem 2.4.6. Let D > 1 be squarefree. Then:

(1) For each relevant, non-endoscopic automorphic representation Il = @'IL, of GSpin(Vp)(A), H? =
®2¢DH€ can be completed to a relevant automorphic representation of GSp,(A).

(2) Conversely, suppose T = ®'m,, is a relevant, non-endoscopic automorphic representation of GSpy(A).
Then ﬂ'? = ®a ¢ can be completed to a relevant automorphic representation I1 of GSpin(Vp)(A)
if and only if 7y is transferrable for all primes ¢|D.

(3) Letm = Q' be a relevant, non-endoscopic automorphic representation of GSp,(A), and assume 7,
is transferrable for all £| D. Then any relevant automorphic representation I1 of GSpin(Vp)(A) with
H]l? = 77]12 has automorphic multiplicity one. The set of all such 11 is a Cartesian product of local L-
packets for v| Doo, where the nonarchimedean L-packets are determined only by the corresponding
local factors of . The archimedean L-packet is the discrete series packet of weight (3,3) when o (D)
is even and the trivial representation when o (D) is odd.

Proof. When o(D) is odd, so that GSpin(Vp)(R) is compact, this is [96, Theorem 11.4]. To prove these
assertions when o (D) is even, we follow the sketch indicated in the discussion following loc. cit.
The following fact will be used repeatedly:

2.10) If 7o is an irreducible admissible representation of GSp,(R) with H>(gsp,, U(2); moo) # 0,

then 7 lies in the discrete series L-packet of weight (3, 3).
This fact follows from the calculations in [108, p. 293].
To prove (1), suppose first that IT = ®'II, is a relevant automorphic representation of GSpin(Vp)(A).
By [96, Corollary 7.4] combined with Lemma 2.4.4(3), we conclude that Hjl? can be completed to a coho-
mological automorphic representation 7 of GSp,4(A). Moreover 7 necessarily contributes to cohomology

in degree 3 by [96, Proposition 8.2], and in particular 7 is relevant by (2.10) combined with Lemma 2.4.4(2),
so this proves (1).
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To prove (2) and (3), we need some preparation. Fix a relevant automorphic representation 7 = ®’m,, of
GSp4(A). For each prime ¢| D such that 7, is transferrable, there is a local L-packet of irreducible admissible
representations of GSpin(Vp)(Qy) determined by the character relations of Lemma 11.1 of op. cit. Let
Ap = []yp Qs by an irreducible admissible representation of GSpin(Vp)(Ap) we mean a direct product
of irreducible admissible representations of GSpin(Vp)(Qy) for ¢|D.

If 7y is transferrable for all £| D, let S be the set of irreducible admissible representations of GSpin(Vp)(Ap)
obtained by taking the Cartesian product of the local L-packets. If 7y is not transferrable for some ¢| D, then
let S be the empty set.

The comparison of cohomological trace formulas from the proof of [96, Theorem 11.4] shows the follow-
ing identity: for all irreducible admissible representations I1p of GSpin(Vp)(Ap), we have

2, IIp €S,

1 b B
(2.11) 2§m(w ®HD®TFOO)X(7FOO)—{O’ Iy ¢ 5.

Here the notation is as follows:

e The sum over 7o runs over cohomological representations of GSp,(IR), and x(7) is the negative
Euler characteristic Y (—1)""! dim H*(gsp4, U(2); Too ).

e 7P is the representation <§§>’eJr e of GSpin(Vp)(AD).

e m(1P @ IIp ® m4) is the multiplicity in the discrete (equivalently cuspidal, since 7 is relevant)
automorphic spectrum of GSpin(Vp)(A).

We can further manipulate the left-hand side of (2.11). Let 7% and 7L be the generic and holomorphic
members, respectively, of the discrete series L-packet of weight (3, 3). We then claim that

1
(2.12) 3 Zm(wD @ IIp @ Too) X (Teo) = m(zP @ TIp @ 7¥) + m(xP @ Ip @ 711).
Moo
To prove (2.12), suppose first that the right-hand side is positive. Then any cohomological 7., with II =
w}’? ® IIp ® ms automorphic can have Lie algebra cohomology only in degree 3 by Lemma 2.4.4(2, 3). In

particular, if m(m?” @ TIp ® Moo ) X(To) # O then 7, is either 7¥7 or 72 by (2.10), so — combined with the
fact that x (7)) = x (7)) = 2 by [108, p. 293] — we have shown (2.12) when the right-hand side is positive.
On the other hand, suppose the right-hand side of (2.12) vanishes; then each summand on the left-hand side
of (2.12) is non-positive by (2.10) because Lie algebra cohomology vanishes for GSp,(R) outside degrees
0, 2, 3, 4, and 6. But the left-hand side of (2.12) is also non-negative by (2.11), so we conclude that it is zero,
hence (2.12) again holds.

In particular, by (2.12) and (2.11) together, we have

2, IIp es,

(2.13) m(x @ p @) +m(x” © Tp @ 7)) = {o, I ¢ S.

From (2.13), itis clear that 7" can be completed to a relevant automorphic representation of GSpin(Vp)(A)
if and only if S is nonempty, i.e. if and only if 7y is transferrable for all £| D; this shows (2).

We also see from (2.13) that (3) is equivalent to the assertion that m(7? @ lIp @ 7¥) = m(r” @ IIp ®
7ll) = 1 forall Tl € S. Suppose for contradiction that m(7” @ lIp ® 7¥) and m(7P” @ p ® wil) are
0 and 2, in some order. Let K = [[ Ky C GSpin(Vp) be a neat compact open subgroup such that Hff #0,
and let p > 3 be a prime such that K, is hyperspecial. Fix as well an isomorphism ¢ : @p =5 C. Then by the
discussion in [108, p. 296], H, gt(ShK(VD)@, @p)[H? | is nonzero and has exactly two distinct Hodge-Tate
weights as a representation of G, .

On the other hand, by (2) from the proof of Lemma 2.4.4 combined with the irreducibility of V. , (Lemma
2.2.12), up to semisimplification H3, (Sh k(Vb)g: Q) [H? ] is a sum of copies of V. ,, which is a contradic-
tion because V., has distinct Hodge-Tate weights by Theorem 2.2.10(2). This completes the proof of (3). [J
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Remark 2.4.7. One can similarly prove Theorem 2.4.6 in all regular weights, by considering cohomology
of Siegel threefolds with coefficients in more general local systems; we omit the details for concision.

2.5. Relevant endoscopic automorphic representations.

2.5.1. Relevant endoscopic automorphic representations of GSpin(Vp)(A) can be constructed as follows.
Fix unitary cuspidal automorphic representations 71 and 7o of GLo(A) with the same central character, and
whose archimedean components are discrete series of weights 4 and 2, in some order. Let D; and Dy be
squarefree positive integers, such that 7; admits a Jacquet-Langlands transfer 7riD ‘to B Bi (A) fori = 1,2
(notation as in (1.1.6)).

Define Dy * Dy := D1 D5/ ged(D1, D)2, which is a squarefree positive integer. Then as in [21, §3.3],
there is a global theta lift,

(2.14) O(rP' K P2y = o(xP* Kb,

which is either zero or a cuspidal automorphic representation of GSpin(Vp,.p,)(A).

Theorem 2.5.2. With notation as above, relabel w\ and 7o if necessary so that w1 has weight 2 and o has
weight 4.

(1) The theta lift ©(xP* ® 722) is nonzero if and only if either o(Ds) or o(Dy * Dy) is even. When
nonzero, ©(nP' W72 is always relevant and endoscopic associated to the pair (71, 73), and these
representations are all distinct.

(2) Conversely, each relevant endoscopic automorphic representation of GSpin(Vp)(A) arises in this
way, and appears with automorphic multiplicity one in the discrete (equivalently cuspidal) spectrum.

Proof. This follows from the results of [21, §3], combined with the discussion of the local archimedean theta
lift in §2.4 of op. cit.. O

Corollary 2.5.3. For any relevant automorphic representation 11 of GSpin(Vp)(A), there exists a relevant
automorphic representation w of GSp,(A) such that:

(1) For each prime €1 D, 11, = .

(2) For each prime {|D, y is transferrable, and 11y lies in the corresponding local packet of represen-

tations of GSpin(Vp)(Qy) from Theorem 2.4.6(3).

Proof. If 11 is not endoscopic, this follows from Theorem 2.4.6. If II is endoscopic, (1) is immediate from
Theorem 2.5.2. For (2), it follows because the Langlands correspondences of [36, 37] are constructed to
be compatible with theta lifting, and the correspondence of local representations in [96, Table 3] respects
Langlands parameters by Lemma 11.1 of op. cit. U

Remark 2.5.4. By Corollary 2.5.3, we can associate to each relevant automorphic representation II of
GSpin(Vp)(A) a compatible system of Galois representations pyy, as in Theorem 2.2.10.

2.6. Local representations with paramodular fixed vectors.

Notation 2.6.1. For all primes ¢ (whether or not ¢|D), the paramodular subgroup of GSpin(Vp)(Qy) is a
maximal compact subgroup described in [104, p. 918]. To avoid confusion, we denote this subgroup by K 5 a
when ¢ { D and by K;*" when g|D.

Lemma 2.6.2. Let 7 be a relevant automorphic representation of GSpin(Vp)(A), and suppose q 1 D is a
prime such that wy has a K, 5 &-fixed vector. Then:

(1) q is either spherical or of type Ila in the notation of [95].
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(2) 7 is the unique completion of 7[';{ ® Too to an automorphic representation of GSpin(Vp)(A).

(3) If mq is of type Ila, then for any v : @p = C with q # p, the action of Ig, on Vz, is unipo-
tent with monodromy of rank one. Moreover, the corresponding local packet of representations of
GSpin(Vp,)(Qq) in Theorem 2.4.6(3) is a single representation with a unique K;*"-fixed vector.

Proof. By Corollary 2.5.3, Trfc) = ®gpm¢ can be completed to a relevant automorphic representation of
GSp4(A). In particular, 7, is tempered (by Theorem 2.2.10(1)), so (1) follows from [95, Tables A.1, A.13].
If 7r;]C ® 7r(’1 ® T is automorphic for some w;, then W?q ® w; can be completed to an automorphic repre-

sentation of GSp,(A) by the same reasoning as for 7r]’? . Hence by Theorem 2.2.10(1), Wfl and 7, belong to
the same Gan-Takeda local L-packet. But the L-packets of type I and Ila are singletons, so this shows (2).
Finally, suppose 7, is the type Ila representation denoted x Stqr,(2) X0 in loc. cit. Because 7, has a
K 5 ?-fixed vector, x and o are unramified characters of Q. This implies the assertions on Prl Iy, In (3) by
Theorem 2.2.10(1) and the explicit local Langlands paremeters found in [95, Table A.7]. The final claim in
(3) follows from [96, Table 3] combined with [104, Theorem B]. ]

2.7. Generic maximal ideals and cohomology of GSpin; Shimura varieties.

2.7.1. For this subsection, fix a coefficient field £ C @p with F a finite extension of Q,, and let O C E be

the ring of integers with uniformizer w. Also fix an isomorphism ¢ : @p =5 C, a squarefree D > 1, a neat
compact open subgroup K = [[, K, C GSpin(Vp)(Ay), and a set S of places of Q containing all £ such
that K, is not hyperspecial.

Lemma 2.7.2. Supposem C Tg is non-Eisenstein and o (D) is even. Then for all i, the natural maps induce
isomorphisms:

H!(Shg(Vp),0)m = H'(Shg (Vp),O)m,

2.15 . — . —

19 H!(Shg(Vp),Fp)m — H'(Shx (VD),Fp)m.

Proof. We show the second isomorphism; the first follows formally. Let P = M N C GSpin(Vp) be a
parabolic subgroup. Then we may fix an identification GSpin(Vp)(A®) ~ GSp,(A®) such that P(A”%) =
P (AS ) for a parabolic subgroup P, = M1 N; C GSpy.

The Levi factor M is abstractly isomorphic to either B}; x GL; or GL3 (the latter occurring only if
D = 1). To any compact open subgroup Kj; C M(Af) we can associate a locally symmetric space
Sk (M) = M(Q)\M(A)/Ky - Koo, where Koo, C M(RR) is the product of the center and a maximal
compact subgroup. In particular, each connected component of Sg,, (M) is either a Shimura curve or an
isolated point.

Using the Borel-Serre compactification of Shx (Vp) and the argument of [82, §4], it suffices to show
the following: for any parabolic subgroup P = MN C GSpin(Vp) as above and any compact open

subgroup Ky = [[, Ky C M(Ay) with Ky hyperspecial for ¢ ¢ S, the support of the Tésp4,Fp'
GSpy

module (S, "*)*H'(Sk,, (M), F,) is Eisenstein for all i. But this follows from Proposition 2.1.9 because,
as M = B}, x GL; or GL3, every maximal ideal of Ti/[,h in the support of H'(Sk,,(M),F,) is clearly of
Galois type. ([l

Definition 2.7.3.
(1) Amaximalidealm C Ty o is called genericif p { 2¢(¢*—1), and the Satake parameter {cv, 3, v/a, v/ 3}
of m is multiplicity-free with no two elements having ratio /.
(2) A maximal ideal m C ']I‘g is called generic if there exist infinitely many ¢ ¢ S such that the induced
maximal ideal of T  is generic. For any quotient T of Tg, amaximal ideal m C T is called generic
if its pullback to ']I‘g is so.
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(3) A Galois representation p : Gg — GSp,(F,), unramified outside a finite set S, is called generic if
there exists a prime ¢ ¢ S with p 1 2¢(¢* — 1), such that p(Froby) has distinct eigenvalues, no two
having ratio .

Remark 2.74. If m C Tg has an associated Galois representation p,,,, clearly m is generic if and only if p,,
is so.

Theorem 2.7.5. Suppose m C Tg is a generic maximal ideal and o (D) is even. Then:
(1) Foralli < 3, we have

H'(Shg(Vp),Fp)m = HE " (Shg (Vp), Fy)m = 0.
(2) If m is also non-Eisenstein, then
H!(Shg (VDp),O)m = H (Shg (Vp),O)m

is w-torsion-free for all i, and vanishes unless 1 = 3.

Proof. Part (1) is immediate from [42, Theorem 1.16] and our definition of genericity. Using Lemma 2.7.2,
(2) is a standard consequence of (1). ]

Lemma 2.7.6. Suppose m C ']I‘f( vp,0 Is non-Eisenstein and generic, and suppose 7 is an automorphic rep-

resentation of GSpin(Vp)(A) such that 7'[']{{ = 0, and the action ong on L_lwffactors through T%VD,O,m'
Then m is not Eisenstein (in the sense of Definition 2.4.2).

With a bit more care, the genericity assumption can be dropped; we leave the details to the reader.
Proof. Suppose first that D = 1, so 7 is an automorphic representation of GSp,(A), and let m, C Tésm 3
1p
be the maximal ideal determined by the Hecke action on :~'7°. Then by hypothesis, m, is in the support
of the Hecke module H*(Shk (V1),Q,)m. By Lemma 2.7.2 combined with the diagram in [108, p. 293],
we conclude that 7% can be completed to an automorphic representation 7’ of GSp,(A) that appears in
the discrete spectrum. Suppose for contradiction that 7 is Eisenstein; then 7’ is either CAP or a residual
representation. In either case, it follows that the Satake parameter of 7, contains a pair of the form {a, al}
for all / ¢ S: when 7’ is CAP, this uses [88, Theorems 2.5, 2.6] and [106, Theorem C], and when 7’ is
residual it uses well-known results on the irreducibility of principal series representations for GSp,. But
these Satake parameters are inconsistent with the genericity of m, so 7 cannot be Eisenstein, as desired.

We now handle the case of general D; the argument is a mild refinement of the trace formula method used
in [96]. We abbreviate Gp := GSpin(Vp) and fix a minimal parabolic subgroup Py C G p (which will be
all of Gp if o(D) is odd). Let fp € C*(Gp(Ay),C) be a test function with regular support, and define
(2.16)

ran —ran —+P : *

T(fp)=  »,  (—1reekD)7rank(@n) 3" ()l g <fD XElim H (Skey (M), Viope ) —par
PyCP=MNCGp weW P Knr

Here W is the set of minimal-length coset representatives for the Weyl group of G'p modulo that of M,

tr is the supertrace, ?P and X}G;,D are defined as in [126, §2.6], Sk, (M) is the symmetric space from the
proof of Lemma 2.7.2, p,, and pj; are the half-sums of positive roots, and V. pGp—pr 1S the complex local

system on Sk, (M) of weight w - pg,, — par. Although w - pg,, — par might not be integral, we interpret
Viv-pe, —pas @8 the twist of Viy.p, —p, by the real character 5113/2 of M(R), i.e.

(2.17) H* (St (M), Varpep —pns) = 057 @ H (S0 (M), Visspes , ~pas, )

as Hecke modules.

).
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For test functions fi € C°(G1(Ay), C) with regular support, we define 7'( f1) analogously to (2.16). If
fpand fi € C(G1(Ay), C) are matching functions in the sense of [96, §5], then it follows from combining
[126, Lemma 2.10] with [96, Theorem 5.3] that

(2.18) T(fp) =T(f1)ep

for a nonzero constant c¢p depending only on D.
Shrinking K¢ if necessary, we can fix a K g-biinvariant test function fp ¢ € C°(Gp(Ag)) with regular
support such that

(2.19) tr (fp,s, H*(Shi (Vp), C)[x])) # 0:
when o(D) is even, we use Theorem 2.7.5(2) to ensure that contributions from 7 in different degrees do

not cancel.Let f; g € C2°(G1(Ag)) be a matching function, and let K7 g C G1(Ag) be a compact open
subgroup such that fi g is K g-biinvariant. We also fix an isomorphism G D(AJSJ ) ~ Gy (A? ), and let

K1 =K°K s C G1(Ay), which is a compact open subgroup. Let
Gp(Ay) %
(D) = b P md; D f lim H* (St (M), Virpsy—par )
PyCP=MNCGp weW?P 1

and let Pp be the set of irreducible G'p (A ¢ )-constituents occurring in I1( D) with a K -fixed vector. Likewise,
we define I1(1) and P;, where now we consider constituents with /K -fixed vectors, and set P = Pp U P;.

Then P contains finitely many near equivalence classes, cf. [126, p. 45]. We can therefore fix a finite set
T of primes of QQ, disjoint from S, so that two representations o, 7 € P are nearly equivalent if and only if
or = 7r. Now fix a K7 = [ [, K¢-biinvariant test function fr € CZ°(Gp(Ar),C) = C*(G1(Ar),C),
such that for all 7 € P, tr(fr|rr) = 0 unless 77 = 7y, and tr(fr|mr) = 1.

Also fix an auxiliary prime vg ¢ S U T, and for a large constant C' > 0 to be chosen later, let f,, c €
Tasp,,v,c be a test function satisfying the conclusion of [96, Lemma 3.9] for the representation 7y,; in
particular, tr( fy,.c|my,) = 1.

We consider the global test function

fp = fo.sfrfec ST e C2(Gp(Af)),

where f5YTU{vo} s the indicator function of K 5YTV{v0}, The matching function is

fi = fustr oo fS0TH0E € (G (A))).

Claim. Forall By C P=MN C Gjandallw € WP we have

<f1 XPa 1/21$H*(SK1\/1( )s Vw-pcl—pc1)> =0,

K
and likewise for all Py C P = M N C Gp.

Proof of claim. To ease notation, we prove the claim for GG1; the proof for Gp is identical. Let 7 be an
irreducible constituent of lim /7 (Skp (M), Va-pg, —pg, )- 1t suffices to show that

tr(?l XP ,T®6p 1/2) =0.
Now by the argument of [96, Proposition 3.10], if C' is chosen sufficiently large, then

tr (7f : Xga TX 51_31/2> =tr (fljszfSUTU{UO}P . £7 TR 51;1/2)

s . . . —-P . . .
for an auxiliary spherical test function fég on M(Qy,). In particular, because f is invariant under K N
M (Ay), we may assume without loss of generality that 7 contains a fixed vector for K1 N M (Af). Moreover
it suffices to show

tr (ﬁ, ) 51_31/2) =0.
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By [96, Proposition 3.5(2)], the latter trace coincides with

(2.20) tr ( fr.— Ind i 07) T) .

We will show (2.20) vanishes. Indeed, since each constituent of fj — Indcﬂifl(ﬁf)) 7 lies in Py, if (2.20) is

Gi(Af)
—IndMl(Af)

7 is of Galois type because 7 is cohomological and

nonzero then 7 is nearly equivalent to a constituent of 7 by the choice of fr. Now, the maximal

ideal m, C T2 _ defined by the Hecke action on ¢~

M7Qp

M = GL:{’ or GLs x GL1. Hence by Propositions 2.1.2 and 2.1.9, the maximal ideal m, C TgSp T defined
45%p
1

by .~ "7 is Eisenstein, which one can easily check contradicts the hypothesis that m is non-Eisenstein. [

In particular, the claim combined with (2.19) and the choice of fp shows that T'(fp) # 0,s0 T(f1) # 0
by (2.18). Using the claim again, we see that

tr (f1, H* (Shx, (V1),C)) 2 0.

By Franke’s theorem [32] and our choice of fr, we conclude there exists an automorphic representation 7’
of GSp,4(A) which is nearly equivalent to 7 and unramified outside S, such that the Hecke eigensystem of
7S appears in H*(Shg, (V1), C). Expand S to a larger set S’ such that 75 2 7/5’. Then the maximal ideal
m? TéISp4,O formed by restricting m descends to T%,VLO' By the case D = 1 of the lemma for m®" and
7', 7' is not Eisenstein, hence 7 is not either. O

Corollary 2.7.7. Suppose o(D) is even, and m C Tf{ vp,0 IS a generic, non-Eisenstein maximal ideal. Also
fix an isomorphism v : @p = C. Then

H,(Sh (VD)gr Qp)m = P ¢ 17 @ pry,
7Tf
where:
o ¢ runs over the finite parts of relevant automorphic representations 7 of GSpin(Vp)(A ¢) such that
the Tg—action on 77? factors through ']I‘%VD’Qm.
e If m is not endoscopic, then pr, = pr,(—2), ¢f. Remark 2.5.4.
e [fmisendoscopic associated to a pair 71, o of automorphic representations of GLa(A) with discrete

series archimedean components of weights 2 and 4, respectively, we can write m = @(ﬂ'{j 'K 7T2D 2)
by Theorem 2.5.2. Then

. = P (—2), (D) even,
! prau(—2), (D7) odd.

Proof. 1t follows from Lemmas 2.7.6 and 2.4.4(2) that

HE (Shg(VD)g, Qp)m = @D ' 1) @ pr,
s
as Hecke modules, where 7y runs over the finite parts of non-Eisenstein automorphic representations of
GSpin(Vp)(Ay) with Hecke action factoring through T%- Vp.0.m» and pr, is some Galois representation
with
dim pr, = Y m(my @ wh,) dim H*(gspy, U(2); 7).

Too

In particular, by (2.10), the only 7y with pr, # 0 are the finite parts of relevant automorphic representations
.

We first consider the non-endoscopic case. As in [108, p. 296], we see from Theorem 2.4.6(3) that p, ;s
four-dimensional with Hodge-Tate weights {0, —1, —2, —3} if 7 is not endoscopic. Since for all but finitely
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many £ & S, Froby satisfies the Eichler-Shimura relation (2.9) on p ;o We conclude that p, = pr.(—=2). It

remains to consider the endoscopic case, when 7 = @(ﬂ'lD 'K ﬂé) ?). Then 7 is the unique completion of 7
to an automorphic representation of GSpin(Vp)(A) by Theorem 2.5.2. Moreover, by the local archimedean
theta lift described in [44, Proposition 4.3.1], 7 is the generic or holomorphic member of the discrete series
L-packet in the case that o(D1) is even or odd, respectively. Hence we conclude as above that p, ; 1s two-
dimensional, with Hodge-Tate weights {—1, —2} or {0, —3} when o (D) is even or odd, respectively. Since
we still have the Eichler-Shimura relation (2.9), it follows that pr, is either pr, ,(—2) or pr, ,(—2) depending
on the Hodge-Tate weights, and the corollary follows. g

Corollary 2.7.8. Let m C T]?(,VD,O be a generic and non-Eisenstein maximal ideal, and let T be the set
of relevant automorphic representations m of GSpin(Vp)(A) such that 71']{{ = 0 and the Hecke action on
flﬂff factors through T%VD’O,W Then we have a natural embedding of ’]I‘%VD’O’m-algebras

S _
T%vy,0m < @ Qp(m),
TeT

1

where @p(w) is @p with Hecke action through the eigenvalues on v~ ﬂf .

Proof. If o(D) is odd, this is immediate from Lemma 2.7.6. If o(D) is even, it follows from Theorem
2.7.5(2) combined with Corollary 2.7.7. ]
3. SPECIAL CYCLES AND THETA LIFTS

3.1. Special cycles.

3.1.1. In this subsection, we explain the construction of special cycles Z (T, ¢), due to Kudla in the indefinite
case [54].

Construction 3.1.2. Let V' be a quadratic space over Q of signature (m, 2) or (m, 0).

(1) If Vo C V is a positive definite subspace, then for any g € GSpin(Vp)(A )\ GSpin(V)(Af)/K, we
obtain a canonical finite morphism

(3.1) Shr,, (Vg") <% Shg(V),
with Ko, == gKg~' N GSpin(V5h)(Ay).
(i) If V has signature (m, 2) and dim Vy = n, then we write
Z(9,Vo, V)i € CH"(Shg (V))

for the pushforward of the fundamental class on Shy, , (V") under (3.1).
(ii) If V has signature (m, 0), then we write

Z(9,Vo,V)k € Z[Shg (V)]

for the pushforward of the constant function 1 on Shg, , (VOL) under (3.1).
(2) Forany T' € Sym,,(Q)>o, let

Qry ={(z1,...,2n) € V" t ;- 2; =T33 V1 < 4,5 <n},

viewed as an affine algebraic variety over Q.
(3) Now suppose given a neat compact open subgroup K C GSpin(V')(Ay), along with a test function

peS(V"® A, R)K

for some n < m and some ring R. (The action of K is the natural one, factoring through the map
to SO(V)(Ay).) For any T' € Sym,,(Q)>o0, if Q7,1 (Q) = 0, then the special cycle Z(T', ), in
CH"(Shg(V), R) .= CH"(Shg(V)) ®z R or R [Shi (V)], is defined to vanish. Otherwise:
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(i) If V is positive definite, then fix a base point (z1,...,z,) € Q7 (Q), and let
Vo = Spang {z1,...,2,} C V.
Then we define

(32) Z(T,¢)Kk = > w9~ w1, 97 wn) Z(9, Vo, V)i € R[Shg(V)].
g€GSpin(Vgh)(Ap)\ GSpin(V)(Af) /K

(ii) If V has signature (m,2) and T is positive definite, we define

by the same formula (3.2). If 7" is not positive definite (and still Q7 (Q) # 0), we define
Z(T,p)k € CH"(Shg(V), R) by the recipe in [54, p. 61]; the details will not be needed.

Remark 3.1.3. By transitivity of the GSpin(V')(Q)-action on Q7 (Q), Z(T, ¢)x is independent of the
choice of base point for Q71 (Q).

Proposition 3.1.4. For neat compact open subgroups K' C K C GSpin(V)(Ay), if pry g : Shgs (V) —
Shg (V) is the natural map, then pry; ;o Z(T, )k = Z(T, ) k.

Proof. This is [54, Proposition 5.10] in the indefinite case; the definite case is proved in the same way. [J

Notation 3.1.5. For any compact open subgroup KX C GSpin(V')(A¢), and any ring R, we define SC’ (V, R)
to be the R-span of the special cycles Z(T', ) g forT' € Sym,,(Q)>pand ¢ € S(V"®A¢, R). WhenR =7
it may be dropped from the notation.

Remark 3.1.6. Note that SC(V, Z) contains all of the special cycles z = Z(g, Vo, V) k from (3.1.1) with
dimVp = n. Indeed, choose a basis {e1,...,e,} for Vp, and set T;; = e; - e;. Then one can choose
o € S(V® Ay, Z)X such that @lar. (4, is the indicator function of K - g Ye1,...,en), and it follows
that Z(T, (p)K = Z(g, Vo, V)K.

3.1.7. We will later need the following proposition to understand the double coset space appearing in (3.2).

Proposition 3.1.8. Suppose K, C SO(V)(Qy) is the stabilizer of a self-dual lattice L C 'V ® Qy, and
V = Vy @& Vi be an orthogonal decomposition of V. Then the natural map

SO(Vo)(Qe)\ SO(V)(Qe)/ K — {lattices Ly C V1 @ Q¢}
grg-LNW

is injective. If dim(V7) < dim(Vp), then its image consists of all Ly on which the pairing is Zg-valued.

Proof. This follows from (the proof of) [26, Propositions 3.1.5, 3.1.6]. O

3.2. Symplectic and metaplectic groups. In this section, we set up basic notions for symplectic and meta-
plectic groups, mostly following the exposition of [34].

Notation 3.2.1. (1) For an integer n > 1, we define the standard symplectic lattice W5,, with basis

€1,...,€n,€],..., ey and pairing determined by
3.3) (ei,e;) =0, <e;‘,e]*-> =0, (ei,e;) = 0jj.

The symplectic group Sp,,, as defined in (1.1.4) is the isometry group of Wa,.
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(2) The Siegel parabolic subgroup P = M N C Sp,,, is the stabilizer of Spany {e1,...,e,} C Wa,.
We identify NV with Sym,,, the space of n x n symmetric matrices, and M with GL,, via the embed-
ding

0
g (‘g g—t> € Span, 9 € GLy-
(3) If k is a local field of characteristic zero, the metaplectic group Mp,,, (k) is defined as the unique
non-split central extension of Sps,, (k) by pa:
0 — 12 — Mpa,, (k) 2% Spy,, (k) — 0.

The double cover Mp,,, (k) — Sps, (k) splits uniquely over N (k), with P = M N the Siegel
parabolic as above. The preimage P(k) of P (k) therefore has a Levi decomposition

P(k) = M(k)N (k)

with M (k) a nonsplit double cover of M (k).

(4) If k is non-archimedean with ring of integers O and the residue characteristic of O is odd, let
Mp,,,(O) C Mps,, (k) be the unique lifting of Sps,, (O) [35, §6].

(5) Let U(n) < Spy, (R) be the embedding defined by

A+iB— (—AB i) .
We fix the Cartan decomposition
SPonc =u(n)c ®pT B,
such that p* is isomorphic to the symmetric square of the defining representation of U (n).

(6) Let U(n) C Mps,, (R) be the preimage of U (n). If j1/2(g, z) is the half-integral weight automorphy

factor of [101, p. 25], then we let det'/? : U(n) — C* be the restriction of j1/2(g, i), which is a
square root of the determinant character. We set det® := (detl/ 2)2k for all k € %Z.
(7) Globally, let

Mp2n (A) - H MpZn (QU)

be the restricted product with respect to the subgroups Mp,,,(Z,) C Mp,,,(Q,) for v # 2, co. The
inclusion Spy,, (Q) < Sps,, (A) lifts naturally to

Sp2n (Q) — Man (A)v
by which we will view Sps,,(Q) as a subgroup of Mp,,, (A).

Definition 3.2.2. For k € %Z, define the space M ,f” of adelic Siegel modular forms of degree 2n and weight
k, consisting of smooth functions

f:Sp2,(Q)\ Mpy,(A) — C

such that:

(1) f(g2) = det*(2)f(g) for any = € T(n) C Mpy, (R).
(2) X - f(g) =0forany X € p~ C spgy, g.

Remark 3.2.3. Note that M?" is naturally an Mps,, (A ;)-module.

Notation 3.2.4.
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(1) Let v be the additive character of Q\A which is unramified at all finite places and satisfies
w(:ﬂoo) — 6271'1'3600

forz,, € R C A.
(2) For T € Sym,,(Q), define

vri=vo (3u(-)).
a unitary character of N(Q)\N(A) (where N is the unipotent radical of the Siegel parabolic).
From basic Fourier analysis, one deduces the following proposition.
Proposition 3.2.5. Let f € M?". Then we have an identity of functions on N (A) C Mpy,, (A):
f= > ar(fi,

TeSym,, (Q)

where qK = e~ D) . and

tr(T)

ar(f) = —

= —— n)at(n)dn.
= T oy £ ()

Definition 3.2.6. For any subring R C C, define
My ={f €M : ar(f) € Rforall T € Sym,,(Q)} .

3.3. Weil representation.

3.3.1. Let k be alocal field, and let V' be a quadratic space over k of odd dimension and trivial discriminant.
Also fix an even integer 2n > 2. For any nontrivial additive character 1) of k, the Weil representation w,,
of SO(V)(k) x Mps,, (k) is realized on the complex Schwartz space S(V",C), and is determined by the
following formulas.

wy(g,)e(x) = (g~ ), g € SO(V) (k).
(3.4) wy (1, u)p(x) = P(3u(x) - x)sﬁ(x)dz § u € N(k) = Sym, (k).
wy(L,m)p(x) = xy(m)| det(m)| "2 p(mtz), m e M(k).

wy(Lw)e(7) =Y [ya ()Y (2 - y)dy.
Here, the notation is as follows:
P = MN is the Siegel parabolic. .
X+ is a pg-valued genuine character of M (k) described in [34, p. 1661].
w € Mps,,, (k) is a certain Weyl element such that wPw ! = PP,

Yw 18 a certain eighth root of unity.
The pairing on V™ in the second and fourth equations is

(xl,...,xn)-(yl,...,yn):in‘yi.

o dz in the fourth equation is a self-dual Haar measure.

0O O O O O

3.3.2. If k is non-archimedean of residue characteristic { and R C CisaZ [ﬂ -algebra containing all eighth
and /th power roots of unity, then the same formulas give a well-defined action of SO(V')(k) x Mps,, (k) on
the space S(V", R) of R-valued Schwartz functions.



38 NAOMI SWEETING

3.3.3. Globally, if V' is a quadratic space over Q, we have Weil representations S(V" ® Q,, C) for all places
v, defined using the localizations of the fixed global additive character ¢ of Q\A. Similarly, we have the
Weil representations S(V" @ A, C), S(V" ® Ay, C), etc., defined as restricted tensor products.

3.4. Classical theta lifting.

Notation 3.4.1. Fora Schwartz function ¢ € S(V"®A, C) and a cuspidal automorphic form a.on SO(V')(A),
we write 0, () for the automorphic form on Mp,,, (A) defined by

(3.5) 0, (a) () = /[Sow alg) 37 wulg, he(w)dg.

TeVn
The normalization depends on a choice of Haar measure.

3.4.2. Suppose V is positive definite and let X' C GSpin(V')(Ay) be a neat compact open subgroup. For
a : Shg (V) — C, define an automorphic form @ on GSpin(V')(A), which descends to SO(V')(A), by

1
«@ o) = ———— a(grz)dz, Vg = 0o € GSpin(V)(A).
(9790) v01<zx>/z (972)d, Vg = grgoc € GSpin(V)(A)

Lemma 3.4.3. Let o, € S(V" @ R, C) be the Gaussian

T-x

Poo(@) =€
Then for o : Shi (V) — C and
pr €S(V"® Ay, OF,
Oy 10000 (@) lies in M@ and
2

ar (9<Pf®<Poo (a)) =Ck-a (Z(T7 SOf)K) )

where the constant is

_ Vol (SO(V)(R) - Im (K — SO(V')(Ay)))

K =
(K -7% : K]

Proof. In the Fock model of the <5p2n dim(V) Un dim(V))) -module associated to S(V" @ R, C), ¢, has
degree zero, hence is annihilated by p~ C sp,,,; cf. [46, (2.2)]. By comparing degrees with [1, Proposition
~ dim(V
2.1(2)], we also conclude that U (n) acts on 6, g, (@) by det™ 2 : , which proves 0, e, (@) € M3, .
dim(V)

It remains to compute the Fourier coefficients. We calculate:

B etrT 1 B
0 Ooyon @) = im0 [ 7O 3 o wer @ oo

zeV™(Q)
_ i a -1 U lu ) -x|w . "
~ Vol([N]) /[SO(V)} (9) xevzw@) /[N] Y (u)y <2 (x) ) (0, 1)) @ oo (@)dgd
- /[SO(V)] ale) ), wulgDerla)dg.

z€Qr v (Q)

Fix a base point x = (21, ..., 2m) € Qr,v(Q) and let Vo = Spang {1, ..., %, }. Then, since Q71 (Q) is
a single SO(V')(Q)-orbit, we may rewrite the final equation as

a1 (0,00 () = / orlg'a / alhg)dhdg.
SO(V5H)(A)\SO(V)(4A) [SO(Vgh)]

This coincides with the claimed formula by definition of a(Z (T, ¢¢) k). O
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3.4.4. As a special case, suppose V = Q is the one-dimensional space with quadratic form a +— a?. Then
SO(V) is the trivial group and we take the unit Haar measure on SO(V')(A) = {id}. For each prime ¢, let

preS(V"®QZ)
be the indicator function of the lattice

Zi cQp =V"@Q,
and let ¢y = ®@gy. Let 1 be the unit automorphic form on SO(V')(A). We write
(3.6) 01 = 0py00.. (1),

Lemma 3.4.5. Let £ be an odd prime, and suppose R C Cisa Z [%] -algebra containing all eighth and Cth

power roots of unity. Then for any g € Mp,,, (Q¢), g - 01 lies in M?™
2

U and the constant term ao(g - 0%) of

its Fourier expansion lies in R*.

Proof. By the obvious equivariance of the theta lift, we have

g-%z@ 1).

wy (1,9) 0 ®poco (
Since
SV"® Qe R) CS(V",C)
is Mp,,, (Qy)-stable, Lemma 3.4.3 shows
g-0 % eM gth
Also, 01 is Mps,, (Z¢)-invariant by construction.
By tﬁe Iwasawa decomposition

Span(Qe) = P(Q¢) - Span (Ze),
it suffices to show ag(g - 0.1) € R* for g € P(Qy). Now, by Lemma 3.4.3 again,
2

ap(g-01) = wy(1,9) - ¢5(0),
and it follows from the explicit formulas in (3.3.1) that
wy(1,9) - 0(0) € R
for all g € P(Qy); this proves the lemma. O

Proposition 3.4.6. Letr R C Chea Z [%] -algebra containing all eighth and (th power roots of unity. Then
forall k € %Z,

MP, C MR
is stable under the action of Mps,,(Qy).

Proof. If k € 7Z is integral, this is a consequence of the g-expansion principle for classical Siegel modular
forms [30, Chapter 5, Proposition 1.8]. In general, for any f € M, ,f’}% and f' € M ,?,"R, the product f f' €
M ,?_’ﬁ i has formal g-expansion:

(3.7 (f)vw) = Z Z ar(fas(f ).

TeSym,, (Q) SeSym,, (Q)

(This expression make sense because a7 (f) and ag(f’) are each supported on positive semi-definite matrices
with bounded denominators in their entries, see [101, Proposition 1.1].)
We apply this to f € Ml?j}%’ with k € % +Z,and f' = 0%. Since k£ + % € Z, we have

9(£03) = 9(Hg(0y) € ML, 4
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for any g € Mpy,(Q).

Now, by Lemma 3.4.5 above, the g-expansion of g(61) has an inverse power series

1
2

Z brai

T€eSym,, (Q)

with by € R. Hence, by the uniqueness of g-expansions, the Fourier coefficients of g(f) liein R as well. [
3.5. Formal theta lifts.

3.5.1. Suppose V has signature (m, 0) or (m, 2) for some m > 1, and let
K =[] K¢ c GSpin(V)(Ay)
be a neat compact open subgroup. For any subring R C C, we define Testx (V, R) to be
Homy(Z[Shk (V)], R) = Hompg(R[Shx (V)], R)
in the positive definite case, or
Homyz(CH*(Shg (V)), R) = Hompr(CH*(Shg (V), R), R)
in the indefinite case.

3.5.2. Now fix 1 < n < m. For any K-invariant Schwartz function ¢ € S(V" ® Ay, R) and any o €
Test i (V, R), we define the formal theta lift

O, o)k =Y. alZ(T,¢)k)qk-

The subscript K will be omitted when there is no risk of confusion.

3.5.3. Let £ be a prime such that K, has pro-order invertible in R, and let
Testge(V, R) == lim Test e (V),
K
where the transition maps are induced by pushforward. Note that Test ¢ (V, R) has a natural action of

GSpin(V)(Qy), dual to the one described in [129, p. 41]. For a € Test (V) and a K*-invariant Schwartz
function p € S(V" ® Ay, R), we define the renormalized formal theta lift

O(a, SO)KZKZ,

(3.3) Oe(a, p) = W,

for any K, C K, fixing both o and ¢. Because the cycles Z(T', @) ge K, are compatible under pullback,
O k¢ (a, ) does not depend on the choice of K.

Proposition 3.5.4. Suppose R is a Z[1/(]-algebra containing all eighth and (th power roots of unity, and
the pro-order of Ky is invertible in R. Then © . defines a GSpin(V')(Qy) x Mps,,(Qy)-equivariant map
Testy(V, R) @ S(V" @ Ap, R — M3, .
dim(V)
Proof. Note that both modularity and equivariance can be checked after extending scalars, so without loss
of generality suppose R = C. In the definite case, the proposition is a formal consequence of Lemma 3.4.3
above. In the indefinite case, the modularity of the formal theta lift is [15, Theorem 6.2] and the equivariance
is [54, Corollary 5.11] combined with [129, Corollary 2.12]. ]
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4. CoNSTRUCTION OF GALOIS COHOMOLOGY CLASSES AND SPECIAL PERIODS

Before beginning this section, we establish the notation that will be in force for most of the rest of the
paper.

Notation 4.0.1.

(1) Fix a relevant automorphic representation 7 of GSp, with trivial central character. Fix as well a
strong coefficient field Ey for 7 (Definition 2.2.13). If 7 is endoscopic associated to a pair (71, 72)
of automorphic representations of GL2(A), then we also assume without loss of generality that E
is a strong coefficient field for 7m; and 772.8

(2) We fix a finite set .S of finite primes, containing 2 and all £ such that 7 is ramified.

(3) For all primes p of Ep, let O, C Ej, be the ring of integers, and let zo, € O, be a uniformizer, with
residue field k, = O, /w,. We drop the subscript p when there is no risk of confusion. For a finite
set of primes S’ D S, we write mf;:p C Tg/p for the maximal ideal defined by the Hecke eigenvalues
of 7, and drop the decorations when they are clear from context.

(4) Notation 2.2.16 remains in force.

Remark 4.0.2. We assume 2 € S so that 2 is not admissible under Definition 4.2.1 below, and to prove the
(convenient but not essential) Lemma 4.4.7.

4.1. Assumptions on p. We now define some assumptions on primes p of Ey. Let p denote the residue
characteristic.

Assumption 4.1.1.
(1) pdoes not lie in S.
(2) There exists a rational prime ¢ ¢ S U {p} such that #* # 1 (mod p) and Pr p(Froby) has distinct
eigenvalues, no two having ratio /.

The final assumption depends on whether 7 is endoscopic.

(3) e If 7 is not endoscopic, then p, , is absolutely irreducible.
e If 7 is endoscopic associated to a pair (71, 72) of automorphic representations of GLa(A), then

Pry p and o, . are both absolutely irreducible.

Remark 4.1.2. Assumption 4.1.1(2) implies that p > 5.

Notation 4.1.3. Under Assumption 4.1.1(3):
(1) Let T, be an Oy [Ggl-module such that T , ® Q) = Vr ,; Assumption 4.1.1(3) implies that T} ,
is unique up to isomorphism. -
(2) Foralln > 1, we write T p , := Tw,p/Wngp- Alsolet Ty i=Tr 1.
(3) When p is clear from context, it may be dropped from the above notations.

Remark 4.1.4. Under Assumption 4.1.1(3), T’ , is isomorphic to its Op-dual; we use this to view pr , as
valued in GSp,(Oy), and p ,, as valued in GSpy, (ky).

Lemma 4.1.5. Assumption 4.1.1 holds for all but finitely many primes p of Ey.

Proof. That Assumption 4.1.1(3) holds for all but finitely many primes p follows from [123, Theorem 1.2(i)]
in the non-endoscopic case; in the endoscopic case, it follows from [94, Theorem 2.1]. It is also obvious that
Assumption 4.1.1(1) holds for cofinitely many p. We consider Assumption 4.1.1(2).

8In fact, it is not difficult to check that this last assumption is automatic. The main point is to use Hodge-Tate theory to verify
that, for all ¢ : Qp = C, pry,. and pr, . cannot differ by a Galois twist.
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First fix an arbitrary p with residue characteristic p. The image of p, , contains an element with distinct
eigenvalues by [99, Theorem 1] and Theorem 2.2.10(2). Hence by the Chebotarev density theorem, there
exists a prime ¢ ¢ S U {p} such that Froby has distinct eigenvalues on p ,. The Satake parameter of 7y is
therefore multiplicity-free and of the form {a, B,a~ L B_l} with |a| = || = 1. Let E1 = Ey(«, 3), which
is a finite extension because the Hecke eigenvalues of 7y lie in Ey. For all but finitely many primes p; { £ of
FE1, we will have

a?£1,0,071 (mod pq)
B2 #£1,0,071 (mod py)
af # 1,071 (mod p)
a/B# 1,607 (mod py),

(M #1, (mod py).

For such a py, let p’ = p1|g, and let p’ be the residue characteristic of p’. Then we have /* # 1 (mod p')
and the eigenvalues of Froby on p,. ./ are distinct and not of ratio /, i.e. Assumption 4.1.1(2) holds for p. O

Lemma 4.1.6. Assume p satisfies Assumption 4.1.1(3). Then:
(1) HY(Q,Ty) is w-torsion-free.
(2) Suppose given ¢ € H'(Q,Ty) and a > 1 such that ¢ ¢ w*H'(Q,Ty). Then for all n > 1, the
image ¢, € HY(Q, Ty ) satisfies

ordoc, > n —a.

Proof. The assumption implies that H°(Q,T';;) = 0. The long exact sequence in Galois cohomology asso-
ciated to -
0T, 5T, 5T, —0

therefore gives (1). For (2), a similar argument to (1) shows that the map H'(Q, Ty ;) = HYQ,Tr )
is injective, so the kernel of
w" e Hl(@a Tw,n) — Hl(@7 TT(',’VL)
coincides with the kernel of H'(Q, Trn) — HY(Q, T ). Hence it suffices to show that ¢, # 0, which is
clear from the assumption ¢ ¢ w®H"'(Q, T};) and the long exact sequence in Galois cohomology associated
to
O—>Tﬂw—a>Tﬂ—>Tm—>0.

Lemma 4.1.7. Suppose p satisfies Assumption 4.1.1. Then m , C ']Tg is non-Eisenstein and generic.

Proof. Recall from Remark 4.1.4 that 5 is valued in GSp, (k). Then m ; is clearly of Galois type associated
to p,.. The genericity of m , (Definition 2.7.3) therefore follows from Assumption 4.1.1(2). From Assump-
tion 4.1.1(3), it follows that Tmp ® Fp contains no Galois-stable line. So if m, , were Eisenstein, Prp would
have to factor through a Siegel parabolic subgroup. In particular, then Tﬂ,p @F, = po & po @det py e Wp,
where pg : Gg — GLo (Fp) is some irreducible representation, and wy, is the mod-p cyclotomic character.
This is clearly impossible by Assumption 4.1.1(3) and Lemma 4.1.8 below. O

Lemma 4.1.8. Let p|p be a prime of Ey such that p > 5 and 0, is unramified. If 7 is endoscopic associated
to (my,m2), then p,, and p,., are not isomorphic.

Proof. Recall that p., and p,, have Hodge-Tate weights {—1,2} and {0, 1} up to reording, by Lemma 2.2.9
and Theorem 2.2.1(2). The lemma then follows from Fontaine-Laffaille theory [31, Théoréme 6.1]. ]
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4.2. Admissible primes. In this section, p|p is a prime of Fj.

Definition 4.2.1.

(1) We say a prime ¢ & S U {p} is admissible for p, = pr if ¢* £ 1 (mod p) and the generalized
eigenvalues of p.(Frob,) are of the form {q, a, 1, ¢/a}, with a # +q, +1,¢%, ¢ L.

(2) If g is admissible, define n(g) > 1 to be the greatest integer such that det(Frob, —¢|V;) = 0
(mod w™@).

(3) We say q is n-admissible if it is admissible and n(q) > n.

(4) If Q > 1 is squarefree, we say @ is admissible (resp. n-admissible) if all primes ¢|Q are so.

(5) Analogously, an element g € G is called admissible for p, if vy == X} cyc(g) satisfies 1/;1 Zz 1
(mod p), and g acts on V;; with generalized eigenvalues {v,, 1, o, v,/a} for some

a# iug,il,yg, V;l (mod w).

Lemma 4.2.2. Suppose p satisfies Assumption 4.1.1(3). Then a prime q is n-admissible for pr = pr , if and
only if there exists a Gq,-stable decomposition

T7r,n = MO,n S Ml,n
such that:
(1) My, and My ,, are each free of rank two over O /w™, and Frob,, ‘MO,n = <q 1) in some basis.
(2) Frobz -1, Frobg e Frob, —q?, and Frob, —q~ Y all act invertibly on My .

Proof. Immediate from Definition 4.2.1. t

Lemma 4.2.3. Let p be a prime of Ey. The following are equivalent:

(1) There exist admissible primes for p.
(2) For all n, there exist n-admissible primes for p;.
(3) There exists an admissible element g € Gg for pr.

Proof. Clearly (2) implies (1), and (3) implies (2) by the Chebotarev density theorem. The proof that (1)
implies (2) follows the same argument of [69, Lemma 2.7.1], and (2) implies (3) by compactness. ]

4.2.4. Now suppose 7 is endoscopic associated to a pair (7, m2) of automorphic representations of GLa(A).

Definition 4.2.5.

(1) A prime ¢ & SU{p} is called BD-admissible for pr, = pr,p, withi = 1 or 2,if ¢*> # 1 (mod p)
and the generalized eigenvalues of p,. (Frob,) are {1, ¢}.

(2) If g is BD-admissible for p,, define n(g) > 1 to be the greatest integer such that det(Froby —q|Vy,) ==
0 (mod w™@).

(3) We say q is n-BD-admissible if it is BD-admissible and n(q) > 1.

(4) If @Q > 1 is squarefree, we say () is BD-admissible (resp n-BD-admissible) for p, if all ¢|Q are so.

(5) Likewise, an element g € G is called BD-admissible for pr, if xpcyc(g)? Z 1 (mod p) and g acts
on V., with eigenvalues x;, cyc(g) and 1.

Remark 4.2.6.

(1) Definition 4.2.5 is adapted from [7, p. 18], but there it is allowed that the eigenvalues of Frob, on
Pr, are —1 and —q.

(2) If q is n-admissible for pr, then it is n-BD-admissible for exactly one of p, and pr,; andif g € G
is admissible for p,, then it is BD-admissible for exactly one of p,, and p,,. In particular, if > 1



44 NAOMI SWEETING

is admissible for p,, there is a unique factorization @ = Q1 - Q2 with Q1, Q2 > 1, such that all ¢|Q;
are BD-admissible for p,.
4.2.7. For any prime ¢ ¢ S U {p}, recall that H}(Qq, Tr,n) = Hynr(Qq, Trn), and set H) (Qq, Trn) =
HY Qg Trn) [ HHQy, T ).

Proposition 4.2.8. Suppose q is n-admissible. Then H } (Qq, T n) and H /1 f(@q, Tx n) are each free of rank
one over O /w", and local Poitou-Tate duality induces a perfect pairing

H}(Qq, T ) % H}¢(Qq, T ) = O™

Proof. First note that the induced pairing is perfect because H } (Qq, Txp) is self-annihilating under the Tate

pairing, and one can check lgp, HY(Qy, Trn) = 2lgo H} (Qg, T’ ) using the local Euler characteristic
formula and local duality. So it suffices to prove that

H}(Qq, Trn) = T/ (Frobg —1)Tr
is free of rank one over O /w™. Indeed, this is immediate from Lemma 4.2.2. O

Notation 4.2.9. If ¢ is n-admissible and S’ D S is a finite set with ¢ ¢ S’, then by Proposition 4.2.8 we
have the localization and residue maps:

locg : HY(QY'/Q, Trn) = H}(Qq, Trpn) ~ O/"
Og : HY(Q, T ) — H}f(Qq,Tm) ~O/a"

4.3. Level structures and test vectors. Fix a prime p of Ej of residue characteristic p.

Definition 4.3.1. For any squarefree D > 1, an S-level structure for GSpin(Vp) is a compact open subgroup
K =[] K, C GSpin(Vp)(Ay) such that:

(1) K is neat in the sense of [89, §0.1].
(2) Forall ¢ ¢ SUdiv(D), Ky is hyperspecial.

An S-tidy level structure is an S-level structure satisfying:
Q) IfKy; C AJT is the intersection of K with the center of GSpin(Vp)(Ay), then the finite group
Q*\A} /K7 has order coprime to p.

The reason for the final condition of Definition 4.3.1 is the following convenient lemma:

Lemma 4.3.2. Suppose K is an S-tidy level structure for GSpin(Vp). Then for all finite sets S’ O S and
all ¢ ¢ S Udiv(D), we have

(¢) =1on H*(Shk (Vp), O)m,sr/p'

Proof. By Definition 4.3.1(3), after replacing O by a finite extension we can write

H*(Shi(Vp),0) = € H*(Shk (Vp), 0)y,

where X runs over O-valued characters of the finite group Q*\A ¢ /K7 and
(€) = x(¢) on H*(Shi (V), O)y-

The characters y are distinct modulo o, and the lemma follows because 7 has trivial central character. [
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Definition 4.3.3. Let D > 1 be squarefree, let K be an S-level structure for GSpin(Vp), and let R = O or
O/w™, viewed as a Tg—module via the Hecke eigenvalues of . We define Test (Vp, 7, R) as follows.

(1) If o(D) is even and p satisfies Assumption 4.1.1, then
TeStK(VD, T, R) = Hom Sudiv(D) <H§t(ShK(VD)@7 0(2))7 Tr ®o R) .
To [Gal

(2) If o(D) is odd, then
Testx (Vp, 7, R) = HostudiV(D) (O [ShK(VD)] ,R) .
o

Remark 4.3.4. The definition of Testx (Vp,w, R) depends only on K, and not on S; one can check this
using Theorem 2.4.6(3), and Corollary 2.7.8 when o (D) is even.

4.4. Constructions. Fix a prime p of Ej of residue characteristic p.

Construction 4.4.1. Let D > 1 be squarefree, and let () > 1 be admissible and coprime to D, such that
o(DQ) is odd. For any S-level structure K for GSpin(Vpg):
(1) We define
(@5 K) € 0"
to be the submodule spanned by the elements «(z), where:
o alies in Test g (Vpg, m, O/w™).
o z lies in SC% (Vpg, O) (Notation 3.1.5).
) Ifp e S(VI%Q ® Ay, O)X is a test function, then we define

A (Q. 9 K) C A7 (Q: K)
to be the submodule spanned by elements a(Z (T, ) i), where:
o alies in Test g (Vpg, m, O/w™).
o T lies in Symy(Q)>0, and Z (7', p) x was defined in Construction 3.1.2.
(3) If Q = 1, then we define A" (1; K) € O and AP (1, p; K) € AP(1; K) analogously, where now o
ranges over Testx (Vp, m, O).
(4) We write A2 (Q) C O/w™ for the submodule spanned by A2 (Q; K) as K varies, and likewise
AP(1).
In all of the above constructions, we include a subscript p only when it is necessary for clarity.
442, Let D > 1 be squarefree with o(D) even, and suppose p satisfies Assumption 4.1.1. Let m :=
mSUdW(D) - Tgwa(D). It follows from Lemma 4.1.7 and Theorem 2.7.5(2) that the étale realization map
G
CH*(Shg (Vp), O)m = H*(Shi (VD)g, O(2))m"
is trivial. We therefore obtain a well-defined Abel-Jacobi map
Oa1m : CH*(Shg (Vp), O)m — H'(Q, H,(Shx (VD)g, O(2))m)-

For any o € Testi (Vp, m, R) with R = O or O/w", we obtain an induced map

Tr7p

aAJ,m
S

41)  CH*(Shg(Vp),O)m H'(Q, Hy (Shg (Vp)g: O(2))m) = HY(Q, Tx ©0 R).
Construction 4.4.3. Let D > 1 be squarefree, and let () > 1 be admissible and coprime to D, such that
o(DQ) is even. Suppose p satisfies Assumption 4.1.1, and let K be an S-level structure for GSpin(Vpg).
(1) We define
i (Qi K) € HY(Q, T )
to be the submodule spanned by a, © Jajm(2), where:
o alies in Test g (Vpg, m, O/w™).



46 NAOMI SWEETING

o zliesin SC%{(VDQ, O) (Notation 3.1.5).
(2) Forany ¢ € S(V3, @ Ay, 0), we define

i (@0 K) C iy (Q; K)
to be the submodule spanned by elements o, 0 9oy m(Z (T, ¢) Kk ), where:
o alies in Test g (Vpg, m, O/w™).
o T lies in Symy(Q)>0, and Z (7', p) x was defined in Construction 3.1.2.
(3) If Q = 1, then we define x”(1; K) ¢ H'(Q, Ty) and s (1, p; K) C kP (1; K) analogously, with
now « € Testg (Vp,m, O).
(4) We write 2 (Q) c H'(Q, Ty ,,) for the submodule spanned by 2 (Q; K) as K varies, and likewise
kP (1).

In all of the above constructions, we include a subscript p only when it is necessary for clarity.

Remark 4.4.4. The only reason to distinguish between D and () in Constructions 4.4.1 and 4.4.3 is to define
AP (1) and xP (1) when (D) is odd and even, respectively; moreover, one can check using Corollary 2.5.3
that A (1) or s (1) is trivial unless 7 is transferrable for all £|D.

Now we prove some basic properties of Constructions 4.4.1 and 4.4.3.

Proposition 4.4.5. Suppose L(1/2,m,spin) # 0. If D > 1 is squarefree with o (D) odd and 7r]]? can be

completed to an automorphic representation of GSpin(Vp)(A), then for any prime p of Eo, AP (1), # 0.
Moreover, for all but finitely many p, we have

AP(1), 20 (mod wy).

Proof. Let IT be any automorphic representation of GSpin(Vp)(A) with H]{) o~ 77]1? . Because 7 has trivial
central character, II descends to an automorphic representation of SO(Vp)(A). By [39, Theorem 1.1], the
global theta lift of II to Mp,(A) is nonzero; i.e., the map

S(V2 ® A, C) ® I — Fun(Sp,(Q)\ Mp,(A), C)

4.2
*2) PR a— Oy(a)

is not identically zero (Notation 3.4.1). Also, the image of (4.2) lies in the space of cusp forms by the global
tower property of the theta lift [91]: otherwise, IT would occur in the restriction to SO(Vp)(A) of the theta lift
of an automorphic representation of Mp, (A ), which is ruled out by the Shimura-Waldspurger correspondence
and the relevance of 7. In particular, by the local-global compatibility of the theta correspondence (see the
proof of [91, Theorem 1.2.2]), if ¢ = ®¢, € S(VL% ® A, C) and o = ®a, € 11 are factorizable, then

(4.3) Op(a) # 0 <= (pu(ipv), aw) # 0 Vo,
where by definition
po: S(VE®Q,,C) — (I,)V K 0,(IL,)

is the maximal (I1,)"-isotypic quotient of the Weil representation of SO(Vp)(Q,) x Mp,(Q,) on S(VA ®
Qu, C).

When v = 00, then a, € Il is unique up to scalar, and we take o, € S (VE) ® R, C) to be the Gaussian
from Lemma 3.4.3. Then o, and ¢ satisfy the local condition in (4.3) by the theory of joint harmonics
[1, Proposition 2.1(2), §5]. In particular, (4.3) implies that we can fix an S-level structure K and data

o € Homget (Shi (Vp), Or,) NI € C°(GSpin(Vp)(A),C), ¢; € S(VE® Ay, Opy)™

such that
059f®9000 (OZ) # 0.
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By Lemma 3.4.3, this means that

0 75 a(Z(T, SDf)K) S OEO
for some T € Sym,(Q)>0. Now we note that o has the Hecke eigenvalues of 7 away from S by construction.
In particular, for all primes p of Ey, « lies in Testx (Vp, , O, ), and

0 # a(Z(T, gOf)K) € )\D(l,gof)p C )\D(l)p.
Since a(Z(T, pf) k) # 0 (mod p) for all but finitely many p, this completes the proof. O

Proposition 4.4.6. Suppose D > 1 is squarefree and p satisfies Assumption 4.1.1.
(1) For all admissible QQ coprime to D with o(DQ) even and all £ ¢ S U div(DQ), we have

Resy HE(Q) C H} (Qg, T7r,n)~
(2) If o(D) is even, then we have
kP (1) € Hy(Q, Tr).

Proof. Write Q = 1 in case (2). We claim that, for all S-level structures K and all z € CH?(Shx (Vpg)),
(4.4) Oasm(2) € HH(Q, HE (Shx (VDQ)g: O(2))m)-

Note here that H3, (Sh Kk (VDQ)g: O(2))m is p-torsion-free by Lemma 4.1.7 and Theorem 2.7.5(2), so the
Bloch-Kato Selmer group is defined as in Notation 1.5.2(1). Observe as well that (4.4) implies the proposi-
tion: indeed, it clearly implies (2) by the functoriality of the Bloch-Kato local conditions; and it also implies
(1) by Remark 1.5.3 and Proposition 1.5.5.

Now note that, for all primes ¢, Hg’t(ShK(VDQ)@, Eo(2))m is pure of weight one as a Gg,-module by
Corollary 2.7.7 combined with Theorem 2.2.10(1); hence

H' (Qu, Hy (St (Vo). Bop(2)m) = 0
for all £ # p and

Hy (Qp, HE (S0 (Vo) g Eop(2)m) = H} (Qp, HA Sk (VoQ)g: Fop(2)n)
Thus (4.4) follows from [81, Theorem 5.9] combined with the proof of [79, Theorem 3.1(ii)]. ]

Lemma 4.4.7. Let D > 1 be squarefree, and let Q) > 1 be admissible and coprime to D. Then:
(1) If 5(DQ) is even and p satisfies Assumption 4.1.1, then kP (Q) is generated by k2 (Q; K) as K
ranges over S-tidy level structures for GSpin(Vpg).
(2) If 0(DQ) is odd and p > 5, then \P(Q) is generated by \2(Q; K) as K ranges over S-tidy level
structures for GSpin(Vpg).

Proof. We prove the first statement, as the two are similar. Let K be an S-level structure for GSpin(VDQ),
and note that Ko = Ko has pro-order prime to p.” After fixing a sufficiently small compact open subgroup
K3 C K3, we can ensure that K’ = Kj - [[,,o(K/Z;) is neat; it is then clearly S-tidy as well. Let
Py K'nK * ShK’ﬂK(VDQ) — ShK(VDQ) and Prrg/ K'nK * ShK’ﬂK(VDQ) — ShK/(VDQ) be the natural
maps. For R = O or O/w" and o € Testg (Vpg, m, R), we set

QK O Pr'g K/AK,« © Pl"?(/,K/mK

) = € Test (V] R).
K (K : K' (K] estic (Voo, . )

9To see this, one first observes that K> stabilizes some lattice L C Vpg ® Q2 suchthat 2L C LY C L,where LY is the Z2-linear
dual. One obtains a natural map f : Ko — SO(LY/2L) x SO(L/L"), where L /2L and L/L" are naturally nondegenerate
symmetric spaces over F of dimension at most 5. Since p > 5 by Remark 4.1.2, the image of f then has order prime to p, and the
kernel of f is clearly pro-2.
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If o € S(VI%Q ® Ay, O) is fixed by K, it is also fixed by K’, and we have ok, 0 Oagm(Z(T, 0) k') =
ak 0 0a m(Z(T, ) k) by Proposition 3.1.4; the lemma follows. O

Finally, we introduce some notation that will be used in the endoscopic case.

Notation 4.4.8. Suppose 7 is endoscopic associated to a pair (71, 72). Then for any squarefree D > 1
with (D) even, any S-level structure K for GSpin(Vp), any ¢ € S(VA ® A, 0)X, and j = 1 or 2, we
define kP (1, p; K)U) C H(Q,Ty;) as the image of /jD(l) under the natural projection H;(Q,Tx) —
H}(@, Ty.). We similarly write £ (1; K)) and £ (1)), It is easy to check that

J

kP (1,0 K) = kP (1,0, K)V @ 6P (1, 9; K)@,

etc. As usual, a subscript p is included when necessary for clarity.

5. NONVANISHING CRITERIA FOR CHANGING TEST FUNCTIONS

5.1. Setup and notation.

5.1.1. Fix a prime ¢, and let k = C or Fp, for an odd prime p # ¢. In the latter case we also assume fixed an
isomorphism ¢ : @p = C, and assume throughout this section that

(5.1) g—1+0ink.
We denote by | - ['/2 : QX — k* the unramified character such that |g|'/? = ¢~'/? € k*, using the

isomorphism ¢ when k = [F),.

*

5.1.2. LetV};, be the split quadratic space of dimension 2m-+1 over Q, with basis vy, v1, ..., vm, 0], ..., vy,

and pairing given by:

3
Vit U; Z(Sij, (%

j
Then L := Spany, {vo,v1, ..., 0m, v}, .., v} } is a self-dual lattice L C V,,,. Abbreviate

(5.2) Gm = SO(Vin)(Qq), G, = Mpy,(Qy).

For any parabolic subgroup P C G, (resp. P’ C G)), we write Rp (resp. Rp) for the normalized Jacquet
module functor with respect to P (resp. P’).

*
. 1)]- = 0, v; - Uj = (52'0(5]'0.

5.1.3. Fix an integer n > 1, and consider the Weil representation on S(V", C) with respect to the localiza-
tion, also written 1), of our fixed global additive character of Q (Notation 3.2.4). If £ = IF,,, we have fixed
an isomorphism ¢ : @p = C, and it follows from the discussion in (3.3.2) that S(V", Zp) c S(vn, @p)

is stable under G,,, x GJ,; reducing modulo p, we obtain the Weil representation on S(V",F,,). Whether
k = C or F,, we abbreviate Q,,, , = S(V", k).

5.1.4. If 7 is an irreducible, admissible k-linear representation of G,,, define O, ,(7) to be the k[G],]-
module such that
Qo = TR O, ()

is the maximal 7-isotypic quotient of €, ,,. Similarly, if 7" is an irreducible, admissible, genuine k-linear
representation of G7,, define O, ,,,(7’) to be the k|G y,]-module such that

Qi = Opm (7)) K 7/
is the maximal 7’-isotypic quotient of §2,, ,.
5.1.5. Let
(53) GL1(Q,) &% Q;

be the double cover described in [34, p. 1661], with canonical genuine character x; : (ﬁq (Qq) — pg C kX,
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5.2. The structure of the Weil representation. Consider the Schwartz spaces S(Qy, k) and S(Qg, k),
viewed as representations of Q; x Q; via

(g1,92) - ¢(x) = (g7 ' wg2).

Lemma 5.2.1. Fix a character x : QF — k™.
(1) The maximal quotient of S(Q; , k) on which the first factor of Q acts by x is realized by the map

S(Q k) = xR x!
i | e(t)x(t)dt.
Q7
(2) Assume X is nontrivial. Then the map in (1) extends uniquely to a map f, : S(Qq, k) — x X X!
via

@Y =

# _ -1 X
) e (PO Pl D) X

where go € Q is any element such that x(go) # 1.
(3) Forintegers a < b, let Sqp, C S(q*Zg, k) be the subspace of Schwartz functions that are invariant

under multiplication by Z; and translation by qqu. Then for distinct, nontrivial, and unramified
characters x1,...,Xm : Q — k™ withm <b—a+1, fy,,..., fy, arelinearly independent as
functions on Sgp.

Proof. Part (1) is elementary. For (2), we have the exact sequence
0 — S(Q, k) = S(Qq k) 222 k5 0,
which is equivariant for the trivial (@;< X Q; -action on k. Since
HomQ; @ (k,x®x™ 1) =0,

there is at most one extension of the map in (1) to S(Qg, k), and the formula given in (2) exhibits it.
For (3), let 2; = x;(g). A direct calculation shows that, for ¢ € S, ;,

1
_1—l‘i

Fo (@) vol(Z) (so<qa><x? ) g (2t )

oot D =) (et ).

So it suffices to show that the matrix

a a+1 b—1 b b
nTo RN S
a a
g — x5 Ty — x5 T
a a+1 b—1 b b
Tm — Tm v Ty T Ty Ty

is nondegenerate, and this follows from the Vandermonde determinant formula.

5.2.2. Assuming that m > 1, let
P=MN C Gy,

be the parabolic subgroup stabilizing the isotropic line (v1). Then M is isomorphic to Q; x Gp—1; we
normalize the isomorphism such that

(5.4) (o, g) - v1 = auy, for (o, g) € M.
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Similarly, let P’ = M'N’ C G/, be the preimage of the stabilizer of e; € Wo,, (Notation 3.2.1(1)); then M’
is isomorphic to GL; (Qq) X, G/,_;. We normalize the isomorphism so that

(5.5) (a, g) - e1 = @eq, for (a,g) € M.
Lemma 5.2.3.

(1) The normalized Jacquet module Rp(Qy, ) fits into an exact sequence

MXG{,L 2n—2m-+1

0— IndeP’ X S(Q;,k) X Qm—l,n—l — RP(Qm,n) — ’ . ‘ 2 Qm—l,n — 0,

where | - | is the canonical character of M, and x,, - S(Qy , k) is a GL1(Qq) X @1(@q)-m0dule
with action defined by (g, h) - o(t) = xy(h)p(g~th).
(2) Similarly, the normalized Jacquet module Rp: (S, 1) fits into a canonical exact sequence

! 2m—2n-+1
0— Ind]GDT;;\}M Xy - S(Q;,k‘) X Qmfl,nfl — RP’(Qm,n) — Xw‘ : | 2 X Qm,nfl — 0.
Proof. When k = C, this is [53, Theorem 2.8]; see also [34, Proposition 7.3] for our more convenient
normalizations. When k = IF,,, the proof in [53] applies without change because p # q. ([l
Corollary 5.2.4.
(1) Let w—1 be an irreducible admissible representation of G,—1, and let xq : @; — k> be a char-
acter with xo # | - |2n_22erl . Then for all admissible k|G, ]-modules M,

G! —
HomeXG’n (Qm,m (Indgm X0 X 7Tm_1) X ./\/l> = HomG% (IndP? le . XO 1 X @m—l,n—l(ﬂ'm—l)7 M) .
In particular, if
Ty = IndIGDm xo0 X Tn—1
is irreducible, then

el —
@m,n(ﬂ-m) = Ind]:JL Xy~ Xo ! X @m—l,n—l(ﬂ-m—l)'

(2) Similarly, let 7, _, be an irreducible admissible genuine representation of G, _, and xo # || R

a character of Q. Then for all k|G, ]-modules M,

Homg,, xq, (Qm,n, MK (IndIGD% X - Xo X 71';1_1>) = Homg,, (Indg’” Xal K Om1m1(m, 1), M) .

n—1
In particular, if
o= Indg:" XoXo R,y
is irreducible, then
Onm(mh) = " x5! B On—1m1(m,1).
Proof. This is immediate from Lemma 5.2.3 and Lemma 5.2.1(1). ]

5.3. Principal series over  for orthogonal and metaplectic groups. Some of the arguments in this sub-
section were inspired by the work of Zorn [130]. The results are new only if k = IF),.
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5.3.1. Continuing the notation of (5.1.2), we now assume m = n.

Notation 5.3.2.
(1) Let B C G, be the stabilizer of the maximal isotropic flag

(5.6) 0 C (v1) C (v1,v9) T+ C (v1,...,0p)
and let B’ C G, be the preimage of the stabilizer of the maximal isotropic flag
0C (e1) C(e1,e2) C--- C(ex,... €n).

(2) The Levi factor T of B is identified with (@; )™ via its action on the associated graded of (5.6), and
similarly the Levi factor 7" of B’ is identified with

GL1(Qq) Xy *+* Xpuy GL1(Qy) -

n times

(3) For any character
X Q)" — kT,
we define (normalized) principal series representations
) G,
I(x) =Ind%" x, I'(x) = Indg" xy - x-

(4) We write W = S, x (Z/27)" for the Weyl group of T in G,,, which is also the Weyl group of 7" in

Gl,.

Lemma 5.3.3. The semi-simplified normalized Jacquet modules are

Rp(I(X))* = GuwewX", Rp(I'(x))* = Bwew X" Xy-

Proof. Over @p, this follows from the well-known result for C; see [130, Lemma 4.8]. Since p # ¢, the
p-modular case follows by the proof of [113, Lemme 34]. U

Lemma 5.3.4.

(1) Any nontrivial quotient I(x) — m extends to a nontrivial intertwining operator
I(x) » 7 = I(x")

for some w € W.
(2) Similarly, any nontrivial quotient I'(x) — 7' extends to a nontrivial intertwining operator
I'(x) » ' = I'(x")

for some w € W.

Proof. Let B C G, and B c G, be the opposite Borel subgroups to B, B’. Recall the “second Frobenius
reciprocity”

(5.7) Hom(I(x),n) = Hom(x, Rg(rw)), Hom(I'(x), ) = Hom(xyX, Ry (7).

In the orthogonal case, this is [114, I1.3.8(2)]. Although the result there is only stated for reductive groups,
the proof can be adapted verbatim to the metaplectic case. (The key technical points are the existence of
arbitrarily small compact open subgroups admitting an Iwahori factorization, and the conditions in Lemma
1.8.13 of op. cit. All of the fundamental results on Hecke algebras in Chapter I of op. cit. apply to general
locally profinite groups.)

Returning to the proof of the lemma, note that

Ry(m) #0 <= Rp(m) #0
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and likewise in the metaplectic case. Hence it follows from (5.7) that any quotient /() — 7 extends to a
nontrivial map

I(x) = 7= I(p)

for some character p of (Q; )™; by Lemma 5.3.3, p is a Weyl conjugate of x, so (1) holds. The argument for
(2) is identical. ]

Lemma 5.3.5. Supposen = 1 and x* # |-|=. Then I(x) and I'(x) are both irreducible and ©1 1(I1(x)) =
I'(x).

Proof. First of all, I(x) is irreducible by [113, Théoréme 3]. Then

O11(I(x) =T"(x"")

by Corollary 5.2.4(1). Since the intertwining map I(x) — I(x~!) is an isomorphism by irreducibility, we
have

I'(x ) =20,((x) =0 ) =TI'(x).

If x2 # 1, this shows I’(x) is irreducible by Lemma 5.3.3 and Lemma 5.3.4. If xy? = 1, we instead use
Corollary 5.2.4(1,2) to obtain

dim Homgy (I'(x), I'(x)) = dim Homg, xq; (Q1,1, 1(x) B I'(X))
= dim Homg;, (I(X)a I(X))
=1

since I(x) = I(x 1) is irreducible. This shows that the intertwining operator I’(x) — I’() is unique, so
the lemma follows from Lemma 5.3.4. O

Lemma 5.3.6. Let x = x1 X --- X x,, be a character such that X? = 1 for some 1 < i < n. Then for any
submodule ™ C 1(x), we have

XEBQ C RB(T‘_)SS'
Similarly, for any submodule @' C I'(x), we have
xux® C Rp ().

Proof. The orthogonal and metaplectic cases are identical, so we just prove the result for 7’ C I'(x). Let
Q; = L;U; C G, be the rank one standard parabolic subgroup corresponding to the ith long root of 7".
Then

L; = éle(Qq) Xpg X éle(Qq) XuzG,l X g éil(@cﬂ Xpg *+ Xpg éil(®q)~

1—1 times n—1 times

Let
p=xp (X1 B Kxi—1), 0=xy (Xit1 K- Kxn).
Since 7’ admits a nonzero map to I'(x), x is a quotient of Rp/(n’) = Rpnr, R, (7"), so we have a
nontrivial intertwining operator

Ro,(7') — IndéﬁmLi xex = pRI'(xi) Ko

This is surjective since I’(;) is irreducible by Lemma 5.3.5 above. (By (5.1), we have x? = 1 # | - [¥1.)
By the exactness of the Jacquet functor, we conclude

Rp(7)* — Rpnr, (p R I'(x;) K o)* = xux®2.
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X

o) — KX is a character such that x; are all distinct and

Lemma 5.3.7. Suppose x = x1 ¥ ---xn : (Q
X7 = 1 for at most one 1 < i < n. Then

dim Hom(I(x), I(x")) = dim Hom(I'(x), I'(x")) = 1
forallw e W.

Proof. 1f the Weyl conjugates of y are all distinct, this is automatic from Lemma 5.3.3; so assume without
loss of generality that X? = 1 for exactly one 1 < ¢ < n. Then the stabilizer of x in W has order exactly
two. The argument is the same for I(x) and I’(x), so we consider /() in order to minimize notation.

Claim. Any nontrivial map f : I(x) — I(x) is an isomorphism.

Proof of claim. Indeed, if f has nontrivial kernel, then Rp(ker f)** contains xy®? by Lemma 5.3.6. But y
appears with multiplicity exactly two in Rp((x))®® by Lemma 5.3.3, so then Rp(Im f)** does not contain
X, which is impossible since we are assuming that f is nontrivial. Hence f is injective, so

Rp(f): Rp(I1(x)) = Rp(I(X))

is injective. Since Rp(I(x)) has finite length, Rp(f) is also surjective. But then coker f has trivial Jacquet
module, which means coker f = 0 by Lemma 5.3.4. So f is also surjective. g

Now by the claim, End(/(x)) is a division algebra over k, and also a k-vector space of dimension
dim Hom(Z(x), I(x)) < 2.
Since k is algebraically closed, we conclude
(5.8) dim Hom(I(x), I(x)) = 1.

Next observe that there are no non-split extensions of distinct characters of 7" over k. In particular, we
may decompose

Rp(I1(x)) = D R(I(x))x,

where x" runs over the (distinct) Weyl conjugates of x, and (5.8) implies that Rp(I(x))y is a non-split
extension of x by x. The same argument applies to show Rp(I(x"))yw is a non-split extension of x* by
x" for all w € W. Now for any nonzero intertwining map

f100 = I(X"),
Rp(Im f)** contains (x*)®2 by Lemma 5.3.6. Hence the induced map
Rp(f): Rp(I(x))x» = Rp(I(x"))x=

is surjective, in particular an isomorphism since both sides have dimension two over k. Since Rp(I(x"))y»
is non-split, so is Rz (I (x)),~. Hence

dim Hom(Z(x), I(x")) = dimHom(Rp(I(x)),x") =1

forallw € W. ([l
5.3.8. To state the next lemma, we use the following explicit generators for the Weyl group W:

(i) The inversion s sending a character y = y1 X --- X y,, to x°* = Xfl XN oxg.

(i) For 1 < 7 < n, the transposition w; sending a character y = x1 X --- Ky, to x*i = 1 X --- X

Xi—1 B i1 B X B xiqo B+ DX X,

Lemma 5.3.9. Let x = x1 X - - W xp, : (Q))" — k™ be a character.

(1) Suppose x3 # | - | 1. Then

I(x) = I(x°) and I'(x) = I'(X").
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(2) Suppose x;/Xiv1 # |- |T* for some 1 < i < n. Then
I(x) = I(x™) and I'(x) = I'(x"").

Proof. Once again, the orthogonal and metaplectic cases are identical. We give the proof in the orthogonal
case. For (1), let P = M N C G, be the rank one standard parabolic subgroup such that the Weyl group of
M is generated by s. Then

M =Gy % (Qq)nil.
Also write p = yo X -+ - K xp, ¢ (Q;)"*1 — k. Then

(5.9) I(x) = Ind" Indf,p, x = IdE" I(x1) 5 p
and similarly
(5.10) I(x*) = IdG" I(x;") M p.

By Lemma 5.3.5, I(x1) is irreducible, with an intertwining isomorphism to I(x;'). By (5.9) and (5.10),
this induces an isomorphism 7(x) = I(x®). The proof of (2) is similar: let Q; = L;U; C G,, be the rank
one standard parabolic with Weyl group generated by w;. Then

~ i—1 —i—1
L= (QF)" x GLa(Qq) x (@) " .
By [113, Théoréme 3] applied to the GL2(Q,)-factor of L;, we conclude
Indéim:i X = Indpnr, X"

(In the metaplectic case, L; has a ﬁg(Qq) factor, to which we may still apply the results of loc. cit. with a
twist by x,,.) Then as above we obtain an isomorphism

I(x) = Indg;1 Indé’hLi X = Indg? Iﬂdf;imLi X =I(x").

Definition 5.3.10. Let x = x1 X+ X xp, : (Q7)" — k™ be a character.
(1) We say x is generic if x;x; & {| SR ]l} forall 1 < i,j < nandx;/x; ¢ {| SR ]l} for all
1<i<j<n.
(2) We say x is almost generic if xixj, Xi/X; & {| - EL, ]l} forall1 <i<j<mn,x?#||* forall
1 Sign,andx? = 1 foratmostone 1 <7 <n.

Corollary 5.3.11. Let x : (Q))" — k™ be generic or almost generic. Then:
(1) I(x) = I(x")and I'(x) = I'(x") forallw € W.
(2) I(x) and I'(x) are both irreducible.
(3) ©(0) = I'(x)-

Proof. (1) follows from writing w as a product of generators and repeatedly applying Lemma 5.3.9. (2)
follows from (1) combined with Lemmas 5.3.4 and 5.3.7. Once we have (2), it follows from repeated appli-
cations of Corollary 5.2.4(1) that

O(I(x) = I'(x" ).
Then (3) follows from (1). O

Definition 5.3.12. Let y = x1 X --- X xy, : (Qq)* — k™ be a character.
(1) We say ¥ is level-raising generic it:
(i) For exactly one 1 < ip < n, x4, = | - \%.
(i) Forall1 <i < j <n, xixj Xi/Xj € {\ . ]ﬂ,]l}.
(i) Forall i # g, x? & {| - [*,1}.
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(2) We say Y is almost level-raising generic if it satisfies (i) and (ii) above, and moreover:
(iii") For all i # dg, X7 # | - |*1; and x? = 1 for at most i # 4.

Notation 5.3.13. For x almost level-raising generic, the set of Weyl conjugates W () is naturally divided

into two subsets: those x* = x} X ---X x/, such that x; = |- \% for some ; and those such that x; = |- |_%
for some 7. We denote these subsets by W ()™ and W ()™, respectively.

Lemma 5.3.14. Fix 6 = + or —. Then for any X', x*2 € W(x)’, we have I(x™') = I(x"“?) and
() = I'(x*™).

Proof. For any "1, x"? € W(X)‘S, we may write w; Ywy = s1 - - - 55, where each s; is one of the generators
in (5.3.8) and x¥1°1*% € W (x)? forall 1 < i < k. The lemma then follows from repeated applications of
Lemma 5.3.9. g

Construction 5.3.15. For any x which is almost level-raising generic, there is a quotient J(x) of I(x)
defined as follows. Let Q;, = L;,U;, C G, be the standard rank one parabolic corresponding to the short
root indexed by ¢g. Then we have

(5.11) Li, = (Q)°™! x Gy x (@),
and by [113, Théoréme 3], Ind?0 X has a one-dimensional quotient
(512) Jz (X) = Xlg'--gxio_lglgxio_ﬂ@-"gxn,

where 1 denotes the trivial representation of G;. We let

(5.13) J(x) = Indgjo Jio (X)-
To study the theta lift of J(x), we first have the following calculation in the rank-one case.

Lemma 5.3.16. If 1 is the trivial representation of SO(V1)(Qq) = PGL2(Qy), then
O11(1) =I'(|- V),
with the corresponding quotient
SWVi,k) - 1K O ,1(1)
induced by
= (9= wy(l,9)9(0)), g€ Mpy(Qy).

Proof. Using the injection 1 < I(| - |~'/2), we obtain by Corollary 5.2.4(1) an embedding
Homg; (01,1(1), M) = Hom Gy x G} (Q,1, 1 B M) < Homg, xq (@1, I(] - |72 B M)
= Homg, (I'(] - ['/*, M)

functorial in k[G4]-modules M. In particular, ©1 1 (1) is a quotient of I’(| - |'/2). On the other hand, it is
clear that the map in the lemma defines a nontrivial homomorphism ©;1(1) — I’(| - |'/?), so we have a
nontrivial composite

I'(]- V%) = ©14(1) = I'(] - |'/?).

This must be an isomorphism by Lemma 5.3.7, and the lemma follows. U

Corollary 5.3.17. If x is almost level-raising generic, then J(x) is irreducible and O, »,(J(x)) = I' ().
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Proof. First note that, by [113, p. 44], J(x) is the image of a nonzero intertwining operator I(x) — I(p),
where

p=x18 B xip—1 R B xige1 B Bxn € W(x)

If J(x) — 7 is a nonzero quotient, then we obtain, by Lemma 5.3.4, a nonzero intertwining operator

I(x) > J(x) » m = I(x")

for some w € W. However, Lemmas 5.3.7 and 5.3.14 show that this composite (since it is not an isomor-
phism) must coincide with the intertwining operator I(x) — I(p) whose image defines J(x). In particular
J(x) = m. So indeed J(x) is irreducible. Then ©,,,(J(x)) = I'(p~!) by Lemma 5.3.16 and repeated
applications of Corollary 5.2.4(1). Since p~ € W (x)*, we also have I’(p~!) = I’(x) by Lemma 5.3.14,
and this completes the proof. (|

5.4. Explicit theta lifting over £ for principal series.

Notation 5.4.1. Given ¢ € Q,, , and t1,...,t, € Qq, define

(5.14)

@(tl, . ,tn) = n(n2,1) go(tlvl, tovo+aivy, t3vz+asvi+asva, ..., tyUp+- - '+an(n271) vn,l)dal s dan(n271) ,
Qq

with v, ..., v, asin (5.1.2) above.

A direct calculation shows that:
Lemma 5.4.2. The map o — ¢ defines a morphism of T x T'-modules
—1\®n 1\Xn n
R (Qu) = (1175 B - (|- 19)7") @ S@Q5. ),
where T' x T" acts on S(Qy, k) by

(5.15) (1, oy @n) X (Y1, ooy Yn) ()1, ) = f(xfltlgl,...,:pgltnyn).

Definition 5.4.3. For any character x = x1X---Kx;, : (Q))" — k™ with x; # |- |_% for all ¢, we consider
the following condition on ¢ € €2, ,,:

(Cy) There exists g € G, such that f, (wy (1, g)p) # 0, where
_1 1 -
o (017 R - (1-13)™) @ S@, k) = x B xy X!
is the unique projection deduced from Lemma 5.2.1.

1
The map f,, also exists and is unique without the assumption x; # | - |~ 2, so (C,) makes sense for all x;
this is elementary but not needed in our applications.

5.4.4. Let K C G, be the hyperspecial subgroup stabilizing the self-dual lattice L C V,, (5.1.2).

Lemma 5.4.5. Let x : (@;)” — k™ be almost generic and unramified, and suppose ¢ € fon satisfies
condition (Cy,). Also let M be any admissible k[G),)-module. Then, for any nonzero map

0:Qyn — I(x) XM
of k|G, x G,]-modules, we have
0(p) # 0.
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Proof. Since I(x) is irreducible, Corollary 5.3.11 implies that 6 factors as

Qe 2 T(0) RO (1)) = TR I (x) L () R M

for some map of G,-modules
f:I'(x) = M.
Then since I’ () is also irreducible, it suffices to show 6y() # 0. Now, by Lemma 5.4.2, the map

X <(h,g) - fx(ww(h,g)so))
gives a (G, x GI,)-intertwining map
Fy: Qnn = 100 RI'(x™) 2 I(x) B I'(x)-

Since F), is not identically zero, Corollary 5.3.11 shows that ¢ coincides with F, up to a nonzero scalar; in
particular 6y () # 0 if and only if F () # 0. Then because ¢ is K -spherical, F\ (¢) # 0 if and only if

there exists g € G, with f, (wy (1, g)¢) # 0, which is condition (Cy). O

Similarly, we have:

Lemma 5.4.6. Let x : (Q))" — k™ be almost level-raising generic and unramified, and suppose ¢ € fon
satisfies condition (C). Then, for any nonzero map

0 Qo — J(x) B M
of k|G, x G!,]-modules, we have
0(¢) # 0.

Proof. Since J(x) is irreducible by Corollary 5.3.17, the map 6 factors as

Q= J(0) BOa(J(0) = JO)RI'() £ J(x) B M
for some map of G/,-modules
f:I'(x) = M.
By Lemma 5.3.4, we may assume without loss of generality that f : I'(x) — I'(x") is an intertwining
operator. Then by Lemmas 5.3.7 and 5.3.14, we see that it suffices to show ¢ has nonzero image under the
map
0o : Q= JOO BT (x) = JOO BRI (X7,
By Lemma 5.4.2, the map
o ((h9) = Fewph9)0)

gives a (G, x G),)-intertwining map

By Qup = IR (x7).
As in the proof of Lemma 5.4.5, since ¢ is K-invariant, condition (C)) is equivalent to F,(¢) # 0. Now
project to obtain a composite

F. _ _

Fy o Q= I0)B I (XY = JO) BRI (x 7).

Now we observe that any K -spherical vector in I(x) has nonzero image in J(x); indeed, by the construction
of J(x) it suffices to show this when n = 1, in which case it is clear from the explicit intertwining operator in
[113, p. 44] and the assumption g2 — 1 # 0 in k. In particular, we have FY (¢) # 0if and only if F) (¢) # 0.
On the other hand, F, must factor as

Fy : Qun = J0) BOnn(J (X)) = JO) BRI (x);

the map ©,,,(J(x)) = I'(x) = I'(x ") is unique by Lemma 5.3.7, so F}, coincides with 6 up to a nonzero
scalar. Hence () # 0 is equivalent to (CY). O
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5.4.7. We end this subsection with a convenient shortcut that we will use to check condition (CY) in the
characteristic zero, non-level-raising case.

Lemma 5.4.8. Suppose k = C and let x : (qu)2 — k* be generic and unramified. Assume that o € 952
satisfies:

(1) Forall z,y € V, we have p(x,y) € Q.
(2) @ is supported on L x ¢~ 'L and invariant under translations by qL x ¢*L.
(3) There exist elements x,y € V withy - v = 0 and p(z,y) # 0.

Then there exists x*' € W (x) such that ¢ satisfies condition (Cyw).

Proof. Let wg be the Weyl element in (3.3.1); then
—_— _1 1
wowo)p € (175 Bxy - (| 1)) © S@Q2K)

is a unit multiple of the function

c(ty,te) = /2 / o(x, Y)Y (t1x - v1 + tay - v2 + ay - v1) dadzdy
|4 q

= Vol {q_2Zq} /‘/2 oz, y) (l1z - v1 + oy - v2) - Ly g2z, dadzdy.

By condition (2) of the lemma, c is supported on ¢~ Z, x ¢~2Z, and invariant under translations by Z, x ¢Z,.
Note that the conditions of the lemma together imply that ¢(Z, ¢Z,) # 0. From this, we will deduce that
fyw(c) # 0 for some Weyl conjugate x* of x, which will show the lemma.

Indeed, write x = x1 X x2 and x* = x{’ X x4 for w € W. Then

bl =13 (fw%xs’c(tl’ ')>

(where the functions on the right are defined in Lemma 5.2.1(2)). Now, because ¢(Zy, gZ,) # 0, c¢(1,-) is
a nonzero element of the four-dimensional k-vector space S_z 1 from Lemma 5.2.1(3). Since x4| - ]% takes
on four distinct nontrivial values as w ranges over W, we may therefore replace x with a Weyl conjugate
such that d := f| |% c(t1, -) is not identically zero. Since d lies in S_1 o as a function of ¢;, Lemma 5.2.1(3)
12x2
again implies that either f‘ B (d) or f| Ayt (d) is nonzero. This concludes the proof because x;* X x2 is
14 X1 14Xy

Weyl-conjugate to .
O

5.5. Applications to formal theta lifts.

5.5.1. For this subsection, fix the following data:

A quadratic space V' of trivial discriminant and dimension 2n 4+ 1 > 3.
A neat compact open subgroup K = [[ K; C GSpin(V)(A).

An odd prime q such that K, is hyperspecial.

O O O O

A subring R C C which is either C, or a finite flat extension of Zp (embedded into C by a choice
of isomorphism ¢ : @p =5 C). In the latter case we assume the pro-order of K ¢ is prime to p. Let
wpr € R generate the maximal ideal (so wr = 0 if R = C), and write k := R/wp.

o A character x : (Q)" — k™ thatis either almost generic or almost level-raising generic (Definition
5.3.10 and Definition 5.3.12).

With these data, we make the following notation:

Notation 5.5.2.
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(1) Write Ty := Tgspin,,, L1 0.R- Let m, C T, be the maximal ideal corresponding to x; explicitly, m,
is the annihilator of the unique spherical vector in I(y).
(2) For any ring A, 1 4 denotes the trivial A[K,]-module.

Lemma 5.5.3. We have CSpim(Y)(Qe)

c-Ind qum 1R @, k= 1(x)
as k-linear representations of GSpin(V)(Qy).
Proof. Write

Ty = C_Indf(jpm(\/)(@q) 1g ®Tq,mx k.

Then we have a map f : m, — I(x), sending the generator of 7, to the unique spherical vector. The first
claim is that f is surjective. Indeed, if y is almost generic, this is automatic by Corollary 5.3.11. If x is
almost level-raising generic, then I(x) has no K,-spherical submodules: since taking the K -invariants is
exact, J(x) is the unique K -spherical constituent, and it cannot be both a quotient and a submodule by
Lemma 5.3.7. So indeed f is surjective.

It remains to prove f is injective. Because 7, is generated by K ,-spherical vectors, every GSpin(V')(Qg)-
stable subspace V' C 7, satisfies Rp(V') # 0; for instance, this follows from [114, Corollaire I1.3.5] com-
bined with (I.3.15) of op. cit. Thus it suffices to show Rp(f) is injective, or equivalently that

dimy Rp(my) = dimg Rp(I(x)) = |[W|=n!-2".

To compute the dimension of Rp(m,), note that RB(C-Indf(ipin(V)(Qq) 1x) = k[X*(T)] by the Iwasawa
decomposition for GSpin(V')(Q,), and the action of T,® r k is the natural one under the Satake isomorphism
T, ®r k = k[X*(T)]V.

Since k[X*(T)] is a finite flat k[X*(T)]" -algebra of degree |W|, we have
k) =W,

dim Rp(my) = dim (k[X'(:F)] @ (o (FYW my

as desired. O
Notation 5.5.4. Forall p € S(V" ® Qq, R), let $ be its image in S(V" ® Qq, k).

(Despite the conflict with Notation 5.4.1, we hope that the meaning will always be clear from context.)
5.5.5. For the next proposition, recall the notation on formal theta lifts from §3.5.
Proposition 5.5.6. Let o € Test i (V, R) be a test vector and ng > 1 an integer such that:

(1) O(a, ) 0 (mod w}py) for some o = p? @ pq € S(V" @ Ay, R)K.
(2) Forall h € my C Tqand all g}, € S(V" ® Qq, R)*s,

O(h- o, 9! ®py) =0 (mod wy).
Then for any pg € S(V" @ Qq, R)X4 such that P, satisfies condition (Cy),
O(a, ¢! @ p,) #0 (mod wp).

Proof. For all f € c—Indgjp in(V)(Qa) 9 R, We can consider the convolution
fxa € Testgqa(V,R)
(notation as in (3.5.3)). By Proposition 3.5.4, the map

GS in V n n
(5.16) c-Ind(>P @) 1, 2 S(V" ® Qq, R) — M
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defined by
(f, @) = O(f * o, 9! @ ¢y
is GSpin(V)(Qq) x Mp,,, (Qq)-equivariant. By condition (2) of the proposition applied to h = wp € m,,
the image of (5.16) is contained in wﬁo_lMg R Abbreviate
no—1
R M;LJF%,R

o n
“r M1 g

M=

Reducing modulo wg, (5.16) induces a map
(5.17) c-Indi PO 1, 0 SV @ Qg k) — M
which remains a map of GSpin(V')(Qy) x Mps,, (Q,)-modules by Proposition 3.4.6. Now note that condition

(2) of the proposition implies (5.17) factors through the quotient

GSpin(V)(Qq)

GSpin(V)(Q ~
eInd PV @) 1 e nd (P 1 @7, m, k= I(X)

K
(Lemma 5.5.3). By duality [1(114, p- 96, Propriété (vi)], (5.17) is equivalent to a nonzero map
0:SV"®Qyk) = I(x ") oM
and, for g9 € S(V" ® Qq, R)*e, we have
O, p? ® ;) #0 (mod wf) <= 6(7,) # 0.

If x is almost generic, the proposition therefore follows from Corollary 5.3.11 and Lemma 5.4.5. So assume
instead that x is almost level-raising generic.

Claim. Let M be any admissible k[Mp,,, (Q,)]-module. Then every map of GSpin(V')(Qq) x Mp,,,(Qq)-
modules

SV"®Qq, k) — I(Xfl) X M
factors as
SV"@Qy k) = J(x) IM — I(x ) K M.

Given the claim, the proposition follows from Lemma 5.4.6, because J(x) < I(x~!) is injective (cf. the
proof of Corollary 5.3.17).

Let us now prove the claim. Since the statement is purely local in nature, we resume our local abbre-
viation 2y, , = S(V" ® Qq, k). The claim is also insensitive to replacing x with any x* € W(x)" (by

Lemma 5.3.14), so suppose without loss of generality that x = | - |% X p for some almost generic charac-
ter p : (QF)" — k™. Apply Corollary 5.2.4(1) with xo = |- |_% and m,—1 = I(p) = I(p~!). Since
On-1n-1(I(p)) = I'(p) by Corollary 5.3.11, we obtain an isomorphism

(5.18) Hom(Qn, I(x ") ® M) = Hom(I'(x), M)

that is functorial in M. So it suffices to show the claim with M = I’(). But in this case, (5.18) combined
with Lemma 5.3.7 shows that there is a unique non-zero map

(5.19) Qnp = I(XHRI'(x).
Since J() injects into I(x '), we also have the map induced by the theta lift
Qi = J(x) B Onn(J(x)) 2 J(x) BT (x) = I(x™ 1) BT (x);

this must coincide with (5.19) up to a nonzero scalar, which shows the claim. ]

5.6. Main result on changing test functions.
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5.6.1. Let w, S, and Ej be as in Notation 4.0.1, and fix a prime p of Fy, which we suppress from all the
notation in this subsection. Fix an isomorphism ¢ : Q, — C inducing the prime p, and let R C Z, be the
ring of integers of the maximal unramified extension of O = O.

We apply the results of §5.5 to study the behavior of A2 (Q, ¢; K) and 2 (Q, ¢; K) as ¢ changes locally
at a prime ¢ 1 Q.

Proposition 5.6.2. Suppose q is an admissible prime. Then there exists an unramified character x : (Qy )2 —

F; such that x is almost level-raising generic, and the corresponding maximal ideal m, C T, r contains
the kernel of the Hecke action on the unique spherical vector of m,.

Proof. Because 7, is unramified with trivial central character, we have 7, = I () for an unramified character
X : (QX)? — C*, uniquely determined up to Weyl action. Write @ = ¢~ *X(g, 1), 8 = ¢~ 'X(1, q); then by
Theorem 2.2.10(1), pr(Froby) has eigenvalues aq'’?, B¢' 2, a1¢ /2, 571¢"/2, which lie in Z; C @; By
the admissibility of ¢, we may assume without loss of generality that

(5.20) ag’?=q (mod p), Bg"/? # +q,£1,¢%,¢"" (mod p).

We define the character  to be the reduction modulo p of . 1, and the conditions (5.20) exactly correspond
to x being almost level-raising generic. g

Corollary 5.6.3. Suppose QQq is admissible with v(DQ) odd, and fix an S-level structure K for GSpin(Vpq).
Let p; € S (V,%Q ® Qq, O)%4 be a test function whose image in S (Vl%Q ® Qq, F) satisfies condition (C,),
where x : ((@;< )2 - ﬁ; is the almost level-raising generic character of Proposition 5.6.2. Then for alln > 1
and all p = 9 ® @, € S(VI%Q ® A, O)K, we have

A(Q, 0" ® 92 K) D AD(Q, ¢ K).

Remark 5.6.4. The same corollary holds for 2 (Q, —) if v(DQ) is even, but this version will not be used
for the main results.

Proof. Suppose A2 (Q,p; K) = (™) for some 1 < ng; without loss of generality we may assume
ng < n and that

M(Q, 0" ® ¢l K)=0 (mod @™ )
for all ¢, € S(VL%Q ® Qq, O)Ka.
Now choose a vector a € Testx (Vpg, T, O/w™) such that a(Z(T, ¢)k) generates A2 (Q, p; K) for
some T' € Sym,(Q)>o. Lift v arbitrarily to an O-valued test function & € Test ¢ (Vpg, O). Recall R C Z,
is the ring of integers of the maximal unramified extension of O, and let f; : T, g — R be the character

associated with the Hecke eigenvalues of 7y, so that fr(h) € (w) for all b € m, C T, g. Then for h € m,
and ¢ € S(VE)Q ® Qg, O)%e, we have

O(h-a, ¢! @ yy) = fx(h)O(@, ¢! @) =0 (mod w"),

so we may apply Proposition 5.5.6 to conclude. (Note that because ¢* # 1 (mod p), p does not divide the
pro-order of K.)
0

We now give an analogue of Corollary 5.6.3 in characteristic zero, which requires () = 1.

Proposition 5.6.5. Suppose q ¢ S is a prime such that pr(Froby) has distinct eigenvalues. Let x : (Q; )2 —
C* be the unramified character, well-defined up to W -action, such that 7, is a constituent of 1(x). Then x
is generic.
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Proof. The proof is similar to Proposition 5.6.2, using that |a| = |5| = 1 because 7, is tempered by Theorem
2.2.10(1). g

Corollary 5.6.6. Let D > 1 be squarefree with v(D) even, and suppose q ¢ S U div(D) is a prime
such that pr(Frob,) has distinct eigenvalues. Fix an S-level structure K for GSpin(Vp), and let ¢y €
S(V3 @ Qq, Z)%a be a test function whose image in S(V3 @ Q,, C)Xe satisfies the hypotheses of Lemma
5.4.8, or more generally condition (C), where x : (QQX)Q — C* is the generic character of Proposition
5.6.5. Then for all p = ¢ ® ¢, € S(VE @ Af,0)XK,

K21 K) #0 = 521,97 ® 93 K) # 0.
Proof. The argument is similar to Corollary 5.6.3. First fix a vector « € Testx(Vp,m, O) with a, o
Oasm(Z(T,0)k) # 0 for some T € Sym,(Q)>o. Because H(Q, T} ) is torsion-free by Lemma 4.1.6(1),

we may choose a linear functional 8 : H*(Q,T;) — Q, such that S(c 0 dasm(Z(T, ¢)k))#0. Let
a € Testx (Vp, C) denote the composite map

CH2(Shic (Vi) 2222 H'(Q, HE, (Shx (Vb)gs O@)m) 25 HY(Q,T;) 5T, & C.

Then a is Hecke-equivariant because a is so. Let ¢, € S (VZ%Q ® Qg, C)¥a be any vector. By the Hecke-
equivariance of &, we have O(h - a, 97 ® Lpfl) = 0 for all h € m, (Notation 5.5.2), with R = C, wgr = 0.
We can now apply Proposition 5.5.6 to conclude. (Il

With essentially the same proof, we have the following in the endoscopic case:

Corollary 5.6.7. With the setup of Corollary 5.6.6, suppose w is endoscopic associated to a pair (11, m2).
Then for all ¢ = ¢ ® p, € S(VA ® Ay, O)X and j = 1 or 2, we have

kP (Lo K9 #£0 = kP10 ® g K)U) 0.
6. THE RAMIFIED GSping RAPOPORT-ZINK SPACE
6.1. The moduli problem.
6.1.1. Fix a prime ¢ > 2, and let O, be the unique maximal order in the non-split quaternion algebra B

over Q. Suppose given a g-divisible group X over I, of dimension 4 and height 8, equipped with an action

ix : Oy = End(X) and a principal polarization Ax : X = X" such that the Rosati involution * of End(X)
induces a nebentype involution on O, of unit type (Definition 1.2.9).

Definition 6.1.2. Let Nilp be the category of schemes over Zq on which ¢ is locally nilpotent. Let N :
Nilp — Set be the functor sending S € Nilp to the set of isomorphism classes of tuples (X, ¢, A, p) where:

(i) X is a g-divisible group of dimension 4 and height 8 over .S.
(ii) ¢ : Ofy — End(X/S) is an O -action such that

det(T — o(a)| Lie(X)) = (T? — tr(a)T + N(a))?, Va € O,.

(iii) A : X = XV is a principal polarization such that the Rosati involution on End(X/S) extends the
involution * on Q.
iv) IfS=8 X [F,, denotes the mod ¢ fiber, then p is an O,-linear quasi-isogeny

p:X><5§—>XXFq§

such that p* o Xx o p = ¢(p) A for some c(p) € Q.
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The functor N is studied in [118]; in this section, we will recall the key points, and prove additional
properties needed for our applications.

6.1.3. The functor N is represented by a formal scheme over Spf Zq, locally formally of finite type, which
admits a decomposition into open and closed formal subschemes

6.1) N = UiezN (7)

according to the g-adic valuation of ¢(p).

6.14. Leto : Zq — Zq denote the arithmetic Frobenius, lifting the gth power map on [F,,. The formal scheme
N is equipped with a canonical Weil descent datum ¢ : ' = o* A over Zq, which we now recall. On S-

points, ¢ is given by the isomorphism ¢(S) : N'(S) = N ((c=1)*S), which sends (X, ¢, A, p) € N(S) to
((0_1)*Xa (0_1)*L7 (0_1)*)‘3 po FX/?)a where

FX/§ : (U_l)*X§ — Xg

is the relative Frobenius. Since c(p o F'y /g) = ¢(p) + 1, p restricts to an isomorphism
it N (i) = o*N (i + 1)

for each ¢ € Z.

6.2. The Bruhat-Tits stratification.

6.2.1. Let M denote the underlying reduced scheme of A/(0). We now recall the description in [118] of the
stratification of M in terms of lattices in the isocrystal /N of our fixed g-divisible group X. By the assumption
that the involution * on Oy is of unit type, we may choose coordinates

(6.2) Oy =Zp ®NZp,

where o* = Ilall™! = ga for a € Z, II* = II, and II* = q.

6.2.2. Label the two embeddings of Z 2 into Zq by je and j,. Then we have a decomposition
(6.3) N = N¢ & N,

where ¢(a) = j7(cr) on Ny for ? = e, 0. Each of N, and N, is an isocrystal of dimension 4 and slope 1.
The polarization Ax induces a pairing

<‘7'> :N®N_>Qq:%q®(@qa
with respect to which N, and N, are each isotropic (since * is nontrivial on Z,2 C Q). Define a new pairing
(6.4) (7)ot Ne @ No = Qq

by
<I’, y)' = <‘T? Hy>
Then (-, -)o is symplectic and non-degenerate.
The operators I and V' on IV both interchange N, and NN, so the operator

(6.5) r=nv!
stabilizes No; moreover
(66) <7'.’I,', Ty>. = <$7 y)fa

where again o is the arithmetic Frobenius of Qq. Hence W := N7=! is a 4-dimensional Qq-vector space
equipped with a Q;-valued symplectic form, such that N = W ®q, Qq.
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Definition 6.2.3. For a lattice A C W, denote the Z,-dual lattice by AY. We define the following families
of lattices in W:

Loy = {lattices A C W s.t. A =AY},

Loy = {lattices A C W s.t. A =qA"}.

Lig2y = {pairs of lattices Ag, Ay C W s.t. gAg = qAy Ca2 gAY = Ay Co AO} )
/J{l} = {lattices A C W st qA\l/ Co A1 Co A\l/} i

Here, the notation A C,, A’ was defined in (1.1.8).

Theorem 6.2.4. The underlying reduced scheme M of N'(0) admits a stratification
_ A0 0 0 0
with a decomposition into open and closed subschemes
M= | | M)
yEL?

foreach 7 = {0}, {2}, {02}, {1}, satisfying the following conditions (where M~ and M= (y) denote the
Zariski closures of M3 and MY(y), respectively):

(1) For? = {0} or {2} and each A € L, M~ (A) is isomorphic to the smooth projective hypersurface
in ]P’% defined by the equation
q
XIXo — XIX5 + XIX) — XIXo.

The scheme M is the union Mgy U M qy.
(2) Given Ao € Loy and Ay € Ly, Moy (Ao) meets Myay(A2) if and only if (Ao, A2) € Lyggy, in

which case the intersection is transverse and
Moy (Ao) N Moy (A2) = Mgy (Ao, A2).

For each (Ao, A2) € Lig2y, Myo23(Ao, Az) is isomorphic to IP% , and both of the resulting embed-
q
dings }P’% — }P’% are linear.
q q
(3) Foreach Ay € L1y, M?l}(AQ = M1y(A1) is anisolated point. Given Ay € Ly and Ay € Lyay,
M1y (A1) lies on Moy (Ao) if and only if A1 C Ao, and on Moy (A2) if and only if Ao C Ay
(4) For a pair of distinct Ao, Ay € Loy, Moy (Ao) meets Moy (Ag) if and only if Ao N AG € Ly, in
this case the intersection is transverse and we have
Moy (Do) N Myoy(Ah) = M1y (Ao N Ag).
(5) For a pair of distinct Ao, Ny € Loy, Mgy (A2) meets Moy (Ay) if and only if Ay + Ay € Ly, in
this case the intersection is transverse and we have
M{Q}(AQ) N M{g}(AIQ) = M{l}(AQ + AIQ)
(6) The stratum My is precisely the nonsmooth locus of N(0), and the complete local ring of N'(0)
at each point in My, is isomorphic to

Z4[X,Y, Z,W]/q— XY + ZW.

Proof. Each point except (6) is contained in [118], and (6) is [85, Corollary 4.2]. ]
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6.2.5. For later use, we recall the meaning of each of the strata in Theorem 6.2.4 on the level of Fq—points.
Given s = (X, ¢, \, p) € N(F,), the covariant Dieudonné module of X gives rise to an O,-stable lattice
M C N. Such an M admits a decomposition

M:M.@MOCN.EBNO
as in (6.2.2); here we are using ¢ # 2. For a lattice A C W, define A=A® Zq C M,. Then we have, for
any s € M(ﬁ[ﬁ and any lattices Ag € E{O}’ As € E{Q}, A€ ﬁ{l}l
e sliesin /\/l{l} if and only if M, = 7M,, and is the point ./\/l{l}(Al) if and only if M, = /u\l.
e s liesin Myq (Aog) — My if and only if Me + 7Me = Ao.
e sliesin M{Q}(AQ) — Myy, if and only if Me N 7M, = As.
By Theorem 6.2.4, at least one of these three options occurs for any point s € M(F,,).

Notation 6.2.6. From now on, to ease the notation we shall abbreviate Mgy (Ag) as M(Ay), etc.

6.3. Deformation theory and the geometry of \/.

6.3.1. Let (X, )\, ¢, p) be an S-valued point of N, for some S € Nilp. To X we associate the (covariant)
Dieudonné crystal D(X) [74]; thus for any thickening S < S in Nilp admitting locally nilpotent divided
powers, we obtain a locally free sheaf D(.S) of Og-modules, such that D(X) := D(X)(S) fits into a canonical
exact sequence

(6.7) 0= wxv — D(X)— Lie(X) =0

of locally free Og-modules.

6.3.2. Asin (6.2.5) above, the action of Z 2 C O, on D(X) induces a decomposition
D(X) =D(X)e ® D(X)o,
and likewise for D(X), wxv, and Lie X; the action of II interchanges the two components in each case.
The polarization A induces a perfect alternating pairing
() :D(X) @D(X) - OF™.
Since both ID(X), and ID(X), are isotropic, (-,-) identifies (X ), with the dual of D(X),. Finally, the
submodule wyv of D(X) is also isotropic, so that A induces perfect pairings of locally free Og-modules:
<-, > PWXV.e® Lie X, — Og
(-,-) twxv o ® Lie Xg = Os.
If S = Spec F,, then D(X) is equivalent to the data of the Dieudonné module M of X; the exact sequence

(6.7) becomes
0—VM/pM — M — M/VM — 0.

6.3.3. LetS — S be a thickening in Nilp admitting locally nilpotent divided powers, and fix z = (X, A\, 1,p) €
N (S). Denote by Lift(z) the set of isomorphisms classes of lifts of z to 7 = (X, X,7,p) € N(S), and de-
note by Lift(x) the set of locally free, O,-stable, totally isotropic Og-submodules &yv C D(X )(§) lifting
wxv. From the well-known deformation theory of g-divisible groups [76], one has:

Proposition 6.3.4. The canonical map

~ o~

#=(X,\0,p) = wgy € D(X) = D(X)(5)

defines a bijection
Lift(z) < Tifo(x).
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6.3.5. Let A'™ denote the formally smooth locus of A/(0), which by Theorem 6.2.4(6) is the complement of
Lpec 0 M(A1). Before we can calculate the tangent bundle to the mod ¢ fiber of ™ in Theorem 6.3.7

below, we need the following lemma.

Lemma 6.3.6. Suppose given (X, \, ¢, p) € N*(S), for some F,-scheme S. Then 11 induces isomorphisms
of line bundles on S'

Lie X,

T Lie X,

wxv ~
—= 5 HWXV,O C wxV o,

= I Lie X, C Lie X,

I_ICAJXV7O
and likewise with e and o reversed.

Proof. We consider the first map; the second, and the versions with e and o reversed, are all similar to this

case. Without loss of generality, we may assume that S = Spf R is affine and formally of finite type, and that

R is a local ring with maximal ideal m such that R/m = Fq. Then Lie X, and Lie X, are each free of rank

two over R by the Kottwitz condition, and the map II, : Lie X, — Lie X, is nonzero modulo m; indeed,

this amounts to the assertion that IIM, # V M, for the Dieudonné module M = M, & M, corresponding

to the special fiber of X, and this holds because we are away from the nonsmooth locus of N'(0), cf. (6.2.5).
In particular, we can choose bases of Lie X, and Lie X, such that

0 d
for some d € R. Now, we also know that TT2 = g = 0 on Lie(X), so the matrix g for IT, : Lie X, — Lie X,

must satisfy
10 10
9(0 d> = <0 d)g_o'

0 .
w> for some w € R, where wd = 0; but the same reasoning as for

II, = (1 O> : Lie Xo — Lie X,

A direct calculation shows that g = <8

II, shows that II, is nonzero modulo m, so w is a unit and we conclude d = 0. From these coordinates for
I1, and I1., it is clear that II Lie X, and Lie X, /Il Lie X, are both free of rank one over R and that the map
in the lemma is indeed an isomorphism. g

Theorem 6.3.7. Let T denote the tangent bundle on the mod q fiber J\/Fsm. Then we have a canonical exact
q

sequence:
0= T — Hom(wyv e, Lie Xo) = Hom(Ilwyv o, Lie Xy /TI Lie X;) — 0,

where X is the universal q-divisible group.

Proof. 1t suffices to consider deformations of a point (X, ¢, A, p) € N*™(R) to points of N*™(R]e]/€?), for
R an F-algebra. Let S = Spec R and S = Spec R|e]/e2. By Proposition 6.3.4, we need to consider lifts
of wyv to locally free submodules @xv C D(X)(S) which are O,-stable and isotropic; this is equivalent
to lifting wxve C D(X)e and wxv, C D(X), to locally free submodules ixv e C D(X)4(S) and
Wxv.o C D(X)o(S), subject to the following conditions.
(i) (Bxv.e@xvo) = 0.

(ii) Haxv7. C axv’o.

(iii) H@XV70 C @X\/V..
Now, lifts of wxv o correspond to maps of R-modules f, : wxv o — Lie X, via

forrspan{z + efe(z) + ewxve 1 TEWxV L},

and likewise for wxv .. The conditions (i)-(iii) translate to:
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(1) (z, fe(y)) = (y, fo(z)), forall x € wxv o, Y € WXV 0.
(i) I fe(x) = fo(Illz) forall z € wxv ,.
(iii)” IIfo(x) = fo(Ilz) forall x € wxv .
If we specify f,, then (i)’ can be taken as a definition of f,. In terms of f, only, conditions (ii)’ and (iii)’
correspond to:
()" (y,1fe(z)) = (x, 11 fe(y)), forall z,y € wxv .
(iii)” (y, fo(Ilz)) = (z, fo(Ily)), for all z,y € wxv o.
Now, since we are outside the singular locus, Lemma 6.3.6 implies that I[Iwyv o and Ilwx v . are locally rank-
one direct summands of the rank-two projective R-modules wxv , and wxv o, respectively. In particular,
using that (ii)” and (iii)” are clearly satisfied when = and y are linearly dependent, it suffices to check (ii)”
and (iii)” for z € Tlwxv , and z € Iwxv ,, respectively. Using (Ilz, ITw) = ¢(z, w) = 0, we find that both
conditions (ii)” and (iii)” are equivalent to II fo(Ilwyv o) = 0. Again by Lemma 6.3.6, the kernel of II on
Lie X, is II Lie X,, so we are just requiring

foe(Mlwxv o) C ITLie X,

as desired. O

6.3.8. Scheme-theoretic description of the strata M(Ao), M(A2). Fix alattice A € Loy U Lyay; we recall
the construction of M(A) as a subscheme of N given in [118, §4]. Let A=A® Zq C N,, and let Y denote
the g-divisible group over [F,, associated to the lattice
Ao T 'AC Noa N,
where § = 0if A € Lypy and § = 1if A € L{9). The group Y comes with a natural quasi-isogeny
t:Y - X

For any (X, A, ¢, p) € N(S) with S an F,-scheme, consider the two quasi-isogenies:
P ¢t
P+t X = §§S — ){g,

g =0t p1
p_:YS—>XS—>X,

where 6 = 0if A € Lgyand d = 1if A € L.

Then the scheme M (A) is constructed as the locus where p and p_ are both isogenies. In fact, since the
dual lattice to A & IT7 A is ¢* =29 (A @ IT-'A), we may identify Y =5 YV by ¢' =29t o \x o ¢; with respect
to this polarization, p4 and p_ are duals, so p_ is an isogeny if and only if p is.

Proposition 6.3.9. Ler O(1) be the line bundle on M(A) corresponding to the embedding into IP’% of The-
q

orem 6.2.4 (2). Then, if (X, \, ¢, p) is the universal q-divisible group over M(A), we have isomorphisms of

line bundles on M(A)S™ := M(A) N N=™:

O(—q) 2 11 Lie X, = Lie X,/II Lie X.

Proof. We give the proof in the case A € Lygy; for A € Lygy, the roles of e and o are interchanged. Let
S = M(A)*™, and let Yg be the constant g-divisible group Y on S.
We need to recall the construction of the projective embedding from [118, §4]. First of all, one has the
Dieudonné crystal
D(Ys) = D(Ys)e & D(Ys)o,
with notation as in (6.3.2), and
D(Ys)o = D(Y)o © Os
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is a free Og-module of rank 4. The submodule p .D(X), C D(Yg), is locally a free summand of rank 1,
and this is the tautological bundle O(—1) under the map M(A) — IP’% . The canonical Verschiebung map
q
V: D(Ys)o = D(Yi?)o = D(Ys)e ®05 Ogta)
is given by the gth power map Og — Og(,) tensored with the isomorphism
V:D(Y)o =T 'A/TIA = A/gA = D(Y).,

so we have an isomorphism
O(—=q) = V(p4«(D(X)o).
Now we note that the map
(68) Vo P+ % - D(X)o — D(YS). ®OS OS(q)

annihilates both IID(X), and wxv ,, because V(wyy o) = Vo II(D(Yg)o) = 0 by the definition of Y. In
particular, (6.8) induces a surjection

Lie X, ~
6. v v =————— — 0(—q),
(6.9) Pt iex, 009
which is a map of line bundles by Lemma 6.3.6 and therefore an isomorphism. Combined with Lemma 6.3.6
for the other isomorphism, this completes the proof. (|

Theorem 6.3.10. For any A € Loy U L9y, the normal bundle to M(A)*™ inside /\/'FSIn is isomorphic to
q
O(—2q) for the embedding into IP’% given in Theorem 6.2.4.
q

Proof. For simplicity, we continue to assume A € Lyqy; the other case is similar.

The first step is to compute the tangent bundle to M (A)%™. We wish to consider the lifts of (X, A, ¢, p) €
M(A)*™(R) to points of M(A)*™(R[e]/€?) for R an F,-algebra, which we may take to be reduced since
M(A) is reduced. Continuing the notation of (6.3.8), such lifts correspond to the pairs

fo 1 wxv e — Lie X,
fo rwxv o — Lie X,
satisfying (i)’-(iii)’ from the proof of Theorem 6.3.7, subject to the additional condition that
fO(p*,*(ng,o)) = fo (pf,*(UJYg,o)) =0.

By the definition of Y, we have Wyy o = 0, so the second condition is automatic.

Claim. On M (A)S™ we have
(6.10) p_7*((x)y1¥7.) = lwxv o.
Given the claim, we conclude by comparing with the proof of Theorem 6.3.7 that the tangent bundle T
to M(A)®™ is canonically isomorphic to
Hom(wyv o /Hwxv o, Lie X,).
The normal bundle is the quotient 7 /7Ty, which by Theorem 6.3.7 is
Hom(Ilwxv o, I Lie X,).

Since Ilwxv o is dual to Lie X, /II Lie X, on M(A)®™, the theorem then follows from Proposition 6.3.9.
Now we turn to the proof of the claim. We have

p—x(Wyy.e) = p—e(D(YR)a) = (ker (p1 : D(X)o — D(YR)o))"
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because p4 and p_ are duals; the orthogonal complement is with respect to the perfect pairing on D(X).
Because R is reduced, the Verschiebung V : D(Yg), — D(YR), is injective, so (6.9) implies that
ker (p4« : D(X)o = D(YR)o) = wxv,o + IID(X),.
Arguments similar to Lemma 6.3.6 show that (ITD(X),)* = I1D(X),, and so we conclude
pes(wyy o) = (Wxve +TID(X)e)" = wyv,e NTID(X),.

Now it follows from Lemma 6.3.6 and the snake lemma for the diagram

0 — wxvo — D(X)o —— LieX, —— 0

[ T

0 — wxve —> D(X)e — LieXy —— 0

that wxv ¢ NIID(X)e = [wxv o, so the proof of the claim is complete. O

6.4. Regularization of M and intersection theory.

Notation 6.4.1. Let A(0) be the blowup of A/(0) along My, and let M be the strict transform of the

reduced locus M; then M is smooth. We denote by C/(A;) the exceptional divisor of M above M(A;) for
each Ay € Lyyy. Forany Ag € Lygy and Ay € Lygy, let M(Ag) and M(Az) be the strict transforms of
M(Ap) and M(A3), respectively.

Lemma 6.4.2. For any Ay € L3y, there exists an isomorphism C(A;) = IP’% X IP’% such that:
q q

(1) Forany Ao € Loy with Ay C1 Ao, M(AO) meets C'(A1) transversely along a divisor with class
(1,0).

(2) For any Ay € Loy with Ay C1 Ay, M (Ag) meets C (A1) transversely along a divisor with class
(0,1).

Proof. By Theorem 6.2.4(6), we may fix one isomorphism C(A1) = PL x PL . Let Ly (A1) be the set of
q q

Ao € Loy with Ay C1 A, and likewise L2y (A1). The actions of Stab(A1) C Sp(W)(Q,) on Lny (A1)

and L2 (A1) are transitive, and compatible with the natural Sp(W)(Q,)-action on N (0) (see (6.5.1)). For

distinct Ag, Ay € Loy (A1), it follows that the divisor classes

Dy, = M(Ao) N C(Al)

and

DA6 = M(A6) N C(A1>
differ by an automorphism of C(A1). In particular, if Dy, = («, 8), then Dy, = (o, 8) or (B, ). On the
other hand, since M (Ag) meets M(A{)) transversely at M (A1), we have
Da, - Da, =0
for the intersection product on C'(A1). Since (a, 3) - (3, @) = a? + 32, which can only vanish if o = 3 = 0,
it follows that Dy, = Dy; = (a, B) with a5 = 0; without loss of generality, assume § = 0. By the same
reasoning, for any Az € Li91(A1),
Dy, = M(A2) NC (A1)
has divisor class (v, §) with v0 = 0. However, M (A) meets M (A2) transversely along M (Ag, Ag), so we
have
Dy, - Dy, = 1.
This implies ad = 1, so we have Dy, = (1,0) and Dy, = (0, 1), as desired. O
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Notation 6.4.3. Let A € Ly 1L o). We denote by O(1) the line bundle on M (A) arising from the pullback
of O(1) along the composite

M(A) = M(A) — P%q.
Lemma 6.4.4. Forany A € Loy U Ly, the normal bundle to M(A) inside N(0) is O(—2q).

Proof. Let {Ago), e ,Agn)} be the set of lattices A; in Ly} such that M(Aq) lies on M(A). Then the
projection M (A) — M(A) is the blowup along the points M(AY)), with exceptional divisors

E; = C(AY) n M(n).

Since M(A) is a smooth surface, we have E; - E; = —J;; for the intersection pairing on M(A).

Now, the normal bundle to M (A) inside N (0) is locally free of rank one, and Lemma 6.3.6 implies it is
isomorphic to

O(—2¢+apEy+ ...+ anEy)

for some o; € Z. On the other hand, as N/ (0) is formally smooth, we can compute the triple intersection
number

mi = M(A) - M(4) - C(A)

in two ways, foreach 0 < ¢ < n:

- ( M(A) - C(A@)) e ( M(A) - c(Ag“)) —0 (Lemma 6.4.2)

_ (M(A) : M(A)) SN (M(A) : C(Ag"))) = o
So we find «; = 0 for all 4, as desired. ]

6.5. The GSpin action on .

6.5.1. The endomorphism algebra End (W) is equipped with an involution T given by the adjoint with respect
to (-, )e, and

V= Elrld(I/V)Jf:l’tr:0 = End(X, LX)*:I’“:O
is a split orthogonal space of dimension 5, where * denotes the Rosati involution. There is a natural projection
(6.11) 7w : GSp(W) — SO(V)

inducing an isomorphism GSpin(V')(Q,) = GSp(W)(Qy). There is also a canonical action of GSpin(V')(Qy)
on NV (by modifying p); when restricted to Spin(V')(Qj), the resulting action of Sp(W)(Q,) on M is com-
patible with the natural actions on Lyg}, L2y, L02}, and L.

Definition 6.5.2. Define the sets of lattices
£ = {AC W @ A=q"AY forsomenGZ}
Lpa={Ap. CW : q"TIAY, Co Apa Co p"AY, for some n € Z}.

Remark 6.5.3. Both .Z and .Zp, are homogeneous spaces for GSp(W)(Q,); the stabilizer of a point in .Z
is a hyperspecial subgroup, and the stabilizer of a point in .%Zp, is a paramodular subgroup.

Using . and Zp, rather than Ly, L2}, and L1y, we can extend the combinatorial description of M
to all of MVyeq.
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Definition 6.5.4. For any A € ., choose an arbitrary g € GSp(W)(Q,) such that gA € L) C £, and
define

M (A) = g~ Mgy (gA).
Similarly, choose g" € GSp(W)(Qg) such that g'A € Loy C .#, and define
M_(A) = (g") "My (g'A).
For any Ap, € %p,, choose g € GSp(W)(Qy) such that gAp, € L1y C Zpa, and define M(Ap,) =
9 M1y (gApa).

Proposition 6.5.5. (1) Definition 6.5.4 yields bijections
L x {£} = {irreducible components of Nyeq

and
Lpa — {singular points of Nyeq } -
(2) Choose any A € Z. For the Weil descent datum in (6.1.4), we have
 (My(A) =" M_(qA)

and

@ (M_(A)) = 0" M. (A).

Proof. For (1), it suffices to show there are two GSpin(V)(Qy)-orbits of irreducible components of Nyeq,
and only one orbit of singular points. However, since

g+ N (i) = N (i + ordgr(g))
for g € GSpin(V)(Qy), it suffices to show that there are two Spin(V')(Q,)-orbits of irreducible compo-
nents of M, and one Spin(V')(Q,)-orbit of singular points on M. This follows from the transitivity of the
Sp(W)(Qq)-actions on Lygy, L2y, and L13.

For (2), note that ©*(M(A)) = (0?)* M, (gA), so it suffices to show the first relation. Without loss of
generality, assume A € Lqy. By definition, o(M(A))(FF,), viewed as a subset of NV (IF, ), is the Zariski
closure of the set of points corresponding to lattices M C N such that

(VUM +71M))e = A

and

oM, = qM/.
Since VA = TIA, the first condition is equivalent to II-* M, + I~ 27 M, = A, or dually

MeNTMy = q/v\.

Now choose any g € GSpin(V)(Q,) with v(g) = ¢~'; we have ggA € L9y. The locus
9p(M4(A))(Fy) € M(Fy)

is the Zariski closure of the set of points correspor@ing to lattices witllM. NTMe = qg./vk and TTI" 1M, =
M,'. But this is exactly the stratum M2y (qgA)(Fy) = M_(qgA)(F,), so we conclude p(M(A)) =
o*g M _(qgA) = o* M_(gA), as desired. O

From Theorem 6.2.4, we immediately deduce the following relations among the components M (A) and
the points M (Ap,).

Corollary 6.5.6. For any Ap, € £p, and A, N € £, we have:
(1) M(Ap,) lies on M_(A) if and only if Ap, C1 A.
(2) M(Ap,) lies on M_(A) if and only if A C1 Ap,.
(3) My (A) meets M_(A) if and only if gA Co A’ Co A.
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(4) If A # N, then for 6 = + or —, Ms(A) and Ms(A\') can meet only in singular points of Nieq.

7. THE FIRST EXPLICIT RECIPROCITY LAW. GEOMETRIC INPUTS

7.1. Abel-Jacobi maps for schemes with ordinary quadratic singularities.

7.1.1. Let Ry be a Henselian discrete valuation ring with uniformizer =, algebraically closed residue field
k, and fraction field Ko. The inertia subgroup I, of Gal(K/Kj) has the canonical tame character ¢, :
I, — Zp(1) for any p # char(k). Let R be the quadratic extension Ro[r'/?], and K its field of fractions,
with inertia subgroup I C If,. We write sq, s, 19, 1) for the closed points and the generic points of Spec Ry
and Spec R, with corresponding geometric points 77, = 7). Let X be an irreducible scheme of finite type and
pure relative dimension 2r — 1 over Spec Ry, for some integer > 1. We assume X has ordinary quadratic
singularities: this means that X is smooth outside a finite set of closed points {z;};.; in Xy, and, étale
locally near each z;, X is isomorphic to Spec Ry[yo, - - -, y2r—1]/(Q — ), with @ the equation of a smooth
quadric in IP?{O_I.

7.1.2. The blowup Y of X at the points {x;},_; is strictly semistable in the sense of [97], with a particularly

simple form [47]. The irreducible components of the special fiber Y, of Y are )?s, the strict transform of
X, and the exceptional divisors D;. Each D; is isomorphic to the smooth projective quadric in P2" =

Proj(k[yo, - .., y2r—1,t]) cut out by @ — t2, and the intersection C; = D; N X is the hyperplane section
t = 0, so that C; is a smooth quadric in ]P’zr_l. Since Y is semistable, we have

(7.1) Noi/—)?s = _Nci/Di =0(-1)

in the Picard group of Cj.

7.1.3. Let O be a finite flat extension of Z,, with p odd and p # char(k), and let w € O be a uniformizer.
We fix a coefficient ring A = O or O/w™ for some m > 1. We recall the definition of the nearby cycles
complex: let j : Y5 — Y and i : Y; — Y denote the inclusions of the geometric generic and special fibers,
respectively. Then RUA =7 oj,0j A, an element of the bounded derived category of sheaves on Ys; it has
a canonical action of I C Ik, factoring through the tame character ¢,, and the (increasing) monodromy
filtration M, RVA. Fix T' € Ik such that ¢,(T") generates Z,(1); then the monodromy operator 7" — 1 on
RV A induces compatible maps

T—-1: MZR\I/A — MZ_QR\IIA
forall¢ € Z.

Proposition 7.1.4 (Saito). Let
io: X, u| | Di = Y,
i€l
and
11 : |_| Cz — )/5
i€l
be the natural maps. Then the graded pieces of MqRVA are given by:
gt RUA =0, li| > 1,
grf RUA = i1, A(—1)[-1],
grd RUA = ig.A,
g™ RUA =i A[-1].

Proof. This is [97, Proposition 2.2.3]. O
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Lemma 7.1.5. The following composite map is an isomorphism:

H? (Yo, MyRWA) — H?" (Ys, grg’ RVA) = H (X, A) & @ H” (Ds, A) —» H* (X, A).

iel

Proof. First, consider the tautological distinguished triangle
(7.2) M_{RUA — MogRYA — gry! RUA — M_ | RUA[+1].
This yields an exact sequence

H? (Y, M_1RYA) — H* (Y}, MoRUA) — H?"(Yy, grd! RUA) — H* (Y, M_1RUA).
Applying Proposition 7.1.4 and using H2"~1(C;, A) = 0 for all i € I, we obtain

0 — H” (Y, MoRUA) — H* (X3, A) & @ H” (D, A) — H (C;, A).
icl

However, H2"(D;, A) — H?"(C;, A) is an isomorphism for each i € I by the Lefschetz hyperplane theorem,
and the lemma follows. 0

7.1.6. Let RV x A be the nearby cycles complex for X, defined as in (7.1.3); it also coincides with the nearby
cycles complex for X . From now on, we will assume:

(BCx) the base change map Hi(Xﬁo, A) — H'(X,,, RV xA) is an isomorphism for all i.

Since the blowup map f : Y — X is proper and is an isomorphism on generic fibers, we have a canonical
isomorphism
f+RYA = RUxA
by [28, §2.1.7]. In particular, (BCx) implies:

(BCy) the base change map H'(X5, A) = H' (Y5, A) — H'(Ys, RVA) is an isomorphism for all 4.
Lemma 7.1.7. Let j : | |,c; C; — X s be the natural embedding. Then the monodromy operator T' — 1 on
H? =YYy, RUA) fits into a commutative diagram with exact rows:

HZ (X, A) —2 @i  HZ~2(Ci, A1) —2s H2(X,, A) —— H¥ (X, A)

lT—l lt

HY N (X A) 45— @it H 7 (Ci, A) e H (X A) ¢—— HY (X, A).
Here, t is the isomorphism — & t,(T).
Proof. From the vanishing of gr¥ RWA for |i| > 1 (Proposition 7.1.4), we have a canonical factorization
(7.3) T —1:RUA — gr)ff RUA - M_1RVUA — RUA;

taking cohomology and applying Proposition 7.1.4, (7.3) induces a commutative diagram:

HQT_I(}/:%R\IJA) L> EBiEIH2T_2(Ci7A(_1))
Jr-s J
H2T?1(}{97 R\I]A) <T @iEIH2r72(Ci7A)'

The description of ¢ is [97, Corollary 2.2.4.2].
We now explain the exactness of the top row

(7.4) HZ (X, A) % @ie H(Ci, A(—1)) 25 HY (X, A) = H? (X, A)
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of the diagram in the lemma. From the tautological distinguished triangle

(7.5) MoRVA — RUA — gr)! RUA — MyRUA[+1],

we deduce the exact sequence

(7.6) H¥Y(Y,, RUA) % @i H 2(Ci, A(~1)) S H (Y, MoRUA) — H* (Ys, RUA).
Combined with Lemma 7.1.5 and (BCy), it suffices to show that the composite

1.7) ®ict HY2(Cy, A(=1)) S H2(Y,, MyRTA) = H¥ (X, A)

is the pushforward map, and this follows from [97, Proposition 2.2.6]. The argument for the exactness of the
bottom row

HY (X, A) = B (X, A) 25 @D HY (0 A) B B (X, A)
i€l

is essentially identical. O
7.1.8. By (BCy ), the monodromy filtration M, of RUA induces filtrations M, on
H>Y( Xi,A)
and on
H'(Ir,, H* Y (X7, A)) = H (Ig, H" ' (X7, A))
(using p # 2).
Proposition 7.1.9. The diagram in Lemma 7.1.7 induces an exact sequence

H(XoA) o H7 (X5 A)
Im(jx o t=1 o0 j*) Im(y o juot=1oj*)’

0 — M_yH' (I, H2 (X, A)) >

such that {(c) = j, ot~ 1(y) for any y € ©ie H*"~2(Cy, A) such that ¢(T) = B(y).
Proof. By definition, M_lHQT_l(Xﬁ, A) is the image of

B: @ H*(Ci,A) = H” (Y, RUA) = HY ! (X, A).
i€l
Then, by the left half of the commutative diagram in Lemma 7.1.7, the map ¢ — ¢(7T") identifies

Impg

M_1H Iy, H* Y (X7, A)) ~ —————.
1 ( Ko> ( Uk )) Im(ﬁotoa)
Using the exactness of the rows in Lemma 7.1.7, we also have the exact sequence

Im 3 gl HY (X, A) a H? Xy, A)
Im(Botoa) Im(jxot=toj*)  Im(yojrot=loy*)’

0—

and the proposition follows. U
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7.1.10. Let CHT(X,]O)0 denote the Chow group of cohomologically trivial algebraic cycles of pure codi-
mension 7. We have the Abel-Jacobi map

Oaj - CHT(Xm)O — H' (IKoa H2r71(Xﬁ7 A(T))),
which we are now ready to compute in terms of the geometry of the special fiber of X.
If Z,, is a closed irreducible subvariety of X, then write Z for its Zariski closure in X, Zy for the strict

transform of Zy under the blowup Y — X, and Zy, for Zy xy Y. The intersection Zy, Xy X s 1S 7 s, the
strict transform of Z, under the blowup X; — X;,. Extending this construction linearly, for any algebraic
cycle z;, = Xn; Zr(,] ) of pure codimension r, we obtain a codimension-r algebraic cycle

gs = Enjzg])
on X,.
Theorem 7.1.11. Let z,, be an algebraic cycle of codimension r on X, whose class in CH"(X,,) is
cohomologically trivial, and assume (BCx). Then Oay(z) lies in M_1H*(Ix,, H*~1 (X5, A(1))). If, for
each irreducible component Z,, of the support of z,, Zy, is generically smooth, then

HQT()?& A(r))
jeot—loj* (H%—?()Z‘S,A(r — 1)))

C(0as(2)) €

coincides with the algebraic cycle class of zs, where ( is the map from Proposition 7.1.9.

Proof. In the proof of [67, Theorem 2.18] there is constructed:
e An element F' of the bounded derived category of abelian sheaves on Y fitting into a commutative
diagram:

F 1 RUA

(1.8) l l

RUA/MyRUA =Y RUA/M_,RUA.

e Aclass [z € H?>1(Ys, F(r)) such that Oay(z)|1, is represented by the cocycle that factors
through t,, : I — Zp(1) and satisfies

On3(2)(T) = (T = 1)[2F]y € H* (Y, RUA(r)) = H* Xz, A(r)).
In our context, since grM RWA = 0 for |i| > 1, the diagram (7.8) becomes

F— 171, RuA

! I

RUA/MyRUA =% M_,RUA.

In particular, (T — 1) H?"~ (Y, F'(r)) lies inside M_1 H*" (X7, A(r)), and by construction ¢ (9a;(2)) is
represented by the image of [zﬁ]g under the composite map

H> =YY, F(r)) — H" Y (Ys, grM RUA(r)) HHQ’“(Ys,gro RUA(r))
(7.9) = H”(X,,A(r)) & @ H* (Di, A(r) > H*(X,,A(r)).
el

By [67, Proposition 2.19], under the generic smoothness assumption of the theorem, this image is exactly
the cycle class of z;. O
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7.1.12. We conclude this section with a related lemma.

Lemma 7.1.13. In addition to (BCx ), assume
(BCx ) the base change map Hé(Xﬁo JA) — Hé(XSO, RV x A) is an isomorphism for all i.

Suppose H is a commutative O-algebra (not necessarily finitely generated) of correspondences on X, such
that the singular locus of X is stable under H. Let m C H be a maximal ideal such that the natural map
induces an isomorphism

H

ét,c

(X7, Mm = Hgy (X, M)
for all i. Then for all i, the natural map
Hét,c()z& A — Hét(szv Y™

is an isomorphism as well.

Proof. The tautological distinguished triangle (7.5) gives a commutative diagram of long exact sequences

. —— Hi(Yy, MyRUA)y —— Hi(Yy, RUA)w —— Hi(Ys,grM RUA)y — - --

J | d

- —— HY(Ys, MoRUA)y — H(Yy, RUA)yy —— H (Y, gt RUA)y — ---

The first marked isomorphism is by (BCx) and (BCx ), and the second is by Proposition 7.1.4 and the
compactness of each C;. By the five lemma, we have an isomorphism

H(Y,, MoRUA ) =5 H(Yy, MyRUA )
for all ¢. Arguing similarly with the distinguished triangle (7.2), we find a natural isomorphism
H(Ys, grg" RYA)m = H'(Ys, g1y’ RUA)m
for all ¢, which implies the lemma by Proposition 7.1.4 once again. ([l

7.2. Semistable reduction of GSpin; Shimura varieties.

7.2.1. Let D # 1 be a squarefree product of an even number of primes, and fix an odd prime ¢|D. With
Vp as in (1.1.6), we suppose fixed a ¢g-adic uniformization datum (x, Ag, to, Ao, D, ip /q) for Vp (Definition
1.4.4(2)); we will choose this uniformization datum more precisely in Construction 7.6.4 below.

Let D and Z be the associated PEL data and self-dual g-integral refinement from Definition 1.4.2.

7.2.2. For the entirety of this section, we fix a neat level subgroup

K7 =[] K¢ c GSpin(Vp)(A%) = [ ] GSpin(Vp,,) (A),
l#q t#q
with the isomorphism arising from Remark 1.4.5(2); then we obtain a flat, quasi-projective scheme X =
M ka over Z, representing the PEL-type moduli problem defined by Z at level K. The generic fiber Xq
of X is isomorphic to Shxafram(Vp), where Kg*™ C GSpin(Vp)(Qq) is a paramodular subgroup in the
sense of Notation 2.6.1.

Lemma 7.2.3. Let RV x O denote the nearby cycles complex on XFq' Then the natural maps

C C

Hi,ét (X@v O) - Hi,ét (Xqu R\I/XO)

and A ‘
Hét(X@, O) — He%t(X?q, R\I’XO)
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are isomorphisms for all i.

Proof. This is a special case of [57, Theorem 6.8]. O

Let Op C Bp be the unique maximal Z,)-order. We now take the g-divisible group X = Aolg™],
with its induced polarization and (Op ® Z,)-action, to be the base point for the Rapoport-Zink space A
(Definition 6.1.2).

Theorem 7.2.4.
(1) Let X be the completion of X along the supersingular locus X%Z. Then we have a canonical iso-
morphism
X = GSpin(Vpy) (Q)\ GSpin(Vp ) (A}) x N/K?,

where GSpin(Vp /4)(Q) — GSpin(Vp /,)(Qq) acts on N as described in §6.5.
(2) The singular locus ofXFq is the discrete set of points

X%iqng = GSpin(VD/q)(Q)\ GSpin(VD/q)(A;) X ./\/rségg/Kq.
The complete local ring of X at any point of X%mg is isomorphic to
q
iq[[xvyv 2, U}]]/(l'y — W — q)

Proof. Part (1) is the Rapoport-Zink uniformization theorem for X; part (2) follows from (1) and Theorem
6.2.4(6), after noting that all singularities of XFq lie in the supersingular locus by [85, Theorem 7.5]. g

7.2.5. In particular, Theorem 7.2.4(2) asserts that X has ordinary quadratic singularities, so that the results
of §7.1 apply. Following the notation therein, let XE be the blowup of XFq along the singular locus; note

that XF inherits an action of the full prime-to-q Hecke algebra.
q

7.3. Tate classes. The goal of this subsection is to show that the full cohomology group Hégt(f(m, 0) is
generated by Tate classes from the supersingular locus, after a Hecke localization.

Notation 7.3.1. Recall the sets .Z and £p, from Definition 6.5.2.
(1) For
9= (g%, A) € GSpin(Vp4)(Q)\ GSpin(Vp,y)(A}) x £ /K",
let B4 (g) be the image of (g2, M. (A)) under the uniformization in Theorem 7.2.4, and let By (g)
be its strict transform under the blowup )Z'Fq — X,
(2) For
g=1(97,Ap,) € GSpin(VD/q)(Q)\GSpin(VD/q)(A?) X Zpa/ K1,

lety(g) € X;ng be the image of (g9, M (Ap,)), and let C(g) be the exceptional divisor of )A(;ﬁq over
q

the point y(g).
(3) Recall that £ and #p, are homogeneous spaces for GSpin(Vp/,)(Q,) = GSpy(Q,), with the

stabilizer of any point a hyperspecial or paramodular subgroup, respectively. We will therefore ab-
breviate the two sets in (1) and (2) by Shxar, (Vp/4) and Sh g, KPa (Vp/q), respectively, even though
the identifications actually depend on a non-canonical choice of base point which we do not need to
make.

Remark 7.3.2. Notation 7.3.1 identifies Shxax,(Vp/q) X {£} and Shye Ké’a(VD /q) With the set of irre-

ducible components of X%S and the set of points of X%ing, respectively.
q q
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To study the intersections of the divisors B (g) and C(g), we need to define some additional Hecke
operators.

Definition 7.3.3. Let
Oy : O[SthK};a(VD/q)] — O[SthKq (VD/q)]

be the maps defined by
5+ : (quAPa) = Z (g(I’A)’
APaClA
AeZ
5t (g% Apa) = Y (g% A).
AC1Ap,
AeZ

Similarly, let
0 : O[Shiak, (Vpyq)] = O[Shiarera(Vinsg)]

be the maps defined by
O (g% A) = D (g% Apa), 0-: (g% A) > D (g% Apa).
ApaC1A AC1A1:-aL
Apa€ELpa Ap.€ELp,

These are incarnations of the level-lowering and level-raising operators in [95, §3].

Definition 7.3.4. We define the natural composite maps
(7.10) inc™ : Hj (Xp,,0(2) —
P  HAC@.0@) & @ (HAB9),002) e HAB-(9),0(2)

QGSthKg’a(VD/q) 9€Shiar,(Vb/q)

— 0 [ShKQK};A(VD/q)} S0 [SthKq (VD/q)]$2

and

~

(7.11) incc4 : O [SthK[l;’a(VD/q)} @0 [ShIGZKQ(VD/qﬂ@2 —
B HUCH.00 B (HLUB(9.0)e HYB(9).0))

gESthK};a(VD/q) QESthKq(VD/q)
— H4(Xg,, O(1)).

C
We also denote by inc the composite
.k oy ad inc* B2
inc; : Hie(Xz,, 0(2)) > HA(Xz,,02) 2% O [Shycarcps (Vpjg)| @ O [Shicare, (Vi)
and likewise by inc, the composite

inc. : O [Shycagp(Vosg)| © O [Shicar, (Viyg)] ™ 2% H24 (X5, 0(1) — HE(Xz,, 0(1)).

C

Notation 7.3.5. For o € O [Shgax,(Vp/,)] and g € Shrar,(Vpq). let m(g; ) € O denote the coeffi-
cient of g in «, and similarly for Sh ., KPa (Vp/q)-

Lemma 7.3.6. Fix g € SthKg’a(VD/q).
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(1) There exists an isomorphism C(g) = ]P’% X ]P% with the following property: for h € Shxar,(Vp/q),
q q

the intersection B (h) - C(g) has the cycle class (m(h; 54 (g)),0) on C(g); and the intersection
B_(h) - C(g) has the cycle class (0,m(h;0_(g))).

(2) Let 1y : C(g) — XE be the natural inclusion. If we fix an isomorphism C(g) =2 IF’% X IP’% asin
q q

(1), then we have

inc*(eg)«[(1,0)] = (—9,0,0-(g))
and

inc*(19)+[(0,1)] = (—g,9+(9),0).

Proof. (1) is immediate from Lemma 6.4.2 and Corollary 6.5.6; (2) follows from (1), using that the Chern
class of the normal bundle on C'(g) is (—1, —1) (by (7.1)) to compute the first coordinate. O

Notation 7.3.7. For any g € Shiax, (Vp/,), let
05, (D] € H (X5, 0(2))

denote the pushforward of the class of the line bundle O(1) on B (g) (which is the one induced by Notation
6.4.3).

Recall the explicit Hecke algebra generators from (2.1.10).

Lemma 7.3.8. Forall g € Shiar,(Vp/q), we have
incz[Og, ()] = (0,-2¢(¢+1) -9, T2 9)
and

incz[Og 1,y (W] = (0, ()" Ty2 - g, —2a(q + 1) - g).

Proof. The two calculations are similar, so we consider [(9 By (g)(l)} . We must calculate the intersection
pairings with divisor classes [C'(h)] and [Ei(g’)} ,for h € SthK};a(VD/q) and g’ € Shxar,(Vp/q)-
Since C(h) - B, (g) always lies in the exceptional divisor of the blowup B, (g) — B (g), we have

(7.12) 05, (W] - [CR)] = [0()] 5.,y [C) - Big)] =0.
Now, B (g) and B, (¢') meet only if g = ¢, in which case we find
(7.13) 05 9] - [B+(9)] = 001)] 5, [N§+(g)/)}mq] = ~2(g +1),

since the normal bundle to B (g) is O(—2¢) (Lemma 6.4.4) and B, (g) has degree g+ 1 (Theorem 6.2.4(1)).
Finally, we compute

@14 |0g, (V)] [B-(&)] =0W) -5, [Bil9)- B-(g)] = m(¢i Ty - 9).

since By (g) N B_(g’) consists of m(g'; Ty2 - g) linearly embedded copies of IP’% inside By (g) C IP’% (by
q )
Theorem 6.2.4(2) and Corollary 6.5.6). Combining these calculations gives

inc’ [O§+(g)(1)} =(0,—2¢(¢g+1)-9,T42 - 9),

as desired. O
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Definition 7.3.9. Fix a finite set S of places of QQ containing ¢, and all primes ¢ # ¢ such that K, is not
hyperspecial. A maximal ideal m C ’]I‘g will be called weakly q-generic if the map

<Q>_1Tq2,2 —4¢*(q+1)*: 0 [Shikar,(Vpse)],, = O [Shkar, (Vb))

is an isomorphism.

Remark 7.3.10. Using (2.3), one calculates the following: if 7 is a relevant automorphic representation of
GSp4(A) unramified at ¢ with trivial central character and ¢ : Q,, = C is any isomorphism with p # ¢, then
<q>_1Tq272 — 44¢?(q + 1)? acts on the spherical vector of 7, with eigenvalue

¢ (v tr(Froby [Vie)? —4(q + 1)2) .
Lemma 7.3.11. Let m be a weakly q-generic maximal ideal of ’]I'g. Then the map
inc y : Hia(Xg,, O2)m = O [Shicargs(Viyg)| @ O [Shrcarc, (Viyq)],”
is surjective.
We note that Lemma 7.3.11 is slightly stronger than the corresponding statement for incy,.

Proof. By Lemma 7.3.6, it suffices to show that the image of incj, ,, contains O [Shgar, (Vp /q)] iQ. Define
a map

D2 v
(715) n= (:U‘-‘r’/J’—) : 0 [SthKq(VD/q)]m - Hét,c(Xqu 0(2))111
by linearly extending
(7.16) p(g) = [Ogi(g)(l)} :
Then by Lemma 7.3.8, the composite inc; , ou is given by the matrix map
0 0
—2q(¢+1) (@) Ty
Ty —2q(q +1).

Since

—2¢(q+1) (@) MTy2 \ _ , 2 2 172
det ( Tq,? _2q(q 4 1) - 4q (q + 1) <q> Tq,2

and m is weakly g-generic, we have
2

Im(incz,m) ) Im(incz,m OM) =0 [ShK‘qu (VD/q)]?j s
as desired. O
In Theorem 7.3.14, we will see that incj, , also has torsion kernel.

Lemma 7.3.12. Let m be a generic and non-Eisenstein maximal ideal of Tg. There is a canonical injection
induced by pullback

H(Xg, 0M)m— @ Ha(C(9),0(1)) = O |Shgagrs (Vi)

QGSthK};a(VD/q)

©2

m

and a canonical surjection induced by pushforward

O[ShiarenVor)] " = @ HACW), 00w~ HA(X5,, 0.

m
QGSthK};a(VD/q)
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Proof. This follows from Lemma 7.1.7 and Theorem 2.7.5(2). ]

Corollary 7.3.13 (Ihara’s Lemma). Let m be a generic, non-Eisenstein, and weakly q-generic maximal ideal
of ']I‘g. Then the degeneracy map

(64,6_):0 [SthKga(vD/q)}m — O [Shiar,(Vpg)] 2

m

is surjective.

Proof. Combining Lemmas 7.3.12 and 7.3.11, we see that the composite map

3 *
incg

@2 ~
O [Stcargs(Viyg)| = @HA(Cl9), O))m — Hf, (X5, 0(2))m —

m

O [Shacacps (Vo) © O [Shaco, (Vo]
is surjective. On the other hand, by Lemma 7.3.6, this composite is given as a matrix by
<—1 0 5_>
-1 464 0)°
and the corollary follows by restricting to the preimage of O [Sh kar,(Vp /q)] 22 .

Theorem 7.3.14. Let m be a generic, non-Eisenstein, and weakly q-generic maximal ideal of ']Tg. Then
- > 2
inci, : HA(X,, 0(2))m = O [Shycaa(Vosg)| @ O [Shicare, (Vo)

and
inc*ym : 0 SthKga(VD/q)}m D 0 [ShKQKq (VD/q)]i?2 — Hgt(XFq’ O(].))m

are both surjective. Moreover inc, n is injective, and incy, is injective modulo O-torsion.

In fact, only the surjectivity of inc  is needed for the main result.

Proof. We claim that it suffices to show

(717)  dim HE(Xz,, Q,)n < dim (@p [Sth Kg’a(VD/q)}n) +2dim (@p [SthKq(VD/q)]m) ;

indeed, this combined with Lemma 7.3.11 implies that inc}, is injective modulo torsion as well as surjective,
and the other assertions follow by duality along with Lemma 7.1.13 and Theorem 2.7.5(2). (We also use
that A 2()~(Fq, O)p is O-torsion-free by Lemma 7.3.12.) Inspecting the diagram in Lemma 7.1.7 and using
Theorem 2.7.5(2), we see that

dim H (X, @y)m = 2dim (@, [Shycarp: (Vi /q)}m) — rank (T - 1|1, (Xg, @p)m) :

where T € IQq is a generator of tame inertia, so we wish to show
(7.18)

dim (@, [Shcarcrs (Vo /q)]m) < 2dim (@, [Shxcor, (Viyg)],, ) +rank (7 - 111} (X5.Q,) m) .
Fix an isomorphism ¢ : Q, = C. Applying Lemma 2.7.6, it suffices to show
dim (@, [Shcarcps (Voyo)] [+'79]) < 2dim (@, [Shcare, (Vo)) [17179] ) +
rank (T —1HE (X@, @p) {rlwﬂ)

Pa
for all relevant automorphic representations  of GSpin(Vp/,)(A) such that ﬂfquq # 0 and the Hecke

q P
Kq

(7.19)

1

actionon ™, factors through Tg,m'
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By Lemma 2.6.2(1,2), 7, is uniquely determined by 77'}, and is either spherical or of type Ila. Assume first
that 7, is spherical. Then 7T7[ cannot be completed to a relevant automorphic representation of GSpin(Vp)(A)

(by Corollary 2.5.3), so by Corollary 2.7.7 the final term in (7.19) vanishes. Since dim 775 ¢ =1 and

dim 7['5( = 2 by [95, Table A.13], both sides of (7.19) are 2.

On the other hand, suppose that 7, is of type Ila.

Case 1: 7 is non-endoscopic. Then ﬂ; can be completed to a relevant automorphic representation
7' of GSpin(Vp)(A) by Theorem 2.4.6. By Lemma 2.6.2(3), m; has a unique fixed vector for K;*™ C
GSpin(Vp)(Qy), so by Corollary 2.7.7,

HY (X @) [1717Y] = pra(=2) @071 (X",

By Lemma 2.6.2(3), p,, is tamely ramified at ¢ with monodromy of rank one. On the other hand, 7, has a
unique paramodular fixed vector, and 7 has automorphic multiplicity one for GSpin(Vp /q) (A) by Theorem
2.4.6(3). So in this case we see that both sides of (7.19) are 1.

Case 2: 7 is endoscopic, associated to a pair of cuspidal automorphic representations (71, w2) of GLo
with discrete series archimedean components of weights 2 and 4, respectively. Theorem 2.5.2 implies that
there exist (uniquely determined) quaternion algebras B and B» such that 7 is the theta lift @(Wf 'Y 7['23 2),
with 7725 ‘ the Jacquet-Langlands transfers. Moreover, B; ® R is ramified and By ® R is split. Since 7, is
of type Ila with a paramodular fixed vector, we can conclude from Lemma 2.6.2(3) and Theorem 2.2.1(1)
that exactly one of m; , is a twist of a Steinberg representation, and the other is unramified. Let B be the
quaternion algebras obtained from B; by changing invariants at ¢ and co. Then 7r[; has a unique completion
to an automorphic representation of GSpin(Vp), which is

B’ B .
(7.20) {@(771 ' Rmy?), w4 ramified,

Bl .
O(rP' ®7,?), o, ramified.

We therefore have (applying Corollary 2.7.7)

HE(Xg:Q,) 7] =« @,

with
) priu(=2), w14 ramified,
o Py (—2), 24 ramified.
In particular, the monodromy at ¢ has rank one in either case, so again both sides of (7.19) are 1. O

7.4. Level-raising and potential map.

Lemma 7.4.1. The Hecke operators 0+, 0L satisfy:

04004 =0_00_=Ty +(q+1)(¢*+1)
o_o0by=(q+1)T2

0+ 00-=(g)" (g + 1)Ty2
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Proof. By definition, d o 6 is induced by

(g% 0) = o5 [ > (9% Apa)

APaCIA
APaejPa

= Z Z (gqu/>

ApaC1A ApaCiA
Ne? Ap.€Lp,

= Z e(A?AI)(gqvA,)a
Neg
where
e(A,A/) =# {Apa € Lpa : Apa C1 A, Apy C1 A,}.

Ife(A,A’) # 0, then either A = A" or A’ € T}, ; - A. In the latter case, Ap, = AN A’ is uniquely determined,
so e(A, A’) = 1. On the other hand, e(A, A) is the number of lattices Ap, C1 A, or equivalently the number
of rational 3-planes in the symplectic space A/qA. Thus

e(A,A) = #P*(Fy) = (¢ + 1)(¢° + 1).
This shows
6r 00 =T+ (q+1)(¢* +1),

and the calculation for §_ o §_ is similar. We now compute d_ o 6, which is induced by

(gqa A) =0 Z (gqa APa)
Ap,C1A
APaEfPa

= Z Z (gq7A/)

Ap,C1A A/Cll\pa
APaEn(fPa A’EJZ

= ) €A N) (g% A),
NeZ
where
el(A,AI) = # {Apa € pa : A C1 Apa C1 A} .

If ¢/(A,A") # 0, then A’ € T, 5 - A. On the other hand, given A’ € T}, 5 - A, then the choices of Ap, with
A C1 Ap, C1 A are in bijection with rational lines in the 2-dimensional F,-vector space A/A’; hence

/(A N) = #P'(F)) = g+ 1.
This shows d_ 0 6 = (q + 1)1}, 2, and the computation of § o 6_ is similar. O
7.4.2. Recall from Lemma 7.1.7 the natural embedding
i |Cl) = Xz,
Lemma 7.4.3. The composite map
inc* oj, 0  oincy : O [SthKg’a(VD/q)] ® O [Shiuk, (VD/qﬂ692 —

O [Shicarcpe(Visa) | ® O [Shicorc, (Vo)) ™
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is given by the matrix

2 -0 —0_
—0y 0 (q+1)(a) " Tgp2
—0— (¢+1)T,» 0.

Proof. We begin by calculating inc* oj, o j* [C'(g)], for g € SthKg‘a(VD/q). Letty : C(g) — )Z'Fq be the
natural embedding. Since the C(g) are all disjoint,
jeo i [Clg) € HA (Kg,,0(2))
is the pushforward of the class of the normal bundle, i.e. ¢4, [(—1, —1)] in the notation of Lemma 7.3.6. Then
ine” 1y [(—1, ~1)] = — inc* 1g,[(1, 0)] — inc* 152[(0, 1)] = (2 g, 8+ (9), ~0_(9))
by Lemma 7.3.6 (2), which gives the first column of the matrix.

For the second column, we must calculate inc* oj, o j* [EJr(g)], for g € Shgar,(Vp/y). By Lemma
7.3.6 (1), the class
jeoj* [Bilg)| € HA(X5,, 0(2))
is
> m(h; 01(9)) e [(1,0)] -

hEShKQKg’a(VD/q)
Then by Lemma 7.3.6 (2),

inc* ojj, o j* [§+(g)} = (=0+(9),0,0-004(g)).
By Lemma 7.4.1, §_ 0 6, = (¢ + 1)1 2, so this gives the second column of the matrix; the third column is
similar. 0
Definition 7.4.4. Define the potential map
V: Hy(Xg,, 0(2)) = O [Shiak, (Vbq)]
as the composite
Hélt(Xan 0(2)) = O [ShKQKg’a(VD/q)} ©0 [SthKq(VD/q>] — 0 [SthKq(VD/q>] )
with M the matrix map

(04 +0- 2 2).

Definition 7.4.5. The level-raising Hecke operator T}; is defined by
Ty =Ty + (q+ 1)(¢* + 1) = Tyalg +1).

Remark 7.4.6. Using (2.3), one calculates the following: If 7 is a relevant automorphic representation of
GSp,4(A) unramified at ¢ with trivial central character and ¢ : @p =5 C is any isomorphism with p # ¢, then
Tg acts on the spherical vector of 7, with eigenvalue

q 't det(Frob, —q|Vi,).

Theorem 7.4.7. Let m be a generic, non-Eisenstein, and weakly q-generic maximal ideal of Tg. The com-
posite map

Vojeot o Hi(Xg O2)m — O [Shiax, (Vpg)],,
has image contained in

<<Q>_1 - 1,Tg> -O [Shiar, (V)] . -
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In particular, V o ( gives a well-defined surjection

(@) [SthKq (VD/q)]m
(e

Vo(: MoH' (Ig, H: (X5 02)n) -
where ( is the map from Proposition 7.1.9.

Proof. By Theorem 7.3.14, the image of V o j, o t~! o j* coincides with the image of
. ks D2
Vojioj oincan: O [Shxaxps(Vosg)| &0 [Shxar, (Vi)' = O [Shrcar, (Vosq)],,

By Lemma 7.4.3, this is the composite of matrix maps

2 —04 —0_
(64 +6- 2 2)o| -0y 0 (q+1){q) 1Ty
—0— (¢g+1)T,» 0
=0 —-TF —Tr+ ((¢)7' —1) (¢ + 1)Ty2)
(using Lemma 7.4.1 to compute 64 o 0). ]

7.5. Siegel cycles on the special fiber.

Definition 7.5.1. Recall the set .Z from Definition 6.5.2. We define
Lo = {pairs (A, A ) e L% ghy Co A Cy A+}.

Notation 7.5.2. Note that Zs;c is a homogeneous space for GSpin(Vp/4)(Q,), where the stabilizer of any
point is a Siegel parahoric subgroup. As in Notation 7.3.1, we abbreviate

(7.21) Shiaxsie(Vp/g) = GSpin(Vp ) (Q)\ GSpin(Vp ) (A%) x Lo/ KIK*,
although the identification depends on a choice of base point of .Zg;, which is not necessary for our discussion.

Definition 7.5.3.
(1) We define degeneracy maps
03¢ Lo = L
by
oY (AL, AL) = As.
(2) We define the operator
052« Lsic — 7| Lra)
by
O5a(A, M) = D [Arl.

(3) We extend these maps linearly to

5:Stie : 0 [SthKgie(VD/q)] — 0 [SthKq (VD/q)]
and
%2 . 0 [SthKgie(VD /q)] -0 [SthK};a(VD /q)} .
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Notation 7.5.4. For each g € Shy KSie (Vb /q), let

D(g) = B+(67"(9)) N B-(55(9)),

which is a closed subscheme of XFq isomorphic to IP’% . We write D(g) — )N(Fq for the strict transform of
q

D(g) under the blowup )?Fq — Xp, . and [D(g)] € Hg*t()}}q, O(2)) for its algebraic cycle class.

Lemma 7.5.5. For g € Shycqgsie (VD/q), we have

V [ Dlg)] = (0 +6-) 0 652(9) — 4085 (9) — 4055(g).

Proof. We first calculate inc* [f)(g)] .For g" € Shiar,(Vp/q), we have
D) - |Be(9)] = [B+(6F<(9))] - [ B-65"(9))] - [Bs(g)] =0
unless ¢’ = 6§ie (g), in which case the intersection number is —2¢ (cf. the proof of Lemma 7.3.8). Similarly,

[5(9)} : [E_(g’)} = {; g =8

else.

Now consider the intersections with C'(h), for h € Shy K};a(VD /q)- We see from Lemma 7.3.6 that D(g)
meets C(h) transversely with multiplicity m(h; 652 (g)). Hence

inc” | D(g)| = (652(9), ~2005(9), 205" (9)) -
The claimed formula then follows from the formula for V in Definition 7.4.4. O

7.6. Special cycles on ramified GSpins Shimura varieties. The goal of this section is to compute the
local ramification of Abel-Jacobi images of special cycles Z (7', ¢) on the generic fiber of X, by applying the
results of §7.1. However, our first task is to make a good choice of the uniformization datum from (7.2.1).

Notation 7.6.1. Fix a matrix 7' € Symy(Zg))>o such that

T= <2 3) (mod g),

for some o € F;*. Then we make the following notations.

(1) Let V; be the two-dimensional quadratic space over Q, with basis {e7, €5} and pairing matrix given
by T'.

(2) Let B, be the quaternion algebra C(V, ), with its natural positive nebentype involution .

(3) Let d be the discriminant of the unique quaternion algebra By such that Bp ® B, ~ Mas(By), and
let Og C By be the unique maximal Z,-order.

Remark 7.6.2. Because B, is split at ¢ and co, By is ramified at ¢ and split at co. In particular, Oy is
well-defined.

Proposition 7.6.3. Fix a nebentype involution x on Op, of unit type. Then there exists an isomorphism
B: Bp ® B, = My(By)

such that:

(1) B(Op) C M2(Oq).
(2) The induced involution 1 on Ms(By) stabilizes M2(Oy), and is of non-unit type.
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(3) If llp € Op and 114 € Oy are uniformizers, then

It o
0 It
lies in GL2(Oy).

(4) The Zg)-lattice A, = Mo (0g)T=1"=0N B, C V, has basis {e}, qe3}.

Proof. Let
X = ISOHI(BD ® By, MQ(Bd)),

viewed as algebraic variety over Q; X is a (split) torsor for the algebraic group GL2(By). Note that all the
conditions of the proposition can be checked after tensoring with Z,, and define an open subset U C X (Q,)
in the g-adic topology. Since X (Q) is dense in X (Qy), it suffices to show U # (.

Since the involution * on Bp is nebentype and of unit type, we can fix aunit j € O such that j*0 = —j*D
and o* = j(a*P)j~! for a € Bp (recall p is the canonical involution on Bp). Also choose a uniformizer
IT € Op satisfying tr IT = 0 and ITj = —jII, and let K := Q(II) C Bp. We have a decomposition

Bp=K&j- K,
which defines an embedding
t: Bp — MQ(K) — MQ(BD),
satisfying a«(Op) C M2(Op). Now let t be the non-unit type involution on Op defined by

j1 =g, ' =TI, and (115)" = 1.

We extend t to an involution of non-unit type on My (Bp) by

a at  —4lj2
G oG )

A simple calculation shows ()t = 1(a*), for all & € Bp. Moreover, the centralizer Z of +(Bp) inside
Ms(Bp) satisfies

=1 tr= II 0 0 115
L= 7N Mp(Op)="" °=Z<q>'<0 H>@Z(q)'<ﬂj‘1 0j>'

We have a natural quadratic form = — 22 on L, which is represented by (qa 0 ) in the basis above, for

0 —qo
aunita € Zg,. Let Lg = L &z, Q.
We may then choose the following two isomorphisms:
(i) Anisomorphism 1, : Z ® Q, = C(Lg) ® Q, — C(V,) ® Q, = By ® Q, compatible with the
involutions, such that 8 (L ® Zg) C V, ® Q is the lattice spanned by e} and ge3.

(ii) Anisomorphism 2, : M2(Op) ® Zg — Ma(Og) @ Zg.

. One checks readily that the induced isomorphism
id@py L B2,q
By : (Bp ®Qq) @ (B ©®Qq) —— Bp ® 2@ Qq — Ma(Bp) ® Q — Ma(By) ® Qq

~

lies in U, so indeed U # ). O

Now we use Proposition 7.6.3 to construct some particular integral models of special cycles on Xg =
Shx (Vp).

Construction 7.6.4. Fix once and for all a positive, unit type involution on Bp, and a choice of 3 as in
Proposition 7.6.3 for this choice. We will now also write * for the induced involution on My (By).
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(1) By Corollary 1.3.5 and Remark 7.6.2, we fix an abelian scheme Aq over Zq with supersingular reduc-
tion, equipped with an embedding 1§ : M2(O4) — End(Ag)®%Z4) and a polarization \g : Ag — Ay
such that

Lg(a)v o /\0 = )\0 o Lg(a*).

We choose our g-uniformization datum for Vp in (7.2.1) to be of the form (x, Ao, t5o 3, Ao, iD, ip/q)-
With notation as in Definition 1.4.4, we also obtain the PEL datum D° = (M2 (By), T, H,v), with
self-dual g-integral refinement 2° = (M2(Oy), T, A, ).

(2) We observe that, following Remark 1.4.5(2), our choice of g-adic uniformization datum defines an
orthogonal decomposition

Vp 2 End(H, Bp)=1=" = v, & Vf
where
V= End(H, My(Bg)) =110,

(3) Now fix an element
9% =[] 9¢ € GSpin(Vp)(AY).
l#q
Let
K{ = geKeg; ' 0 GSpin(Vi)(Qy)
for each ¢ # q; we define

K =[] &7,
t#q
a neat compact open subgroup by [89, §0.1]. We let Z(g4, V,, Vp) be the Zq)-scheme representing
the moduli functor M4, associated to Z° at level K9°, with special fiber Z (g%, V4, Vp)r, .

Remark 7.6.5. Note that (by Corollary 1.3.4 combined with Proposition 1.2.4), Z(g?, Vi, Vp) is the usual
integral model of the quaternionic Shimura curve associated to By at level K?°, with maximal compact level
structure at q.

7.6.6. We have the obvious forgetful finite morphism
(7.22) Jj:Z(g, Vi, Vp) > X
defined on the moduli problems by (A, t®, A\, n9) — (A, %0 B, A, g7 - n?).

Lemma 7.6.7. The generic fiber of (7.22) coincides with the special cycle
Z(gq’ V*, VD)KQK,’I'&"‘ — SthKéam (VD)

Proof. See the proof of [56, Proposition 2.5]. O

Notation 7.6.8. We now consider the special fiber Z(g?, Vi, Vp)r, .

(1) Similarly to Construction 7.6.4(2), we obtain a natural orthogonal decomposition

iD/q

Vpjqg —= End’(Ay, Bp)="=" =V, & Vi

with
Vd<>/q = Endo (Zo, M2 (Bd))Tzl’trZO

a three-dimensional quadratic space whose Hasse invariant coincides with that of B ,.
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(2) Let N° be the Rapoport-Zink space parametrizing framed, polarized deformations of the g-divisible
group Ag[¢*°], with action of M3(Oq ® Z,). (The details are analogous to Definition 6.1.2). Let
3¢ 1 N'® < N be the natural closed immersion induced by 8 ® Z, : Op ® Zy = M3(O4 @ Zy),
and let

N = UiezN° (1)
be the decomposition defined analogously to (6.1), or equivalently defined by N (i) = N° NN (4).

Remark 7.6.9. By the local analogue of Corollary 1.3.4, N° is isomorphic to the formal scheme considered
in [12, §1.3], which is the one encountered in the well-known Cerednik-Drinfeld uniformization of quater-
nionic Shimura curves.

Lemma 7.6.10. The image of M® = N (0) under §1°¢ is contained in M2y (¢f. Theorem 6.2.4).

Proof. Tt suffices to consider F,-valued points, so suppose given z = (Xg, tz, Ay, pz) € MC(F,), with
L M3(Og4) ® Zq — End(X,) an embedding compatible with involutions. By (6.2.5), it suffices to show
the Dieudonné module M of X, satisfies M +7M = 7M + 72M for 7 = (10 B(Ilp)) - VL. (Since M is

self-dual, M N 7M is then 7-stable as well.) If 7/ = ¢ <1_(I)d 1_? > - V1, then we have
d
(T"Y"M ="M

for all n € Z by Proposition 7.6.3(3). So it suffices to show M + 7'M is 7/-stable. The action of
Mg(Zq) C My(0g4) ® ZLq

on M defines a decomposition M = My & My, where My inherits an action ¢g of O4y. We can further
decompose My = My o & My, according to the eigenvalues of the action of Z,2» C Oy ® Zg. Then Mg o and

My, are both free of rank two over Zq and stable under 7 = Lo(Hd)V_l. Hence My + 19 My is my-stable
by [93, Proposition 2.17]; so M + 7'M is 7'-stable, as desired. O

Definition 7.6.11. We define a subset .£° C L. by
N = U M) nMo(AL)),
(A4, A)eg?
which makes sense by Lemma 7.6.10.

By [12, Proposition I11.2] (and Remark 7.6.5), the special fiber Z(g9, Vi, Vp), is purely supersingular.
Hence by Rapoport-Zink uniformization, we have:

Proposition 7.6.12. The special fiber Z(g?,V,, VD)Fq is isomorphic to

GSpin (V) (Q)\ GSpin(Vy, ) (AF) x Niga/Kgd,

in such a way that the special fiber of j : Z (g9, V., Vp) — X is given by (h4,x) — (h9g9, j'°°(x)) under
the uniformization of Theorem 7.2.4.
Notation 7.6.13. Let
(7.23) J:Z(g% Vs, Vb)g, — Xz,
be the strict transform of
Z (g%, Vi, VD)Fq — Xan
and
(7.24) Z(gq> Vi, VD)FL] € H ()?an 0(2))

ét,c
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its algebraic cycle class.

Corollary 7.6.14. We have

V[ 26" Ve Vo)g, | = > m(A)[(h1g", M),
[(h,M)]€
GSpin(Vy,)(Q)\ GSpin(Vy, ) (Af)x.Z /K5
where
m(A) = ) mult(A, —4¢57°(y) — 455 (y) + (54 +6-) 0 052 (v)).
yeL®
Proof. This is immediate from Lemma 7.5.5, Proposition 7.6.12, and Definition 7.6.11. OJ

To compute the multiplicities m(A) in the Corollary 7.6.14 above, it is better to work with lattices in the
split 5-dimensional quadratic space V' := Vp /, @ Q, rather than the symplectic space W’ (see (6.5.1)).

Definition 7.6.15.
(1) A vertex lattice L C V' is a Z-lattice satisfying

LY > L>qL.
For 0 <1 < 2, set
VL(2i) == {vertex lattices L C V : dimg, LY /L = 2i} .

(The analogous sets VL(2i + 1) are all empty.)
(2) For any Zg-lattice A C W, we define

Ly = Endzq(A) nv,

which makes sense because V = End (W )T=1:t=0,

Lemma 7.6.16. The map A — Ly induces an isomorphism

Z/q" = VL(0)
and a surjection

Sra)q” — VL(4).
Moreover, the map

(A_;,_, A_) — LA+ NL_

induces a surjection

Lsie/q" — VL(2).
Proof. For each 0 <1 < 2,VL(24) is a homogeneous space for GSpin(V')(Qg). Since the maps

Z/q* — VL(0)
Lo/ q" — VL(2)
Zra)q” — VL(4)

are all GSpin(V')(Qq)-equivariant, they are automatically surjective. Finally, for the injectivity of the first
map, it suffices to note that the stabilizers coincide, i.e. the hyperspecial subgroup of SO(V')(Q,) is the
image of a hyperspecial subgroup of GSpin(V')(Qy). O

Lemma 7.6.17. The projections of Lemma 7.6.16 fit into the following commutative diagrams:
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6§Lie+5§ie gPa

fpa Z[g] -iﬂSie —_— Z[.iﬂ] gSie % Z[.,E,ﬂpa]

| T T

VL(4) —2 Z[VL(0)] VL(2) 2 Z|VL(0)] VL(2) 2% Z[VL(4)]

Sy+6—

Here, the bottom maps are:

6(Ly)= > [Lo, for Ly € VL(4),

LoeVL(0)
LoDLy

L) = Y (L), for Ly € VL(2),

LoeVL(0)
LoDLo

Osu(Lo)= > [Ld], for Ly € VL(2).

L4eVL(4)
LaCLo

Proof. Given Ap, € %p, with
q" T A, Co2 Apa Co ¢"AP,

and A € Z with A € 04 (Ap,), we firstclaim Ly D Ly, . Indeed, forany £ € Ly,,_, ¢ induces a self-adjoint,
trace-zero endomorphism of the two-dimensional symplectic space ¢ Ay, /Apa; hence £(g"Ap,) C Apa.
Since A fits into a chain

Apa C1 A =q"AY C1 ¢"Ap,,
we conclude
(A) C Ap, C A,

so ¢ € L. Similarly, we see that, for A € .Z appearing in _ (Ap,), we have Ly D Ly, . Now to prove the
first diagram commutes, it suffices to show

(7.25) degd(La,,) = deg(6,(Apa)) + deg(5_(Apa)).

The left-hand side is the number of lattices L € VL(0) containing Lj,,_; such lattices are in bijection with
isotropic planes in the split 4-dimensional I -quadratic space pra /L, hence there are 2(q + 1) of them.
Meanwhile deg(d+(Apa)) = ¢ + 1, since lattices A D1 Ap, (resp. A C; Ap,) are in bijection with lines
in the 2-dimensional F,-symplectic space ¢"Ap, /Ap, (resp. Apa/ q"“Alv)a). This proves (7.25), hence the
commutativity of the first diagram; and the rest are similar. O

Notation 7.6.18.

(1) For convenience, we now abbreviate
‘/;7(] =Vi® @q~

Let L, C V,, be the Z,-lattice spanned by {e7, ge3}, and let LY = Spany, {q¢7 el qel} and

LV = Spang, {ef,e] } be the two self-dual lattices in V, , containing L.
(2) We write VL(2)® C VL(2) for the subset consisting of lattices of the form

L2 :L*@I«M

where
Lo C% = ch/q@(@q

is self-dual.
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Lemma 7.6.19. .2 consists of two GSpin(V,y), )(Qq)-orbits; if O C ¢ is one orbit, then the map of
Lemma 7.6.16 induces an isomorphism
0/q” = VL(2)°.

Proof. By [12, Théoreme 9.3] and Remark 7.6.5, £ consists of two GSpin(V}),)(Qq)-orbits, and the
stabilizer of any point in £ is a hyperspecial subgroup. On the other hand, for any point in .Z° with
image Lo € VL(2), we know

LonN V*yq DL,
by Proposition 7.6.3(4) and the definition of the strata M (A ) and M_(A_). Since the stabilizer of L5 in
SO(V),)(Qq) is hyperspecial, this forces

L2 L* @ L<>7

for some L, C V, self-dual. Hence the image of either orbit O C £ in VL(2) is contained in VL(2)°;
since VL(2)® is a single orbit, we have a surjection ©/q” — VL(2)°. Finally, we see that this map is an
isomorphism because the stabilizers coincide. O

Lemma 7.6.20. The multiplicity m(A) in Corollary 7.6.14 depends only on Ly € V1(0), and is given by:

4, ifLANVig=L,
m(A) =3 4—4q, ifLaNVig=L" or LY,
0, else.

Proof. Let O be one of the two GSpin(Vj/q)(Qq)—orbitS in .Z°; we will compute
mo(A) =Y mult (A, —4¢65°(y) — 4¢65°(y) + (54 +6-) 0 052(v)) -
yeO

Let m(A, y) be the summand above, so that mo(A) = -, .o m(A,y). Fix some y € O corresponding to
L, € VL(2). Then

m(A, q"y) = m(qg "\, y)

is nonzero for at most one n, so

S m(A,q"y) = mult(Ly, —4g3°(L,) + 3 0 On(Ly))

neZ
by Lemma 7.6.17. Since ©/¢” maps isomorphically to VL(2)® by Lemma 7.6.19, we find

mo(A)= 3 mult (LA, — 4437 (Ly) + 3 0 @SP;(LQ)) .
L2eVL(2)®

Next, we calculate, for any Ly € VL(2),

5 o) Qsle L2 Z Z L()

L4eVL(4) LoeVL(0)
LsCL2  LoDL4

> #{LieVLE) : Lac L} + Y [L]

Lo€VL(0) Lo€VL(0)
LoDLo LoNL2eVL(4)
—<Sie
=(q+ 15 (L) + > [Ll
Lo€VL(0)

LoNLy€VL(4)
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(The g 4 1 choices of Ly C L correspond to flags
qLy C qL} C Ly C Lo,

hence to complete isotropic flags in the split 3-dimensional F,-quadratic space Ly/qLy.) Hence

(7.26) mo(A)= > mult | Ly, (1-3¢)3 (L) + Y. [Lo)

LyEVL(2)° LoEVL(0)
LoNLaeVL(4)

Now observe that, for any Ly € VL(2)° and Ly € VL(4) with Ly C L2, we have
Ly D qLy D qLy D Ly.

Hence, if Ly € VL(2)°, all Ly appearing in

(1-30)5 (L) + Y [Lo]

LoeVL(0)
LoNL2€VL(4)

have Lo NV, 4 D L,. In particular, if mp(A) # 0, then

LanVig=IL LV orL,,

since these are the only lattices containing L, on which the pairing is Z,-valued.

Suppose first Ly NV, , = Lg), for i = 0 or 1. Then we may write
Ly=Loe LY

with L, C V, self-dual, and

—=Sie

mo(A) = (1-3q)# { L2 € VL(2)° : Ly €5°“(La)} + #{Ls € VL(2)° : Ly Ly € VL(4)}.

Recall that all Ly € VL(2)® are of the form L], & L,, with L, C V, self-dual, and
P oL = Lol + oLl
Hence
mo(A) = (1 —3q) + # {L;, C V,self-dual : (L, N L,) ® L. € VL(4)}

=(1=3¢)+(q¢+1)

=2 —2g;
the (¢+ 1) choices of L], correspond bijectively to the isotropic lines in the 3-dimensional F,-space L /qLs.

Now suppose Ly NV, 4 = Ly. Then L does not appear in 3SIG(L2) for any Lo € VL(2)°, so by (7.26),
we have
mo(A) = #{Ls € VL(2)° : Ly N Ly € VL(4)}.

Recall that any L4 contained in Lo € VL(2)® satisfies qLX D L,; we first show that there is a unique such
L4 contained in Lj. Indeed, any such L, fits in a chain

qLa Co qLy C1 Ly Co La,
and so we must have
qLj = Ly +qLy,
which determines L4. Now, for this Ly, we claim there are exactly two Ly € VL(2)® with Ly D L4. Such

an Lo fits into a chain
Ly Cq Ly Co L\Q/ C1 LX.
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Since L, C gLy, we have

1

~L,CL).

q
Thus

1
LY /Ly = &L*/L* O H,

with H a hyperbolic plane over F,. For Ls to lie in VL(2) is equivalent to %L* C L3, so choices of Lo

correspond to choices of isotropic lines in LX /L4 orthogonal to %L* / L; these are isotropic lines in H, so
there are exactly two. Hence mp(A) = 2if Ly NV, , = L,. We have now shown

27 lfLA N V;,q - L*)
mo(A) =42 -2¢, ifLyNVy=L%rLY,
0, else.

Since mo(A) is evidently independent of the choice of orbit O, we have
m(A) = 2mp(A),
which completes the proof. g

Combining Lemma 7.6.20 and Corollary 7.6.14 gives the following simple formula.
Corollary 7.6.21. We have
V| Z(g". Ve Vo)g, | = 42903, Vi Vi),

+4(1—q) (Z(gqg(o), Vi, Voo kak,) + Z(g% W, Vi, VD/q)KqKq> € O [Shgar,(Vp/g)]

where gy, géo), ggl) € GSpin(Vp4)(Qq) represent the cosets in

GSpin(Vy,)(Qq)\ GSpin(Vp /o) (Qq)/ K,
corresponding to the lattices L, Lio), Lil) under Proposition 3.1.8.
7.7. Interpretation in terms of test functions.

7.7.1. We now define a specific test function gotOt € S(V2 D/q @ Qq,Z) as follows. First, define a subset
X cVE /q ® Qq by

(7.27) X:{(x,y)EVg/q@)Qq\x-xquq,y-yquq,w'yEZqX}.

Let L C Vp,q ® Qg be a self-dual lattice, and let 90((1 ), cp((ll), oy €S (V3 /g ® Qq, Z) be indicator functions
of the following compact open subsets of VB /g ® Qq:

0) ={(z,y) e X : z,ye L—qL}
1):{(x,y)€X : meqL—qQL,yEq_lL—L}
X*={(z,y)eX :2€eL—qL,ycq 'L—L}.
Let
et =gyt (1-a) (&) +0D).

Corollary 7.6.21 can then be reformulated as follows:
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Theorem 7.7.2. Let K = [[ K\, C GSpin(Vp,q)(Ay) be neat with K, hyperspecial, and let
vl e S(V3,, ® AL, 0)

be a K9-invariant Schwartz function. Let m C Tg be a generic, non-Eisenstein, and weakly q-generic
maximal ideal.

Then, for all T € Sym? (Q) >0, there exists a choice of uniformization datum for Vp and a test function
o € S(VE ®Qy, Z)Ka™ such that

@) [ShK‘IKq(VD/q)(VQ)}m
(@)~ = 1,13)

Vo oresg, 0 aym (Z(T, ¢ @ o) karcgom ) = 4Z(T, 9" @ ol xcax;, €

Remark 7.7.3.

(1) The map Oajm is defined as in (4.4.2), and we are using Theorem 7.1.11 to apply ¢ on the left-hand
side of the identity.
(2) The choice of uniformization datum intervenes in two points in the displayed equation: first in the

definition of V, and second in the isomorphism Vp /g ® A? = Vp® A‘Jﬂ from Remark 1.4.5(2),

which we are using to view (7 as a test function in S(V3 ® ASIC, O) and K9K " as a compact open

subgroup of GSpin(Vp)(Ay).
(3) Without any great difficulty, ;™" can be chosen not to depend on T'. Since this is not used in the
proofs of the main results, we omit the details.

Proof. Without loss of generality, we may assume 7' is of the form considered in Notation 7.6.1; otherwise

Z(T, ¢?® gofft) Kk = 0,80 ;" = O satisfies the conclusion of the theorem. We fix the uniformization datum

as in Construction 7.6.4(1); in particular, we are identifying V, with a subspace of Vp, so we may choose

e e (V3 ® Qg, Z) such that 25" 07y, (@,) is the indicator function of the coset K™ - (€7, €3). For
any o7 € S(V[%/q ® A%, 0), write

supp(¢?) N Qry,,,, (A%) = UGSpin(V ), ) (AF) gl K9,
Then we have

Z(T, " @ g™ karcm = > Z(97, Vi, VD) arcyam® () 7', (g) " e3).

(2

Now, by Theorem 7.1.11, we conclude that

@) [SthKq (VD/q)(VQ)]m
(@)~ = 1,73)

Vo oresg, © Oasm (Z(T, 0! ® wgam)KqKéam) €

coincides with
D ((gh) et (g es) - vV [2(93, Vi, VD)KQK(?"‘} :
i

Then the theorem follows from Corollary 7.6.21 and the construction of gofft. g

8. FIRST EXPLICIT RECIPROCITY LAW

For this section, let 7, S, and E be as in Notation 4.0.1, fix a prime p of Ej satisfying Assumption 4.1.1,
and put m := my , as usual. Our goal for this section is to combine Theorem 7.7.2 with Corollary 5.6.3 to
prove Theorems 8.5.1 and 8.5.2 below. First we make some deformation-theoretic preparations in §8.1-§8.3;
then we check the criterion from Corollary 5.6.3 in §8.4; and we complete the proofs in §8.5.
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8.1. Typic modules. The following definition is a generalization of [98, Definition 5.2].

Definition 8.1.1. Let GG be a group, R a Noetherian local ring with maximal idealmp, and oy, - - - , o, a finite
collection of representations o; : G — GL,,,(R) such that the residual representations 7; := 0 @ R/mp
are distinct and absolutely irreducible foreachi =1,--- ,m.

An R[G]-module M is called o;-typic if it is isomorphic to o;® r M for an R-module My, and (o1, - , op,)-

typic if it is isomorphic to a direct sum & M; with each M; o;-typic.

Proposition 8.1.2. With notation as in Definition 8.1.1, let N C M be an inclusion of R|G]-modules.
(1) If M is o;-typic for some i € {1,--- ,m}, then N is o;-typic.
(2) If M is (o1, -+ ,0m)-typic, then N is (o1, -+ , o )-typic.

Proof. Part (1) is proved in [98, Proposition 5.4]. For (2), as in loc. cit. we may assume without loss of
generality that M and N are finitely generated. Let M = @M, be the decomposition of M into o;-typic
parts, and let w; : M — M, be the projection map for each ¢ = 1,--- ;m. Without loss of generality, we
may assume 7;(N) = M;. We claim that the natural injection

@ N — &M,
is an isomorphism, i.e. ®; is surjective. Let N := N ®p R/mp and M,; = M;®g R/mp; by Nakayama’s
lemma, it suffices to show the induced map

DT N — EBMZ
is surjective. Because the residual representations @; are all distinct, any R[G]-stable submodule of &M;
is a direct sum @M; for some M; C M,;. So if @7 is not surjective, then 7; is not surjective for some

i = 1,--- ,m; but this contradicts our assumption that 7;(N) = M; for all 4, so §m; is surjective, which
shows (2). ]

8.2. Deformation theory: non-endoscopic case. We assume for this subsection that 7 is not endoscopic.
We will apply the results and notations of Appendix B to pr = pr p, Which we view as valued in GSp,(O)
via Remark 4.1.4. First note:

Lemma 8.2.1. The representation p, satisfies Assumptions B.1.3 and B.1.5 from Appendix B.

Proof. By Assumption 4.1.1, 7, is absolutely irreducible, so H°(Q,ad’5,) = 0. Also, p,, % p,(1) by
considering the similitude characters (since p > 3). So, again using the absolute irreducibility,
H%(Q,ad’ p,(1)) C Homgy (T, Tx(1)) =0

as well. This shows Assumption B.1.3(1). Assumptions B.1.3(2,3) are clear from Theorem 2.2.10. We
now consider Assumption B.1.5. By Lemma B.1.6 it suffices to show H°(Q,, WD(ad® p;)) = 0 for all
non-archimedean v. But

H°(Q,, WD(ad’ p,)) € Homwp, (WD(V;), WD(Vx(1))),

with WD,, the local Weil-Deligne group, which vanishes by purity (Theorem 2.2.10(1)). ]

8.2.2. Suppose ¢ is an admissible prime, and let D, and R, be as in Notation B.1.4. For any A € CNLg
and p4 € Dy(A), let My be the free, rank-four A-module with Gg , action determined by p4. Then by [65,
Lemma 3.21], M 4 admits a Gg ,~Stable decomposition

(3.1 My = My @ My,

where:

e Each of M and Mj is free of rank two over A.
e My ®4 k has Frob, eigenvalues 1 and q.
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e M; ®4 k has generalized Frob, eigenvalues a and g/a, with a # 1, q.
(Here k = O/w, and Frob, € G, is any lift of Frobenius.)

Definition 8.2.3. Let Dfl’rd C D, be the subfunctor of lifts p4 such that
det(pa(Froby) —T|Mo) = (1—-T)(¢—1T).

Lemma 8.2.4. The functor Df]’rd is represented by a formally smooth quotient Rgrd of Ry, of relative dimen-
sion 10 over O.

Proof. This follows the same argument as [65, Proposition 3.35] (cf. also [121, Proposition 3.8]). ]

8.2.5. In light of Lemma 8.2.4, we take the admissible primes in Notation B.2.4 to be the ones of Definition
4.2.1, and the notion of R;’rd to be the one from Lemma 8.2.4; the definitions of n-admissible primes in
Definition 4.2.1 and Definition B.2.5(3) then coincide.

Notation 8.2.6.

(1) Let @ > 1 be admissible, and denote by ﬁﬁ% the global GSp,-valued deformation ring of p. as a
representation of G sudiv(qp) With fixed similitude character x;”°. Let R and R be the quotients

of Eﬁ{ defined in Notation B.4.4 (identifying ) with div(Q) for notational convenience).
(2) Let .
P+ Go = GSpy(Rg)

be a framing of the universal deformation, and let Mc‘ini" be the free Rg-module of rank four with
G-action defined by pgﬁ".

8.2.7. Letpr, : Iy, — Zp(1) be the maximal pro-p quotient.

Lemma 8.2.8. Suppose Q is admissible and q|Q is a prime. In the decomposition M, glivlg@q = My M,
of (8.1), My is unramified. Moreover, there exists a basis of My and an element t, € R¢ such that

iv _ [ Xp,cyc *
pénl |M0 - < 0 1> 9

ni 1t T
PQ" (9)|ay = <0 qpf’(g)) , Vg € I,

and

Proof. Since My and M are G, -stable, this follows from [102, Propositions 5.3, 5.5]. (|

Definition 8.2.9. Suppose @ and ¢ t @) are admissible. Then:
(1) Weset Py(T') = det(pbﬂiV(Frobq) — T|M5“i") € RQ[T].
(2) We set RZ)O,I;g = Rg ®paqd Rgq-

Lemma 8.2.10. Suppose QQ > 1 is admissible, and q t Q) is an admissible prime. Then

Ry = Ro/(Py(q)) = Roq/(ty)-

Proof. We have Ry ® = Rq/(Pq(q)) because an unramified deformation of 7|, is ordinary if and only
cong

if ¢ is an eigenvalue of Frobg; on the other hand, it is clear from Lemma 8.2.8 that R, ° = Rqq/(tq). U

Lemma 8.2.11. Suppose q is n-admissible. Then:
(1) ngd((@q’ ad’ Prn) + H&nr(@m ad’ Prn) = H' (Qq; ad’ Prn)-
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(2) The quotients
Hl(Qq7ad0 Pr n) Hl(@qvado /)Tr n)
unr(Qq7ad Pr.n) , ord(quad Pr.n)
are both free of rank one over O /w".

In particular, q is standard in the sense of Definition B.4.7.

Proof. First note that
HY(Qq,ad’ pr )
H&nr (be ado pﬂ,n)
is free of rank one over O /" since ¢ is n-admissible. On the other hand, H, d (Qq, ad® Pr.n) clearly surjects
onto this quotient by definition, which shows (1). Since Z! 4(Qq,ad’ ps,) and Z.,.(Qq, ad’ pr ) both
contain all coboundaries, we see that
Z&rd((@qa ad" Prn) ord(@q7 ad" Prn) o H! (Qq, ad’ Pr.n)
ord (Qq, ad" Prn) N Zine(Qq, ad’ P, n) ord (Qq, ad’ prn) N Hinn (Qq, ad’ Pr.n) - Hine (Qg ad" Pr.n)
is free of rank 1 over O/w". On the other hand, Z! ,(Qq,ad" p; ) and Z}, (Q,,ad’ ps ) are both free of
rank 10 over O/w"™ because R‘;rd and the unramified local deformation ring R;™" are formally smooth, so
we conclude that Z ;(Qq, ad” prn) N ZL,.(Qq, ad® pyr ) is free of rank 9 over O /™. In particular,

= HomFrobq (Zp(l)a ado pw,n)

Ztlmr(QQ’ ad" Prn) _ H&nr(QQ’ ad" Prn) _ Hl (Qq, ad" Prn)
Zgrd (Qqa ado pw,n) N lemr (Qqa ado pw,n) Hérd((@q: ado pw,n) N H&nr((@qv ado pTr,n) ord (Qqa ad P, n)
is also free of rank one over O/w", as desired. O

8.2.12. To state the next lemma, we establish some temporary notation. Suppose () is admissible and let

K be an S-tidy level structure K for GSpin(Vpg) (Definition 4.3.1). Abbreviate T := ’]T}g(u‘(}iDVQ(% m> Which

may be the zero ring. Also fix an isomorphism ¢ : @, — C inducing p. Then we write 7 for the set of
relevant automorphic representations II of GSpin(Vpg)(A) with ch( # 0 such that the Hecke action on
fll'[ff factors through T. Recall from Corollary 2.7.8 that we have an embedding of T-algebras

(8.2) T — P Q, (1)
IeT
where Q,,(IT) is @, with Hecke action through the eigenvalues on .~ 'TI}f. By the same argument as [13,
Theorem 7.9.4], there exists a Galois representation
p: Go,sudiv(gp) — GSpy(T)
such that, for each I € T, the composite

Go,sudivi@p) 2 GSp4(T) — GSp,(Q,(IT))

is conjugate to the Galois representation pry, from Remark 2.5.4.

Lemma 8.2.13. With notation as in (8.2.12), we have:
(1) The composite
Go & GSpy(T) & T~
is given by Xp cyc, and the corresponding O-algebra map r,, Rm — T factors through R.

(2) Suppose o(DQ) is even. Then Hgt(ShK(VDQ)@, O2))m is pg“v typic when viewed as a Rg|Ggl-
module via (1).
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Proof. We have v o p = X cyc because each II € T has trivial similitude character by Lemma 4.3.2. To
complete the proof of (1), it suffices to show that all the composite maps

RY 2T — Q,(10)

factor through Rq for II € 7. Because K, is hyperspecial, each pH7L|G©p is crystalline with Hodge-Tate
weights {—1,0, 1,2} by Theorem 2.2.10(2). So it suffices to check that pmJG% is ordinary for all ¢|Q.
Indeed, pmb‘G@q is tamely ramified because p,. is unramified, but ramified by Corollary 2.5.3(2) and Theorem
2.2.10(1). In particular, for any lift of Frob, € Gg,. pm,(Froby) has a pair of eigenvalues of ratio ¢. It
follows that pH,L\GQq is ordinary, and this shows (1).

For (2), by Proposition 8.1.2(1) and Theorem 2.7.5(2) it suffices to show Hg’t(ShK(VDQ)@, @p(2))m is

pgﬁ"—typic. However, this is immediate from Corollary 2.7.7 and the construction of the map in (1); note
that each I € T is non-endoscopic because p.. is absolutely irreducible. ([l

Definition 8.2.14. For any admissible () with o(D()) even and any S-tidy level structure K for GSpin(Vpq),
we define H () = Homp, ey (Méﬂi", H3, (Shi (Vbo)g: 0(2))m).

Remark 8.2.15. In the context of Definition 8.2.14:
(1) By [98, Proposition 5.3] and Lemma 8.2.13(2), we have
HE (Shi (VDQ)g, O(2))m = ME™ ®r, Ho(K)

as Rg[Ggl-modules.
(2) Under the isomorphism of (1), we have, for all ¢|Q:

H" (Ig,, B, (Shic(Vo)g O(2))m ) = H'(Ig,, ME™) @y Ho(K).

Lemma 8.2.16. Suppose Q is admissible with o (DQ) even, and K is an S-tidy level structure for GSpin(Vpg).
Then for any q|Q, the w-power-torsion of H* (I@q, Hg’t(ShK(VDQ)@7 O(2))m> is contained in

) Froby=1

1 (1o, 7 (Shie(Voo)g, O2)m ~ HY(Ig,, M§™) ™~ @p, Ho(K) = Ho(K)/(t,)

(The element ¢, € Rg was defined in Lemma 8.2.8.)

Proof. By Lemma 8.2.8, we see that
H'(Ig,, M§™) = Rq/(ty) ® Ro(—1) & Mi(~1)

as Rg-modules with Frobg-action, with My & M; the decomposition of (8.1) for Méﬂiv. In particular,
Frob, —1 acts invertibly on Rg(—1) & M;(—1). Since M is free over Rg and Hg(K) is w-torsion-free
by Theorem 2.7.5(2), it follows that the zo-torsion part of H*(Ig,, M, 5“1") ®R, Hg(K) is contained in

Frobg=1

(H' (Ig,, M™) @r, Ho(K)) H' (I, M3™)"*P =t @ Ho(K) = Ho(K)/(t,),

as claimed.
OJ

Lemma 8.2.17. Suppose Q) is n-admissible with o (D(Q)) even, and K is an S-tidy level structure for GSpin(Vpq).
Then for all q|Q, all oy € Homp, (Hg(K)/(ty),0/w™), and all z € SC%(Vpg, O), we have

ag oresg, 0 Iasm(z) € Oy(kn(Q; K)).
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Frob,=1
Here resg, © A Jn(z) is viewed as an element of H'* (IQq, H (Shi(Vpo)g, O(2))m) ", which we

identify with Hp(K')/(t,) by Lemma 8.2.16; O /w" is viewed as an R(-algebra via the map corresponding
to prn; and O, was defined in Notation 4.2.9.

Proof. By construction, 17 5, and Mém" QR O/w™ are isomorphic as O[Ggl-modules. Given a map «y :
Hg(K)/(ty) = O/w™, we obtain a corresponding map of Galois modules

a=id®ag: Hg’t(ShK(VDQ)@, O(Q))m ~ Méniv ®RQ HQ(K) — Mcliniv ®RQ O/wn ~ T7r,n~

Let ay, : H! (@, Hgt(ShK(VDQq)@,O(Z))m> — HYQ, Tx ) be the map induced by a. For any z €
SC%(Vpgg, O), kn(Q; K) contains au (Ias m)(2) € HY(Q, Tx ). So the lemma follows from the commu-
tative diagram

. . Froby=1 - - = -
H' (Q 1, (Shxc(Vig)g, 02w ) —— H' (Ia,, HE(Shic(Vog)g, 0@+~ H(Ig,, ME™ )™= @y Ho(K) — Ho(K)/(ty)

I 1 [ b

Hl (Q7 Tﬁ,n) Hl(IQq, Tﬂ,n)FrOqul -~ @ Hl(I@q, ]\y{éﬂiv)Frobq:1 ®RQ O/wn _~ O/w”.

0

8.3. Deformation theory: endoscopic case. For this subsection, we assume 7 is endoscopic, associated
to a pair (71, m2) of automorphic representations of GLy with discrete series archimedean components of
weights 2 and 4, in some order. In particular, we have pr = pr, & pr,.

Notation 8.3.1.
(1) Set Sy := T, ® Tr,(—1) with the diagonal Galois action; for any n > 1, we also write Sy ,, =
Sr ®o O/w". Let

(8.3) Heyis(Qp, Srn) € H' (Qp, Srin)
be the subspace of cocycles corresponding to extensions
0—=Trmn—=>E—=Tryn—0

such that £ is torsion crystalline with Hodge-Tate weights in [—1, 2], cf. (1.5.4).
(2) For any squarefree @) > 1 with p 1 @, define

H'(Qp, Sx,n)

Selga(Q. Srn) = ker | HY(Q Srn) = || H'(oy Sea) X o5 5
cris\ <Py ~m,n

L SUdiv(Qp)

When ) = 1 we drop it from the notation.

Lemma 8.3.2. Suppose Q > 1 is admissible and let n > 1 be any integer. Then Selgo(Q, Sr,) =
Selg(Q, Srn)-

Proof. Fix ¢|Q. Since ¢ is admissible, the eigenvalues of Frob, on Sy, ® O/w = Ty, @ Tr,y(—1) are
of the form {a,ofl,qofl,aq_l} for some a € F; with « # 1,¢,¢%,¢7 . Thus H°(Qg, Srpn) =
o O(Qq, Szm(1)) = 0 for all n, so H 1(Qq, Sxzn) = 0 for all n by the local Euler characteristic formula,
and the lemma follows. U

Notation 8.3.3. For an integer n > 1, recall the notion of pseudorepresentations of degree n from [116,
Definition 2.1.1]. We use op. cit. as our basic reference for pseudodeformation theory, although some of the
relevant results are due to Bellaiche and Chenevier [5].
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(1) Let G be a group and R be aring. If p : G — GL,(R) is any representation, we write D, : G — R
for the associated degree-n pseudorepresentation. A pseudorepresentation D : G — R of degree n
is called reducible if it is equal to D, for a reducible representation p : G — GL,(R).

(2) If @ > 1 is squarefree, let

/_\./Q
PsDef,, : CNLp — Set
be the functor defined by

A {pseudorepresentations D : Go sudiv(gp) — Aofdegreed : D®ak = Dpﬂ} )

where k = O/w and 5, is viewed as valued in GL4(k). Let PsDef% P/s]\jgf]?1 be the subfunctor
of pseudorepresentations that are torsion crystalline at p with Hodge-Tate weights in [—1, 2] in the
sense of [116, Definition 2.5.4]. By Theorems 2.2.5 and 2.5.5 of op. cit., PsDefg and PsDefg are
representable by universal pseudodeformation rings RQ and Rg , respectively.

3) Let J ng C RQ be the reducibility ideal defined in [116, Proposition 4.2.2(2)], and J Qd - R its
image under the natural projection Rg —» Rg .

Remark 8.3.4.

(1) The ideal jr 2 q 18 characterized by the property that, for any morphism f: é,% — A in CNLgp
corresponding to a pseudorepresentation D : GQ SUdiv(Qp) — A, D is reducible if and only if
F(J2g) = 0.

(2) In what follows, we we will apply the results of [116, §4]. Although the discussion there is carried
out for residual representations which are a sum of two characters, as noted in Remark 4.3.6 of op.
cit., the results also apply for any residual representation which is multiplicity free with exactly 2
irreducible constituents, which includes p,. by Lemma 4.1.8.

For all squarefree () > 1, let p;? : Rr% — O be the augmentation corresponding to p.

Lemma 8.3.5. Suppose the Bloch-Kato Selmer group H}(@, Vi, @ Vi, (—1)) vanishes. Then there is a
constant Crs > 0 such that, for any admissible () > 1, there exists j € AHHRQ(Jgd) with p? (j) £ 0
(mod w®).

Proof. We know Fitt R (Jlgd) C Ann RQ (J 4)- Then since Fitting ideals are stable under base change, it

suffices to show there exists C with % € Fltto(Jrgd ®,Q O) for all @, or equivalently that Je red @2 Ois
finite with uniformly bounded cardinality.

Let B? and C¥ be the finitely generated Rg—modules appearing in [116, p. 38] for the deformation
problem PsDeff?1 . By construction in [116, Proposition 4.2.2], we have a surjection BY @ C9 —» JrQed, SO
it suffices to show in turn that B% ®,9 O and C© ®,9 O are finite of uniformly bounded cardinality. Let

M be a finitely generated O-module. Because pg corresponds to the reducible Galois representation p,, we

have pg (Jf’g 1) = 0,50 [116, Theorem 4.3.5] gives canonical isomorphisms
Homo(B? ® @ O, M) = Extgyq ) co(Trss Ty ©0 M)

(8.4) o o
Homo(C9 @ ¢ O, M) = Extyy 1 ca(Try, Try @0 M).

Here C? is the full subcategory of finitely generated O[Gg]-modules which are unramified outside SU div(Qp)
and all of whose finite subquotients are torsion crystalline with Hodge-Tate weights in [—1, 2].
In particular, for all n > 1,

Homo(B® ® ¢ 0,0/w") = Homo(C? ® ¢ 0,0/w") = Selga(Q, Sr.n)-
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We conclude that B9 ® e O and C9 ® e O are isomorphic, and by Lemma 8.3.2, they are also independent
of Q); so take () = 1 without loss of generality. Then by Proposition 1.5.5,

Homo (B! @1 0,0) ® Qp = Extg gy o1 (Tryy Try) @ Qp = H(Q,Vy, ® V(1)) = 0.
Since B! ®@p1 O is a finitely generated O-module, it follows that B ! ®@p1 O is finite, as desired. O

8.3.6. We now study deformations of each p,.,. As in the non-endoscopic case, we will apply the results and
notations of Appendix B to pr,, which we view as valued in GL2(O). In the same way as Lemma 8.2.1, we
obtain:

Lemma 8.3.7. Fori = 1,2, the representation p,, satisfies Assumptions B.1.3 and B.1.5 from Appendix B.

8.3.8. For each prime /, let Ry; be the local deformation ring for .. as in Notation B.1.4. If ¢ is BD-
admissible for pr; (Definition 4.2.5), let R‘q’fid be the Steinberg quotient of 12, ; in the sense of [72, §2].

Lemma 8.3.9. The ring Rgfid is formally smooth over O of dimension 3.

Proof. Immediate from [102, Proposition 5.5]. O

8.3.10. In light of Lemma 8.3.9, we take the “admissible” primes in Notation B.2.4 to be the BD-admissible
ones for pr,. Then the notion of n-admissible in Definition B.2.5(3) coincides with the notion of n-BD-
admissible from Definition 4.2.5; we will always say n-BD-admissible to avoid confusion.

Notation 8.3.11.
(1) Fori = 1,2 and a squarefree integer () > 1 coprime to p, let Eg ; be the global deformation ring of

ﬁm : GQ,SUdiV(Qp) — GLQ(O/w)a
with fixed determinant x;,”°.
(2) Let RZ-Q and — when @) is BD-admissible for p., — R ; be the quotients of Rgﬂ- defined in Notation

B.4.4(273). (We are identifying () with div(Q) for notational convenience.)
(3) Let pgy" - Go,sudiv(@p) — GLa(Rg,;) be a framing of the universal deformation, with underlying

Rg,i[Ggl-module M, 5‘};".

8.3.12. As in the non-endoscopic case, let pr, : Ig, — Zp(1) be the maximal pro-p quotient. By the
construction of Rgfid, we have:

Lemma 8.3.13. Suppose Q) > 1 is BD-admissible for p,, and q|Q is a prime. Then there exists a basis for
M 5“;" and an element t, € R ; such that

cyc
ni _ [ Xp *
pbviv‘a@q - < 0 1> ’

univ 1 T t
PQa (9) = <0 P p(lg) q) , Vg € Ig,-

Definition 8.3.14. If ) and ¢ { () are BD-admissible for p,,:
(1) Define P, ;(T) = det(pgli"(Frobq) —T) € Ro,;[T].

(2) Define R)"% = Rq,; ® paa RQq,i-

and

The same proof as Lemma 8.2.10 shows:
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Lemma 8.3.15. Suppose Q) and q t QQ are BD-admissible for pr,. Then
RGw = Ro.i/ (Pyi(a)) = Roqi/ (ty)-

Lemma 8.3.16. Suppose q is n-BD-admissible for p.,. Then
Hl (QQ7 a‘do pm,n) = ngd((@qa ado pm,n) @ H&nr(@(}? a'do pm,n)a

in which each factor is free of rank one over O /w™. In particular, q is standard in the sense of Definition
B.4.7.

Proof. Let Frob, € Gg, be alift of Frobenius, and let 7, € Ig, be an element such that pr,,(7,) = 1. Then,
with respect to the basis in Lemma 8.3.13, H'! (Qq, ad’ pr;.n) is spanned by the following two cocycles:

1 0
Frobq>—><0 _1>, Tq 0

01
Frob, 0, Tq > (0 O) .

The first generates H,.(Q,, ad’ py, ,,) and the second H, (Qg,ad’ pr, »); also, both cocycles are clearly
not z”!-torsion, and the lemma follows. OJ

8.3.17. For the next two lemmas, we introduce some temporary notation. Let () > 1 be admissible, let K

be an S-tidy level structure for GSpin(Vpg), and abbreviate T := Tf(u‘g;vcg%) m» Which may be the zero ring.

Also fix an isomorphism ¢ : @p = C inducing the prime p of Ey. Then we write 7 for the set of relevant
automorphic representations IT of GSpin(Vp)(A) such that ch{ # 0, and the Hecke action on Flﬂff factors
through T. By Corollary 2.7.8, we have the embedding of T-algebras

(8.5) T — P Q, 1),
eT

where @p(H) has Hecke action through the eigenvalues on Flﬂff . Then by [22, Corollary 1.14], there is a
canonical pseudorepresentation

(8.6) Dq : Go,sudivigp) = T

such that for all Il € 7, the composite of D¢ with the character Ay : T — @p(H) is the pseudorepresentation

associated to pry,. Finally, let Tena C 7 be the subset of endoscopic representations, and let T be the quotient
of T defined by the actions on II € Teyq.

Lemma 8.3.18.
(1) The pseudodeformation D) is induced by an O-algebra morphism Rr% — T.
(2) The composite Rg — T — T factors through Rg /J fg dq-

Proof. By definition, D¢ is induced by an O-algebra morphism d : Eﬁ — T. By (8.5), to prove (1) it

suffices to show each composite map ﬁg i> T /\—H> @p factors through R,;Cg , with Ay as in (8.3.17); but this
is clear because K, is hyperspecial, so pry, is crystalline at p for all such II. Similarly, for (2) it suffices to

note that Ay o d annihilates Jrcg 4 for all IT € Teng, because pry, is reducible. ]
8.3.19. Let
(8.7) Rg/']rgd — RQ,1 ®o R, 2

be the canonical map, defined on moduli problems by sending a pair of deformations p1, p2 of p,, and o,
to the pseudorepresentation D, ¢, . It follows from [116, Proposition 4.2.6] that (8.7) is surjective.
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Lemma 8.3.20. Write Q = Q1 - Q2 such that each q|Q; is BD-admissible for p,, (Remark 4.2.6(2)). Then:

(1) The map Rﬁ% / Jr%d — T induced by Lemma 8.3.18(2) factors through the surjection (8.7). In partic-
ular, T is an Rg, i-module for i =1, 2.
(2) Assume o(DQ) is even. For any j € AnnRg(JIgd), the T-action on

GHE (Shi (VDg)g O2))m
factors through T, and as a T-module, ng’t(ShK(VDQ)@7 O(2))m is
(P8 Oro, 2 T, P2 @Rq, » T)-typic.

Proof. Arguing as in Lemma 8.3.18, for (1) it suffices to consider the pseudorepresentations attached to
IT € Tena. Suppose IT is associated to a pair (77, 72) of automorphic representations of GLo(A), and fix an
isomorphism ¢ : Q, = C inducing p. Then pr, = pr,, ® pr,,. Wehavep,, , &7, , = by, , ® Py, and
since p,. , are both absolutely irreducible, without loss of generality we may assume p, , = p. ., i =1, 2.
By Lemma 2.2.9 and Fontaine-Laffaille theory, 7; o and 7; » have the same weight.

By Corollary 2.5.3(2) and Theorem 2.2.10(1), (pr,,, @ pTQ,L)‘GQq is ramified for all ¢|@. It then follows
from [102, Propositions 5.3, 5.5] that pTZ.,L|GQq is ordinary for all ¢|Q;, and unramified for all ¢|Q/Q;. It is
also clear from Lemma 4.3.2 and Theorem 2.2.10(3) that det p,, , = X]C)yc, and p, , and p,, , have the same
Hodge-Tate weights by Theorem 2.2.10(2). Hence p,, arises from a deformation parametrized by R, ;,
and this proves (1).

For (2), by Proposition 8.1.2(2) and Theorem 2.7.5(2), it suffices to show that j H3, (Shx (Vbo)g: Qy(2))m

is (plénl“i ®Rg, 1 T, pgi‘é ®Rq,.2 T)-typic.
For this, we use the decomposition of Corollary 2.7.7:

HE (Shi (Vpo)g, @p(2))m = @D 7' @ pu,
Iy

as II; ranges over finite parts of automorphic representations II € 7. This is a decomposition of Rf,% [Gol-
modules, where R,% acts on the factor L_IH? ® pri, via the map Ary : Rg —-T— @p(ﬂ) corresponding to
the pseudorepresentation of pr, (equivalently, to the Hecke eigenvalues of Hff ). In particular, )\H(Jlg 1) =
0 if and only if pry, is reducible, which by Lemma 2.2.12 and Remark 4.1.2 occurs if and only if II is
endoscopic. Because the element j € Rg annihilates Jgd, it then suffices to show that, for all relevant
endoscopic gutomorphic representaﬁtions IT € Tena associated to a pair (71, 72), pr1 ;s either pé“fj‘i Q®Rg, 1 T-
typic or )5 @R, , T-typic as a T[Gg]-module. However, as pr s = Pri, OF pry, by Corollary 2.7.7, this
is clear from the construction of the map R¢, 1 ®0 Rg,2 — T. O]

Definition 8.3.21. Let () be admissible, with a factorization Q = Q7 - Q2 such that o(D@Q) is even and
all ¢|@Q; are BD-admissible for pr,. Fix an S-tidy level structure K for GSpin(Vpg), and an element j €

Ann RO (Jgd). Then we define
Ho(K, ) = Homp, jao) (MBS, jHE (Shi (Vbo)g: O(2))m)
fori =1,2.
Remark 8.3.22. In the context of Definition 8.3.21, by [98, Proposition 5.3] and Lemma 8.3.20(2), we have

FHE (Shi (VDQ)g, O2)m ~ MG ®r,, , Ho(K,5)M & MBS @r,,, , Ho(K, §).
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Lemma 8.3.23. In the context of Definition 8.3.21, let q|Q; be a prime. Then under the natural isomorphism
H' (To,, HE(Shk (Vog)g, O2)m) = H' (g, ME) e, , Ho(K, /) Ve
Hl(IQq7 Mérzltg) ®RQ2,2 HQ(K7 j>(2)7
the w-power torsion of H" (I@q , ng‘t(ShK(VDQ)@, O(2))m> is contained in

1 .13 Frobg=1 1 univ Froby=1 NG
H (I@qJHét(ShK(VDQ)@ 0(2))m> ~ H (Ig,, M§;7)" """ ®rq,, Ho(K, j)
~ Ho (K, j)7/(ty).
(The element ¢, € R, ; was defined in Lemma 8.3.13.)

univ

Proof. Without loss of generality, suppose ¢ = 1. Then PQQ,QIG@q is unramified, so by Lemma 8.3.13, we
have

. R, 1/(ty) ® Rg,1(=1), i=1
1 _ Q1,1/\lq Q1,1 ’ ’
2, ’ ’

Since Hg(K, )™M and Hg(K, 7)) are w-torsion-free by Theorem 2.7.5(2), the lemma follows as in the
proof of Lemma 8.2.16. O

Lemma 8.3.24. In the context of Definition 8.3.21, for all j € Ann o (J§d>’ all z € SC% (Vpg, 0), all
q|Qi, and all oy € Hompy,,_, (Ho(K,5)D/(t,), 0/w™), we have

g 0 jx oresg, 0 Oagm(2) € Og(kn(Q; K)).
Here,
(8.8) ju o H' (I, Hg (Shx (VbQ)g, O(2))m) = H' (In,, jHE (Shic (Vpg)g: O(2))m)

is the natural map, and O/w" is viewed as an R, ;-algebra through the map corresponding to pr, r.

Proof. Forany ap € Homp, ,(Hq(K;j )@ /(t,), 0 /™), we obtain a corresponding induced map of Ga-
lois modules

a=id® ag : M“I:ZV ®Rg, Q(K;j)(i) — M“I;llv ®Rgi O/w" =Tx, n.
Then by the decomposition from Remark 8.3.22, we can also view « as a map of Galois modules
ngt(ShK(VDQ)@a O0(2))m = T, n-
Let (« o j). be the induced map
HY(Q, H,(Shk (VD@)g: O(2))m) — H(Q, Ty n)-
For any z € SC% (Vpg, O), kP (Q; K) contains
(a0 j)+(Or1m(2)) € HYQ, T n) = HH(Q, T ).

The lemma now follows as in the proof of Lemma 8.2.17. U
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8.4. A test function calculation. For this subsection, we fix the following additional data:

o Aninteger n > 1.

o A squarefree integer D > 1 with div(D) C S, and an n-admissible ) > 1 coprime to D, such that
o(DQ) is odd.

o An n-admissible prime ¢ { Q.

o An S-level structure K for GSpin(Vpg). Let L C Vpo®Q, be the unique self-dual lattice stabilized
by K,.

o A Zg-basis {vg, v1, v2, v}, v3} for L as in (5.1.2), which identifies Vpg ® Q4 with the standard split
five-dimensional quadratic space over Q.

We will apply the results and notations of §7, with the D therein always replaced by D(q. However, we do
not yet specify the choice of g-adic uniformization datum for Vp,. The goal of this subsection is the crucial
Lemma 8.4.6.

8.4.1. Let o), oV, 2, 01 € S(VR, ® Qq, Z) be as in (7.7.1). We also let 7. € S(V, ® Q. F,) be
the reduction of . for ? = (0), (1), %, tot.

Notation 8.4.2. Without loss of generality, we write the almost level-raising generic character y from Propo-
sition 5.6.2 as

(8.9) x=1-1""Ra:(@Q))—=F,,
where a? # | - |1,

Then we can consider condition (C) from Definition 5.4.3, for @3‘)‘3:

(Cy) There exists g € Mp4(Qq) such that f, (wy (1, 9)Pi") # 0, where
1 1 = _
For (D™ Ry (1)) @ S@F,) - xBxy-x!
is the unique projection deduced from Lemma 5.2.1.

Lemma 8.4.3. The test function @Z‘)t satisfies condition (CY).

Proof. Let g € Mp,(Q,) be a lift of the Weyl element

0

SO = O
SO O
o o O

. . . =X
in the standard basis {e1, ez, €], €5 }. Then for some unit u € [, , we have

wy (1, 9)p(z,y) = U/ (2, )Y (x - 2)dz
2€VDQ®Qq
for all
Y€ S(V,%Q ® Qq, Fp).
Notice that, since x = | - |% X «, the projection

For (017D R - (1-19)) © S@Fy) » xRy - X7
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is the composite of the integration map
int : §( 2,?17) — S(Qq,Fp)

© = (t > /gp(tl,t)dtl)

fajpre S(Qg,Fy) = af - V2R oY |71/2,

and the projection

Abbreviate

s’ =u tint <w¢(1,g)¢2) € S§(Qq,Fp)
for 7 = (0), (1), , tot. We will compute s*" explicitly to show f, 1/2(s*") # 0, which will prove the
lemma. By definition we have

sT(t) = / / / @;(z, tvg + avy )Y (t1z - v1)dzdadt;.
t1€Qq JacQq J2eVpoRQy

Note that @Z(z, tvy + avy) depends on z modulo gL only, so the inner integral is nonzero only on the set
{t1 € q_2Zq}. We may therefore reorder the integrals and obtain

sT(t) = / / / @;(z, tvg + avy)Y(t1z - v1)dt;dadz
z€L Jacq=1Zq Jt1€q— 224

= (12/ / @;(z,tvg +avt) - 1.4, e422,dadz.
zeL Ja€q™1Zq

For the inner integral to be nonzero, we must have 2 - tvy € Z; andt € qiqu. In particular, since z and
vg lie in L, s°(t) is supported on q_IZqX L Z, . At this point, we are ready to compute the following table of
values for s°(t):

sO) | s () s*(t) stt(t
¢z 0 qq;41 (q2—1)4(q—1) (q;?})
z; | S| o g 0
The fourth column is determined by the first three by
s ="+ (1 - q) (s + sM).
On the other hand, the given values for s'**(¢) immediately imply f,.j1/2(s"") # O for any o # |- |_%

It remains to explain the calculation of the first three columns. First, since @f,o)(z, tvg 4+ avy) = 0 unless

tvy + avy € L, we have s(0) (t)y=0fort e q_lZ;. Fort ¢ Z;, we have
(8.10) S(O)(t) = q2Vol{z eL—qL:z-vy€ Z;, z-v € q2Zq,z A qu} .

Label the set in (8.10) by S ©) and let 5(0) be its image in L/qL. Write Z, 71,0y for the reductions in
L/qL.

Then §(0) is the set of Z € L/qL that are isotropic, and orthogonal to T but not T3. Now, there are
q® = ¢* - q isotropic vectors in L/qL orthogonal to o7 since Ell /v1 is a split quadratic space over I, of
dimension three. Of these, ¢> are also orthogonal to T; these are just the vectors in spang, {v1,72}, since
the latter is a maximal isotropic subspace. So

#5'

On the other hand, given any z € 3(0), we have

0
):qg—q2.

Vol{z eSO . E:Eo} =
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(Itis almost the full coset Zo+ gL, which has volume q%, except that we must ensure that z remains orthogonal
to v modulo ¢?; this cuts down the volume by a factor of ¢.) So

3 2
- 1
Vol(s©)y=2"9 _ 91~ 2
(S =" 7

and

$0(t) = Vol (s©) = 1 Lfort e 2.

Next let us consider s(!) (¢). Since 90((11) (z,tva+avi)-1,., cq42z,, Whenrestricted to a € q~'Z4, is supported
on z € gL such that z - tvg € Z, we see that sty =0fort € LY. Fort e q 7, we have

sW(t) = q2Vol{z €qlacq'Zy: 2 vy € qZy, 2z - v € qQZq}.

(Note that the condition z - 2 € qZ, in the definition of X (7.27) is automatic from z € ¢L.) Then replacing
z with 5, we have

3
3(1)(t)zg—5Vol{z€L : Z"UQEZ:;,Z"Ul Equ}
7
:W#{EEL/qL :z Loy, Z L oo}

3

q 4 3 q—1

) =
410 7

Finally, consider s*(). For t € Z;, we have

s*(t):qzVol{zeL—qL,a,Eq_quX tzv €Ly, 2001 quZq}
:qz(q—l)Vol{zeL : z-ZEqu,z-vgeZqX,z-vlquzq}.

This is the same set that appeared for s(9) (¢), so we have

(1) = (g —1)sO () = (‘1;21)2 fort € Z).

Fort € ¢~ 'Z), we have

E.11) s*(t) :q2Vol{z eL—qlL, aeq_qu P22 €qly, 2-v2 € qZ;, z- v Eq2Zq}

:q?’Vol{zEL—qL : z-quZq,z-quZ;,z-vlEqQZq}.

To compute this, we use the same technique as for s(0), Let S* be the set in the second line of (8.11) and let
S beits image in L /qL. Then S” consists of nonzero isotropic vectors in L/qL orthogonal to U5 and T, of
which there are g> — 1. On the other hand, for Z € S”, we have

-1
Vol{zGS*:EZZO}:qT:

this is because, out of the coset Zg + ¢ L, we must take only those vectors with z - ve € qZ; and z-v; € ¢? Lyg.

So
-1 (g—1D(¢*—1)
s*t:q2—1-q -q3:—
(t) = ( ) 7 "
as desired. O

fort € qilzj,
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8.4.4. Now we return to the geometric setting of §7. We will write m := mff,div(@q) C ']I‘(S)UdiV(QQ).

Lemma 8.4.5. The maximal ideal m C TgUdiV(QQ) is generic and non-Eisenstein, and weakly q-generic

(Definition 7.3.9).

Proof. That m is generic and non-Eisenstein follows from Lemma 4.1.7. Then by Corollary 2.7.8, it suffices
to show that (q}Tq%2 —4¢%(q + 1) ¢ m;f,p C T2. Indeed, this holds by Remark 7.3.10, because the
admissibility of ¢ implies tr(Frobg |p,) # £2(q + 1). O

In particular, we can consider, for any choice of g-adic uniformization datum for V¢, the map

0] [SthKq (VDQ)} m

(Tlr)
from Theorem 7.4.7; here we use that (¢) = 1 on O [SthKq (VD/q)]m by Lemma 4.3.2. (The map &, and
the identification of K¢ with a compact open subgroup of GSpin(Vpg,) (A‘]{), both depend on the choice of

uniformization datum.)
The following is the crucial lemma for the proof of Theorems 8.5.1 and 8.5.2.

(812 &= Vo(: M yH' (Ig,, Hiy(Shiagm (Vbag)g O(2)n) -

Lemma 8.4.6. Suppose QQq is n-admissible. Then there exists a test function o € Test (Vpg,m, O/w"),
a g-adic uniformization datum for Vpqq, and a special cycle z € SCgagram (VDQq, O) such that

ao&oresg,(Iasm(2)) € O/w"
generates \,(Q; K).

Here we are using Theorem 7.1.11 to apply  to resq, (Oag,m(2))-
Proof. By Corollary 5.6.3 and Lemma 8.4.3, we conclude
A (QK) = A0 (Q, 97 @ o K)
for some ¢ € S(V5, © A%, O) . Then by definition, there exists a test vector
a € Testg (Vpg,m, O/w")

such that a( Z(T', 07 @ @) i) generates A\, (Q; K), for some T' € Symy(Q)>o.

Now note that, for any choice of uniformization datum, « o £ gives a well-defined map
O [Shgar, (VpQ)]
(T1r>

My HY (I, HE (Shiarcm (Vbag)g: O(2))m ) —

because «(Ty;) C (w™) by Remark 7.4.6.
Then the lemma is immediate from Theorem 7.7.2.

—- O/w"

0

8.5. Conclusions. Finally, we are ready to prove the main results for this section. We start with the non-
endoscopic case.

Theorem 8.5.1. Suppose 7 is not endoscopic. Fix an integer m > 1, and let ng = no(m, pr) satisfy the
conclusion of Lemma B.4.5. Suppose Q) > is n-admissible and q t Q) is an n-admissible prime, where
n > max {3m, ng}, such that o(DQ) is odd.

(1) Suppose @}-(Q)(@, ad® p;) = 0. Then
Bty (Qq) D A7 (Q) - (=),

where
C = 21gp Sel gy (Q, ad® pp_mi1) +m — 1.
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(2) Suppose there exists q'|Q which is not (n+ 1)-admissible, such that Q /' is (n+ m)-admissible and

Selx(q/q)(Q, ad’pm) = Selz(qq) (Q, ad’pym) = 0,
but
Selx(g)(Q, ad’paym—1) # 0.
Then
Dgrir. (Qq) O N7 (Q) - =,
where C' = 2(m — 1) + lgpSel r(gg)r (Q, ad®pn 1)

Proof. Choose an S-tidy level structure K for GSpin(Vpg) such that AP (Q; K) = AP(Q) (possible by
Lemma 4.4.7), and fix a g-adic uniformization datum for V¢, a special cycle z € SC%@ Kram (Vbgq). and

a test function « € Test (Vpg, m, O/w"™) satisfying the conclusion of Lemma 8.4.6; in particular, we have
(8.13) (ao&oresg, (asm(2)) = A2(Q).
Now note that

M_H' (IQtﬂHgt(SthKgam(VDQQ>@v0(2))m>

is co-power-torsion because Hj, (Shxa K (VDQg)g: Q,(2))m is pure as a G, representation by Corollary
2.7.7 and Theorem 2.2.10(1). Hence by Lemma 8.2.16 and Theorem 7.4.7, we have a diagram:

Moy (Tg,, B (Shicoxgpn (Voag)g: O(2)m) ~— Haq/(ts)
(8.14) l
3

Hqo/(Ty),

where we set

Hq = O[Shk(VD)ly:» Haq = Hoq(K K;™)
(Definition 8.2.14). By Remark 7.4.6, (T}Jr) = (P,(q)) as ideals of nggi;é%. Hence by Lemmas 8.2.10 and
8.2.13, the diagram (8.14) is a diagram of RCQO’I;g—modules. Let Q' = Qincase (1) and Q' = Qq in case (2),
and define an element a € R¢y as follows. Let 7¢r : Gg — GSp,(O) be the representation constructed by
Theorem B.2.12, and let Iy C Ry be the kernel of the corresponding homomorphism fo : Rgr — O. By
Lemma B.4.5, we may fix an element a € Annp,, (I¢) such that

(8.15) ordg for(a) < 1gp Sel p(gryrel (Q,ad’ pp—mi1).

By the definition of C' in each case of the theorem, we may assume without loss of generality that

m’

lgo Sel}-(Ql)rel (Q, ad’ Prn—m+1) <n—m+ 1.

Let fr : RY — O be the map corresponding to p. Since for = fr (mod @™ ™ 1) by Theorem B.2.12(1),
we then have

(8.16) ordg fr(a) <lgp Sel r(gryrel (k, ad® Pn)-
Applying a to the diagram (8.14) of Rg/-modules, we obtain a diagram

a-M_H' <IQq’ Hgt(SthKgam(VDQq)@v 0(2))m) > a- (Hgq/(tq))
(8.17) lg

a- (O[Shg(VpQ)l, /(Th)) = aHg/(aHqg N foi (T ) Hg)-
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Suppose first we are in case (1). Because a annihilates /g, Lemma 8.2.10 implies that (8.17) is a diagram

of Ry* @Ry, 1o 0=0/ fq(TH)-modules. Note that

aH Q
afo(T§)Hq
is free over O/ fQ(qur) because Hg, hence aH(, is w-torsion-free. Since the natural surjection
aH Q aH Q

8.18 —
®19) afo(T§)Hg — aHoN fo(T§)He

has kernel annihilated by fg(a), we conclude that
(8.19) fola) -Extlo/fQ(Tg)(—, aHq/(aHg N fo(Th)) = 0.

In particular, by (8.17), there exists a map € : a - (Hqq/(tq)) = aHq/(aHg N fo(Ti)Hy) fitting into the
following commutative diagram.

a-M_H' <1Qq’ Hgt(ShK‘ZKgam (VDQq)@v 0(2))m) — a- (Hqq/(tq))

|fat@ /

aHo/(aHqNTy Hg)
Recall the test function o € Test i (Vpg, 7, O/w™) fixed above, and let 5 denote the composite map

a g r o n
Hqq/(tg) % a- (Hgq/(ty)) = aHg/(aHo N'Ty Hg) = O/w".
By Lemma 8.2.17 and (8.13), we conclude

(8.20) 8q/<;£)(Qq) D (B(0asm(2))) = (a o a2§ o requ(aAJvm(z))) = fw(a)Q)\fl)(Q).

Then the theorem follows from (8.16).
For case (2), (8.17) is a diagram of Rgzg ®Rogfoq O = O/ fqq(ty)-modules. By Lemma 8.2.11, all
admissible primes are standard in the sense of Definition B.4.7, so by Lemma B.4.8, we have

(8.21) foq(ty) 0 (mod w"™™).

ntm—1_modules. Because

In particular, (8.17) is a commutative diagram of O /w
wm_lEXtIO/w”er*l (—, O/w”) — 0,

we conclude that there exists a map a : a - (Hgq/(ty)) — O/w" fitting into the following commutative

diagram:

a-M_H' (IQtﬂ Hgt(ShK‘lKgam(VDQq)@a 0(2))m> —— a- (Hgq/(ty))
laoﬁowm_l 5
O/w"

A priori, & is only equivariant with respect to foq, but fr = fgo, (mod ™ ™*1). Multiplying by ™1,
we then obtain an f,-equivariant map

" @oa): Hgy/(ty) — O™
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Hence by Lemma 8.2.17 and (8.13), we conclude

8q/<c£(Qq) >t (& oao requ(aAJ,m(z))) — 2(m=1) (a o (a - Tesq, 6A37m(z)))
= wQ(m_l)f,r(a) (a o { oresq, aAJ7m(Z))
= * "D fr (@A) (Q).
Combined with (8.16), this completes the proof in case (2). ]

Theorem 8.5.2. Suppose 7 is endoscopic associated to a pair (71, m2). Assume H } (Q, Vi p@ Vi p(—1)) =
0, and let Crgs be as in Lemma 8.3.5.

Fixanintegerm > 1, letng = no(m, px, ) satisfy the conclusion of Lemma B.4.5, and let n > max {3m, no}
be an integer. Suppose Q = Q1 - Q2 is n-admissible such that Q1 is BD-admissible for pr,, Q2 is BD-
admissible for pr,, and o(DQ) is odd. Let q t () be an n-admissible prime, BD-admissible for pr,.

(1) Suppose Selx g, (Q, ad’pr, m) = 0. Then
ki (Qq) D AL (Q) - =,
where
C = QIgOSel]:(Qi)ra(Q, adopﬂ-i,n_m_,_l) 4+ 2Cgrs +m — 1.

(2) Suppose there exists a prime ¢'|Q; which is not (n + 1)-admissible such that Q;/q" is (n + m)-
admissible and

Selr (. /g (Q, ad’pr, m) = Selz(g,4)(Q, ad’ pr,.m) = 0

but
Selz(g,)(Q, ad’pr, 2m—1) # 0.
Then
K (Qq) D A7 (Q) - @,
where

C =lgpSel (g, et (Q, ad° pr; nm11) + Crs + 2(m — 1).

Proof. First, choose the S-tidy level structure K for GSpin(Vpg) such that AP (Q; K) = AP (Q) (possible
by Lemma 4.4.7). Then fix a g-adic uniformization datum for V¢, a special cycle z € SC%(Q Kram (VDQq)

and a test function o € Test g (Vpg, 7, O/w™) satisfying the conclusion of Lemma 8.4.6; in particular, we
have

(a ofo requ(aALm(z))) = )\E(Q)
We also fix j € Ann o, (Jgg) satisfying the conclusion of Lemma 8.3.5.
As in the proof of Theorem 8.5.1, M_{ H'! (I@q, Hégt(SthKéam (Vbq)g: O(2))m) is co-power-torsion,

hence j,M_1 H*! (IQq, H3 (Shicarzam (Vpoe)g: O(2))m) is as well, where j, is as in (8.8). Since the kernel
of (8.8) is j-torsion, we obtain the following diagram arising from Theorem 7.4.7 and Lemma 8.3.23:

JeM 1 HY (Ig,, HE (Shicarcm (Voog)g O(2))m) —— H'(Ig,, M )bt @y H) > H) /(t)

le

j- (Hq/(Ty)) = jHq/(jHq N'Ty (Hg)

Q;q,1
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where we abbreviate ‘
HQ =0 [ShK(VDQ)]m, Hg()l = HQq(K,j)(Z).

From here, the argument is entirely analogous to Theorem 8.5.1, replacing Lemma 8.2.17 with Lemma
8.3.24.
O

9. MAIN RESULT. RANK ZERO CASE

9.1. Chebotarev primes and proof of the main result.

9.1.1. Throughout this section, we let 7, S, and Ej be as in Notation 4.0.1, and fix for now a prime p of Ej.

Lemma 9.1.2. Suppose that 7 is non-endoscopic, that p satisfies Assumption 4.1.1(3), and that there exist
admissible primes for pr = prp. Let C > 0 be the constant from Corollary C.2.8 applied to T';. Then for
all integers m > n > 1 and for any cocycle c € H(Q, Tx n), there are infinitely many m-admissible primes
q such that

ordg locg ¢ > ordgec — C.

Recall here that loc, was defined in Notation 4.2.9.

Proof. Let g € G be an admissible element for p., which is possible by Lemma 4.2.3. By Corollary C.2.8,
we have w®H'(Q(T,)/Q, Tx.n) = 0, so by inflation-restriction there exists an element i € Go(r,) such
that ordc(h) > ord,c— C. Because T, is absolutely irreducible, we can assume without loss of generality
that the component of ¢(h) in the 1-eigenspace for g is nonzero modulo ™ °"d=¢+C+1 Then since

c(gh) = ge(h) + c(g),

after possibly replacing g by gh we may assume without loss of generality that the same is true for the
component of ¢(g) in the 1-eigenspace for g (which is independent of the choice of cocycle representative).
Then any prime g ¢ S U {p} with Frobenius conjugate to g in Gal(Q(Z ., c¢)) satisfies the conclusion of
the lemma. ([l

The following theorem is a corollary of the work of Newton-Thorne [83] and Thorne [110].

Theorem 9.1.3. Suppose 7 is non-endoscopic, and p is a prime of Eqg of residue characteristic p > 3 such
that 7y, is unramified. Then

H}(Q, ad® prp) = 0.
Proof. By [110, Theorem 6.2], it suffices to show

9.1) Vﬂ:P‘G@mpm) is absolutely irreducible.
By Lemmas 2.2.12 and C.2.5, we can write
Viep 2 Indg2 Vi

for a finite extension K/Q, where Vj is a strongly irreducible representation of G . By [87, Lemma 2.2.9]
and the assumption that 7, is unramified, we conclude K is unramified at p; hence (9.1) follows from Lemma
C.2.9. O

Theorem 9.1.4. Let m be non-endoscopic. Suppose p satisfies Assumption 4.1.1, and that there exist admis-
sible primes for pr . Suppose as well that there exists a prime (o such that 7y is transferrable (Definition
2.4.5). Then

L(m,spin,1/2) #0 = H}(Q, Vip) =0.
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Proof. Set D := £y, so that, by Theorem 2.4.6, 71]1? can be completed to an automorphic representation of
GSpin(Vp)(A). By Proposition 4.4.5, if L(m,spin, 1/2) # 0 then we have A” (1) # 0, so there exists a
constant Cy > 0 such that

9.2) ordw)\fz(l) >m—Cy, VYm > 1.

Suppose for contradiction that there exists a non-torsion element c € H } (Q, Tr), and let ¢,, be the image
of cin H }(Q, Tr ) forall n > 1. We fix a large integer N to be specified later. Let M > N be the integer
of Lemma 1.6.3(3) for M = T; and n = N. By Lemma 9.1.2 and Lemma 4.1.6(2), we may choose an
M -admissible prime ¢ such that

(9.3) ordg locyey > N — Cq

for a constant C'; > 0. Now by Theorem 9.1.3 and Lemma B.3.6 (which applies to p, by Lemma 8.2.1), for
some mg > 1 we have

Selr(Q, ad’ Prmo) = 0.
Moreover, by Corollary B.4.3, g, Sel rrei (Q, ad® pr.n) is uniformly bounded in n. Hence by Theorem
8.5.1(1), as long as M is sufficiently large depending on my — which we can ensure by choosing N suf-
ficiently large — there exists a constant C > 0 and an element ¥ (q)o € x%;(g) such that

(9.4) ord, 0,k (q)o > ordg AL (1) — Cy > M — Cy — Cy.
Let k¥ (g)o be the image of x5 (q)o in H(Q, Ty, v). We now consider the global Tate pairing
9.5) 0= (kR (@0, en) =D (KR (@), en)o.

v

For v ¢ S U {q}, the local Tate pairing vanishes by Proposition 4.4.6(1) and Lemma 1.6.3(3) — recall here
that the local Tate pairing of two unramified classes is always trivial. By the same argument as [66, Lemma
4.3(1)], we may also pick a constant C5 > 0 independent of N such that, forallv € S, w® H' (Qu, Try.N) =
0; hence

orde (K5 ()0, en)w < C3, Yo € S.
It then follows from (9.5) that

ordy (k5 (q)o, en)q < Cs.

On the other hand, by Proposition 4.2.8, (9.3) and (9.4) together imply

orde (k5 (9o, en)g = N — Co — Oy — Oy,

SO we obtain a contradiction when
N >Cy+ Cy+Cy+ Cs.

9.2. The endoscopic case.

9.2.1. For completeness, we include an analogue of Theorem 9.1.4 in the endoscopic case. First, we require
an analogue of Lemma 9.1.2.

Lemma 9.2.2. Suppose 7 is endoscopic associated to a pair (71, 72) of automorphic representations of
GL2(A), and fix i = 1 or 2. Let p be a prime of Ey such that there exist admissible primes for pr = pxp
which are BD-admissible for pr, = pr, p. Then there is a constant C with the following property.

For all integers m > n > 0 and for any cocycle c € H(Q, Ty,), there are infinitely many m-admissible
primes q, BD-admissible for pr,, such that

ordg locg ¢ > ordge — C.

Proof. Without loss of generality, we may assume ¢ = 1 (after possibly relabeling 7 and 7).
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Claim. There exists a constant C' > 0 such that w® H*(Q(px)/Q, T, .n) = 0 for all n > 1.

Proof of claim. By Corollary C.2.8 and inflation-restriction, it suffices to show

HomGQ (Gal((@(ﬂw)/@(pm ))’ Tﬂ'l,n)

is uniformly bounded in n. Note that, unless 72 has CM by an imaginary quadratic subfield K of Q(pr, ),
the abelianization of Gal(Q(px)/Q(pr,)) is finite. Indeed, if w2 is CM, this can be checked by hand,;
otherwise one can use Theorem C.3.2 and Corollary C.1.2(2) to see that no closed normal subgroup of
Gal(Q(pr,)/Q(pp=)) can have an infinite abelian quotient.

So we assume without loss of generality that 7m9 has CM by K C Q(px, ). In this case, one can calculate
directly that complex conjugation acts on Gal(Q(p=)/Q(pr,)) by —1, so the image of any Galois-invariant
group homomorphism Gal(Q(px,)/Q(px,)) — T, » lies in the —1 eigenspace of complex conjugation;
since T, is absolutely irreducible and odd, we conclude that all such homomorphisms vanish. U

Let g € G be an element which is admissible for p, and BD-admissible for p,,, which is possible by
(the argument of) Lemma 4.2.3. By the claim and inflation-restriction, there exists h € Ggr,) such that
ordgc(h) > ordge — C as in the proof of Lemma 9.1.2 above, after possibly replacing g with gh, we may
assume without loss of generality that the component of ¢(g) in the 1-eigenspace for g is nonzero modulo
g ~ord=c+C+l Then any ¢ ¢ S U {p} with Frobenius conjugate to g in Gal(Q(T}m,c,)) satisfies the
conclusion of the lemma. n

The same proof of Theorem 9.1.3 also shows:

Proposition 9.2.3. Suppose m is endoscopic associated to a pair (71, 72). Then if p is any prime of Ey of
residue characteristic p such that m, is unramified,

H}(@, ad® pr, p) = H}(@, ad® pry p) = 0.

Theorem 9.2.4. Let 7 be endoscopic associated to a pair (71, mw2) of automorphic representations of GLa(A),
which we order so that 1 o, and 2 , have weights 2 and 4, respectively. Assume there exists a prime (g
such that 7y g, is discrete series.

Fix 1 =1 or 2. Then for any prime p satisfying Assumption 4.1.1, such that there exist admissible primes
for pr, which are BD-admissible for py, p, lfH} (Q, Vi p ® Viyp(—1)) = 0 then we have

L(m,spin, 1/2) # 0 = H}(@, Vi) =0.

Remark 9.2.5. Note that L(7,spin, 1/2) is the product of central L-values for 7; and 7o; in particular,
Theorem 9.2.4 recovers (with extra conditions) the result of Kato [48].

Proof. The proof of Theorem 9.1.4 applies almost verbatim, with the following substitutions: Theorem
2.5.2 for Theorem 2.4.6; Lemma 9.2.2 for Lemma 9.1.2; Proposition 9.2.3 for Theorem 9.1.3; and Theo-
rem 8.5.2(1) for Theorem 8.5.1(1). O]

9.3. Rigidity and p-integral vanishing of the Selmer group.

9.3.1. We can also give a more precise result on the vanishing of the dual Bloch-Kato Selmer group H } (Q,Vap/Tryp),
under some stronger conditions. Assume for this subsection that 7 is not endoscopic.
We consider the following additional assumptions on p (the R stands for “rigid”).

(R1) The image of the Gg action on Tﬂ,p contains a nontrivial scalar.

(R2) We have Sel £ (Q, ad” 5) = 0, with notation as in Definition B.4.1.

(R3) Forall £ € S, H'(Q;,Tr,) = 0.
It is proved in Theorem C.4.9 that (R1) holds for cofinitely many p. We will show in Proposition 9.3.5 below
that the same is true of (R2) and (R3).
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9.3.2. Under Assumption 4.1.1(3), let R;,miv be the universal GSp,-valued deformation ring of p,. , denoted

R in Notation 8.2.6, with corresponding universal deformation pgni" 1 Go,suipy — GSp4(R;;“iV).

Lemma 9.3.3. Let (R}Jmiv)o C R;Jmiv be the subring generated by the coefficients of the characteristic poly-
nomials of elements of G under the composite

P G — GSpy(Ry™) < GLy(Ry™).

Then
univy0 __ puniv
(Ry™)" = Ry™.

Proof. Recall the category CNLp from (1.1.3). By the universal property of p;jni", it suffices to show the
following: given two morphisms .
Fiofo i R S5 A

in CNLo, if fi = fa on (R,‘gmi")o, then the associated deformations
p1,p2 : Gg — GSpy(A)

are GSp,(A)-conjugate. By [20, Théoreme 1], p; and p2 are GL4(A)-conjugate, say by a matrix a €
GL4(A). Then

(9.6) p1(g) = a-pa(g)-a" Vg € Go.

On the other hand, because p; and ps are valued in GSp, with similitude character x;”“, we also have

9.7 pi(g) = _XP,CYC(Q) Q- pi(g)_t - Vg € Gg, 1 =1,2,

where () is the matrix from (1.1.4) with n = 2. Combining (9.6) and (9.7) and using Schur’s lemma, it
follows that Qa’Qa is scalar, or equivalently @ € GSp,(A), and this proves the lemma. O

Lemma 9.3.4. For all but finitely many primes p of Eo, py , |GQ( ) is absolutely irreducible.

Proof. First, recall that p,. , is absolutely irreducible for all but finitely many p by Lemma 4.1.5. We restrict
our attention to these p; the argument is based on [65, Proposition 4.5], but we are able to take advantage
of the low-dimensionality of p,. ,,. The representation o , |GQ( &) is semisimple, so, after possibly extending
scalars, we may write

M
PrplCac,) = @pi '
i=1

for distinct absolutely irreducible representations p; of G, ) and multiplicities m; > 1. The same argument
as [38, Lemma 2.1] (which applies here because Q((,)/Q has degree coprime to p) shows that the integers
m; = m are all equal, and all p; have the same dimension M, such that m2M is the number of characters v
of Gal(Q(¢p)/Q) such that p. , = p, , ® v. Considering the self-duality of p,. ,, we see that this can occur
only if 2 = 1, so that m*M < 2. In particular, m = 1, 50 7 |Gy ,, is multiplicity-free, and the result
now follows by the same argument as [65, Proposition 4.5]. (|

Proposition 9.3.5. All but finitely many primes p of Ey satisfy (R2) and (R3).

Proof. First, choose an imaginary quadratic field K such that all ¢ € S are split in K, and restrict attention to
the cofinitely many p such that the underlying rational prime p is unramified in K and p,. , \G@ ) is absolutely

irreducible. Then Q(pr,) N K is unramified at all finite primes, hence equal to Q, and so

(9'8) pﬂ-vp(GK) = pﬂ—vp(GQ)'
Note as well that BC(7) ® wg/g % BC(7) (with BC(7) as in Lemma 2.2.17), for otherwise we would have
Prp @ Wi /@ = pryp, and it is easy to check using Schur’s lemma that this implies pr |G is not absolutely
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irreducible for any p, contradicting (9.8) and Lemma 2.2.12 as long as p > 3. In particular, the base change
IT of BC(7) to GL4(Ak) is a regular algebraic, cuspidal automorphic representation of GL4(A ) by [3,
Chapter 3, Theorems 4.2(a), 5.1]. It is also clear that Fj is a strong coeflicient field for II.

Recall the universal deformation pp™ : G — GSp,(R,) from (9.3.2). Note that K N Q(py™") is
unramified at all finite primes, hence equal to Q; in particular, there exists v € Gg such that pg“iv(v) =1
and -y acts nontrivially on K.

Recall the group scheme

G = (GL4 X GLl) X {1,(}

from [25, §2.1]. By the recipe of [65, Lemma 2.3(2)], p;‘ni" gives rise to a Galois representation
9.9) o Go — G(RY™),
with residual representation ﬁp : Gg = 9(0y/wy). Note

(9.10) e = (08" |k Xpeyes 1) : G — (GLg X GL1) (Ry™) % {1, ¢},

where p is the residue characteristic of p. By the argument of [65, Theorem 4.8] applied to 1I, we have for
all but finitely many p:

(1) ﬁj : Gg — 9(0y /wy) satisfies [65, Definition 3.36] for the pair (5, 0).

(2) There are no regular algebraic conjugate self-dual cuspidal automorphic representations I of GL y (A )
such that I’ is unramified outside primes above S, IT’ has the same archimedean weights as IT, and
there is a congruence of associated Hecke eigensystems with respect to any isomorphism ¢, : @p =
C inducing p.

For all but finitely many p, we also have:
?3) ﬁmp\gm ) is absolutely irreducible

by Lemma 9.3.4 and (9.8). .
Restrict to the p satisfying the above properties with p ¢ .S, and such that py™" |G@p is Fontaine-Lafaille,

ie. p > 5. Let Ryﬁv be the universal Fontaine-Laffaille deformation ring of ﬁg considered in [65, p. 1630]
with E;in = Sand Efg = (; more explicitly, R};}i" classifies deformations that are unramified outside primes
above S'U{p} and Fontaine-Laffaille at primes above p. It follows from the definition that (9.9) corresponds

to an Op-algebra morphism
(9.11) RYY — R™.

Now let V' be the unique four-dimensional Hermitian space over K which is positive definite and split at
all finite places. Then [65, Theorem 3.38] applied to V, together with properties (1)-(3) above, shows that
R}l}’i" = O, for all but finitely many p. We claim that these p satisfy (R2) and (R3).

Now, by Remark B.4.6, (R2) is equivalent to requiring that the map R;}niv — Oy arising from pr , is
an isomorphism, and so it suffices to show that the morphism (9.11) is surjective. By (9.10), the image of
(9.11) contains the coefficients of the characteristic polynomials of pgni"( g) for g € G, and so the desired
surjectivity follows from Lemma 9.3.3 and the analogue of (9.8) for p™".

p
For (R3), the local deformation ring of

%ﬂ,p‘GQZ : G@é - g(op/wp)

is formally smooth of relative dimension 16 over O, for all £ € S this follows from [65, Proposition 3.33(3)],
where Definition 3.36(1) of op. cit. is satisfied by property (1) above. In fact, because ¢ splits in K, this is
just the local deformation ring of

ﬁw,p|G@£ : GQ( — GL4(OP/wP)
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(without any self-duality condition). The usual tangent space computation together with the formal smooth-
ness then implies

16 = dimg, /o, Z' (Qp, End Tr) = 16 — dimg, /o, H(Q, End Trr) + H'(Q, End T'r).
In particular, by the local Euler characteristic formula and local Poitou-Tate duality, we conclude
9.12) H°(Qg, End T, (1)) = 0.

We then claim that H°(Q,T,) = 0: otherwise Prp has a Gg,-invariant line, so by duality, it also has
a quotient on which G, acts by Xpcyc, and so there is a line in End T on which G, acts by x,, éyc,
contradicting (9.12).
On the other hand, again by the local Euler characteristic formula and local duality, we see that dim H'(Qy,
2dim H°(Qy, T',), so (R3) follows.
t

Proposition 9.3.6. Suppose p satisfies Assumption 4.1.1(3) and (RI). Then for any nonzero class ¢ €
HY(Q, Tryp)and any N > 0, there exist infinitely many N -admissible primes q such that locg ¢ # 0.

Proof. By the same argument as [40, Proposition 9.1], assumption (R1) implies that H(Q(T',.)/Q, T) = 0
so by inflation-restriction

Gy * Con) = T
is nontrivial. Let g € Gg be an admissible element for p,. Arguing as in Lemma 9.1.2, there exists h € Gg

such that h acts as g on T’ and c(h) has nonzero component in the 1-eigenspace for h.
Claim. We have Q(Ty; n) N Q(Tr, ) = Q(Tx).

Proof of claim. It suffices to show any group G with Gg-action which is a quotient of both the Galois groups
Gal(Q(T'r,¢)/Q(Tx)) and Gal(Q(T n)/Q(T)), must be trivial. Note that Gal(Q(T'x, ¢)/Q(T)) is an
F,[Gol- submodule of T, so any element z € G that acts as a nontrivial scalar on 7' acts nontrivially on
G unless G = 1.
On the other hand, the group Gal(Q(7 x)/Q(Tx)) has a Gg-stable filtration in which each quotient is
abelian and isomorphic to an F,,[Gg]-subquotient of ad®p._. In particular, z acts trivially on G, which is an
abelian quotient of Gal(Q(Tx v)/Q(T'x)). We conclude G is trivial. O

By the claim, there exists § € G that acts as g on Ty y and has image h in Gal(Q(T'x, c)/Q(T)).
Any prime g ¢ S U {p} with Frobenius conjugate to g in Gal(@( =N, c)/Q) satisfies the conclusmn of the
lemma.

O

Definition 9.3.7. Let p be a prime of Fjy such that TW is absolutely irreducible (so 1% , is well-defined up
to scalars).
(1) We write
Wep = Vep/Trp.
As usual, we drop the subscript p when clarity permits.
(2) For each rational prime £, let H 1(Qg, ) be the annihilator of H?} (@g, ) under the perfect local
Tate pairing
HY(Qq, W) x HY(Qq, Ty) — E/O,
and let

H}Q, Wy) = ker <H1 Q,W, —>HH1 Sj ))

Tr)=
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Theorem 9.3.8. Suppose 7 is non-endoscopic, and y is a prime of Ey such that:

(1) Assumption 4.1.1 and (R1)-(R3) hold for p, and there exist admissible primes for pr p.
(2) There exists a squarefree D > 1 with v(D) odd, such that 7y is transferrable for all £| D (Definition
2.4.5) and

AP(1), 20 (mod p).
Then
H{(Q,Wry) =0.

Proof. We follow the proof of Theorem 9.1.4, but with some integral refinements. Fix p and D satisfying (1)
and (2), and omit p from the notation for the rest of the proof. Suppose for contradiction that H } (Q, W) #0.
By the long exact sequence in Galois cohomology associated to
0=Tr = Wy — W, —0,
we have
Hl(@a T7r) =H' (Qa Ww)[w];
in particular, there exists a class 0 # ¢ € H'(Q, T') with the following property:

HH(Qy, Wr)
HY(Qu, W)
We fix an integer N > 3 sufficiently large to satisfy the conclusion of Lemma 1.6.3(2) for n = 1 and

M = Ty, and greater than the number n¢(1, p,) from Theorem B.2.12.1°
By Proposition 9.3.6 and the assumption (R1), we may choose an N-admissible prime ¢ ¢ .S such that

(9.14) locg ¢ # 0.

Then by Theorem 8.5.1(1) and the assumption (R2), we have an element x5 (¢)o € k¥ (g) such that its
image x’(q)o in H'(Q, T, ) satisfies

(9.13) Resc, € H! (Qu, T) has trivial image in for all primes v.

9.15) dyk¥ ()0 # 0.
We now consider the global Tate pairing
(9.16) 0="> (¢, (q)o)w.

v

By the assumption (R3), the local terms vanish for all v # ¢, p. The local term at v = ¢ is nonzero by
Proposition 4.2.8 combined with (9.14), (9.15). So to obtain a contradiction with (9.16), it suffices to show
the local pairing at p vanishes. Indeed, the maps

(&2 Hl(@paTﬂ') — HI(QIMTW)’ ﬁ : Hl(@paTﬂ') — Hl(@pawﬂ)

are adjoint with respect to the local Tate pairings, and by Lemma 1.6.3(2) combined with Proposition 4.4.6,
there exists d € H}(Qp, Ty) such that a(d) = Res, k¥ (q)o. Hence indeed

(kP (@)0,¢)p = (d, B(Res, c))p = 0
by (9.13). 0

Corollary 9.3.9. Suppose m is relevant and non-endoscopic, and there exists a place {y such that m, is
transferrable (Definition 2.4.5). If L(rw,spin, 1/2) # 0, then for all but finitely many primes p such that
admissible primes exist for py p, H} (Q,Wry) =0.

10For cofinitely many p, all the local deformation rings of ﬁmp|g@e for £ € S U {p} will be formally smooth (by the same
argument of Proposition 9.3.5 for £ € S and by [10, Theorem A] for £ = p), so one can take no(1, px,p,) = 1. The assumption
N > 3 is to conform to the statement of Theorem 8.5.1 with m = 1, but in reality it is not needed since N > 3m is used only in
Theorem 8.5.1(2). In particular, the argument would work with N = 1 in practice.
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Proof. By Theorem 2.4.6, 7ch0 can be completed to an automorphic representation of GSpin(Vy,)(A). Thus
the corollary follows from Theorem 9.3.8 combined with Proposition 4.4.5, Lemma 4.1.5, Theorem C.4.9,
and Proposition 9.3.5. 0

Conditions are given in Theorem C.4.11 under which admissible primes exist for p , for cofinitely many
p. In particular:

Corollary 9.3.10. Suppose w is relevant and non-endoscopic, and there exists a place ¢ such that 7y is type
la in the sense of [95]. If L(w,spin, 1/2) # 0, then for all but finitely many primes p, H} (Q,Wryp) =0.

9.4. Applications to automorphic inductions. In this section, we give some corollaries of Theorem 9.1.4
which may be of independent interest. Both of them could be upgraded to statements about dual Selmer
groups using Theorem 9.3.8; we omit the details only for concision.

In the next two corollaries, when 7 is a cuspidal unitary automorphic representation of GLy(A) such that
Too 18 discrete series of weight £ > 2 and ¢, : @p =5 C is an isomorphism, the associated p-adic Galois
representations p ., are normalized so that det pr,, = X’;;ylcww, where w; is the central character. We also
have the usual p-adic Galois representation X, associated to any algebraic automorphic character x of Ax,
with K/Q a number field. We write the (semisimplified) reductions mod p as Pry, and X, .

Corollary 94.1. Let w be a non-CM cuspidal unitary automorphic representation of GLa(A) with 7
discrete series of weight 3, and with central character w;. Let K be an imaginary quadratic field and
X : Aj = C* an automorphic character of infinity type (—1,0) such that X‘A(S = | |wt.
Fix an isomorphism v, : @p = C and assume:
(1) p splits in K and is coprime to the conductor of f and x.
(2) For some inert nonarchimedean place v of K, WD(px ., |Gy, ) is indecomposable.
(3) D= Pr,, @ Indg?; X, p Satisfies:
(a) p is absolutely irreducible and generic (Definition 2.7.3).
(b) There exists a prime q such that ﬁ|GQq is unramified, ¢* # 1 (mod p), and p(Frob,) has

eigenvalues {q, 1, v, q/a} with o & {:|:1, +q,¢%, qfl}-
Then
L(f,x;1/2) #0 = H}(K, pr,, ® x,,) = 0.

Moreover, the conditions in (3) hold for all but finitely many p split in K and all choices of .
Remark 9.4.2. The condition that p split in K is actually necessary for (3b) to hold.

Proof. Let BCk () be the base change to GLa(Ag). By [3, Chapter 3, Theorems 4.2(e), 5.1], there is
a (strong) automorphic induction II of BCx (7) ® x to GL4(A). Then by [92, Theorem C], there is an
automorphic representation 7 of GSp,(A) with trivial central character, such that II is the base change of 7
as in Lemma 2.2.17. Note that 7 is relevant by a direct calculation with archimedean L-parameters. We have

G
PRup = Prp o2y Ind@?; Xips

where the symplectic structure is by viewing p ., as symplectic and Indg?( X, as orthogonal. The “more-
over’” assertion of the corollary therefore follows from Lemma C.4.7 combined with Lemma 4.1.5.

For the rest, by Shapiro’s Lemma we have H} (Q, pz,.,) = H} (K, pr,., @ X.,)- So by Theorem 9.1.4
applied to 7, it suffices to show that there exists a prime ¢ such that 7, is transferrable.

Let v be the place in (2), and let ¢ be the rational prime underlying v. Comparing Definition 2.4.5 with
the explicit local Langlands parameters in [95, Table A.7] (and using as well Theorem 2.2.10(1) to see that
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e is tempered), we see that it suffices to show the associated Weil-Deligne representation
70 : Wo, x SL(2,C) — GSp,4(C)

of p%:Lp‘G@g does not factor through a Siegel parabolic subgroup; equivalently, 7, does not stabilize an
isotropic plane. Let W be the underlying two-dimensional complex symplectic space of the Weil-Deligne
representation 7, : Wg, x SL(2,C) — GL2(C) corresponding to pr,|cq,, and let V' = Ind%% Ty v
where 7, , : Wi, — C* is the character corresponding to Xep la Ky

In particular, there is an isotropic basis {e1, e } for V' stable (as a set) under Wi, . Suppose for contradic-
tion that I C W ® V is a Wy, x SL(2, C)-stable isotropic plane. Because v is inert, I # W @ e;, W ® es.
In particular, it follows that

I={w®e +g(w) ez, we W}

for some g € GL2(C). Then g commutes with 7, o(Wg, x SL(2,C)), hence is scalar by (2); but clearly
such an [ is not isotropic, so we have obtained a contradiction. g

Corollary 9.4.3. Let K be a real quadratic field, and let ™ be a cuspidal automorphic representation of
PGL2(Ag) with m, discrete series of weights 2 and 4, in some order, for the two places v|oco of K.
Let p be a prime and let v, @p = C be an isomorphism such that:
(1) p is unramified in K and coprime to the conductor of .
(2) my is discrete series for some nonarchimedean place v of K, and if v is split, then 7, 2 7.
(3) p= Indg?{ Pr,, satisfies:
(a) p is absolutely irreducible and generic (Definition 2.7.3).
(b) There exists a prime q such that p|c, is unramified, q¢* # 1 (mod p), and p(Frob,) has
eigenvalues {q, 1, a,, q/a} with o & {:I:l, +q, ¢°, q_l}.
Then
L(m,1/2) #0 = H}(K, pr,,) = 0.
Moreover:

e If 7 is non-CM and not Galois-conjugate to a twist of w o 7, where 7 € Gal(K/Q) is a generator,
then the conditions in (3) hold for all but finitely many p and all choices of v,,.

o [f m is non-CM and Galois-conjugate to a twist of m o T, then then the conditions in (3) hold for all
but finitely many p split in K.

e If m has CM by a totally imaginary quadratic extension F'/ K, then the conditions in (3) hold for all
but finitely many p split completely in F'.

Proof. By the same argument as for Corollary 9.4.1, there exists an automorphic representation 7 of GSp, (A)
such that the base change of 7 to GL4(A) is the automorphic induction of 7. Again it suffices to show that 7,
is transferrable, where £ is the rational prime underlying v from (2); in this case, the “moreover” assertions
follow from Lemmas C.4.6 and C.4.8, combined with Lemma 4.1.5.

Now, let W be the underlying symplectic space of the associated Weil-Deligne representation

7p: Wo, x SL(2,C) — GSp,4(C)
to Pz, |GQ4. As in the proof of Corollary 9.4.1, we wish to show that 7, does not factor through a Siegel
parabolic subgroup, so suppose for contradiction that W' contains a W, x SL(2, C)-stable isotropic plane
I. We have a Wi, x SL(2, C)-stable decomposition
W =Wy & Wy,

where W, x SL(2, C) acts on W, through the Weil-Deligne representation corresponding to pr, ., |g, —in
particular, irreducibly because 7, is discrete series. The symplectic form is nondegenerate on each of W;
and W5, so we conclude that

I'={w+l(w) : weW}
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for some linear isomorphism ¢ : Wi — Wj. This ¢ is necessarily Wy, x SL(2, C)-intertwining, so the

Wea
assumption in (2) means v is an inert prime. Hence W = W; ® V where V = IndWKQZ C, and the same
argument as in Corollary 9.4.1 shows again that no such I can exist. U

10. THE SECOND EXPLICIT RECIPROCITY LAW: GEOMETRIC INPUTS
10.1. Setup and notation.

10.1.1. Let D > 1 be squarefree with o(D) even, and recall the quadratic space Vp from (1.1.6). For this
section, we suppose fixed a matrix T € Sym?(Q)~ satisfying:

(TD) T11 € Q*\ (Q%)*.
(T2) The two-dimensional quadratic space defined by 7" has nontrivial local Hasse invariant for some
prime ¢ 1 D.

10.1.2. Choose a base point (el el) € Q7 v, (Q) (Construction 3.1.2(2)), and let
(10.1) Vp = (elT)L C Vp, Vr = spang {e{,eg} C Vp, Vg = VTL c Vp.
Then V7 is a four-dimensional quadratic space with discriminant field /' := Q(y/T11).

10.1.3. Let K = [[ K, C GSpin(Vp)(Ay) be a neat compact open subgroup, and fix, throughout this
section, an element go = [], go,v € GSpin(Vp)(Ay). We write

Kz? = gO,vagO—j N Gspln(vg)((@v)
Ky = gO,UKUgO_ﬂ% N GSpin(V5)(Qv)

for all finite places v of Q, and K T= [IK Z for 7 = <, o. The special cycle Z(go, Vr, Vp) ik factors as:
(10.2) Shyeo (V) — Shiee (VE) 2 Shye (V).

10.2. Integral models at good primes. Fix a prime ¢ t D satisfying the following:

Assumption 10.2.1.
(1) T'lies in GLa(Z(y)) C M2(Q).
(2) Ty lies in (Z\ (ZX)*) N Q.
(3) K, is hyperspecial and g, € GSpin(Vp)(Qy) lies in K.

Notation 10.2.2.
(1) Let Op C Bp be a maximal Z,-order.
(2) The lattice Spany, @ {e{, eg} defines a maximal Zg)-order O C C(Vr), with the natural positive
nebentype involution.
(3) Let O C Or be the subalgebra generated by e, which is the unique maximal Zgy-order in F.
(4) Fix an arbitrary positive involution * of Op (necessarily nebentype). The Clifford involution * is
positive and nebentype on O, and stabilizes Op.

10.2.3. Under Notation 10.2.2, we have the chain of embeddings of Z,)-algebras with positive involutions:
(10.3) Op =< 0Op® 0O — Op ® Or.
We now use (10.3) to describe g-integral models for the cycles (10.2).

Construction 10.2.4. Using Corollary 1.3.5, we fix a four-dimensional abelian scheme A over Zq of su-
persingular reduction, equipped with:

(1) Anembedding :§ : Op @z, Or — End(Ag) ®z Z,.
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(2) A prime-to-q quasi-polarization \g : Ag — Ay such that
1§ (@) 0 Xg = oo (a*), Yae Op @ Or.

By restricting along (10.3), we also have ¢ : Op — End(Ag) ® Zg) and ¢5 : Op ®z Or < End(Ap) ®
Z(q)- Note that (Ag, to, Ao) is an (Op, *)-triple in the sense of Definition 1.4.2. Using Remark 1.4.5(1), we
extend this to a g-adic uniformization datum (Ao, to, Ao, %D, ipq) for (Op, *). Consider the three PEL data
with self-dual g-integral refinements:

DY = (Bp ®q C(Vr), *, H,), 9% = (0Op @z, Or, %\, )
DO:(BD®QF7*>H7'¢)7 -@o:(OD@Z(q) OFa*vAaw)
ID:(BDv*?Hvl/})v @:(OD,*,A,l/J)

arising from Ag. Also write K9’ := [J K] for? = {,o0.
For ? = ¢, 0, or (}, let X be the smooth quasiprojective scheme over Z4) representing the moduli functor

M;((ﬂ associated to 2" at level K7°.

Lemma 10.2.5. The scheme X is proper over Spec Lg)-

Proof. The biquaternion algebra Bp ® C(Vr) is nonsplit by (T2). If Bp ® C(Vr) = Ma(By) for some
squarefree d > 1, then o(d) is necessarily even. By Corollary 1.3.4 combined with Propositions 1.2.4 and
1.2.12, X< can be identified with the canonical (smooth) integral model of the Shimura curve attached to
By atlevel K©. The latter is well-known to be proper. (|

10.2.6. We have natural finite maps

(10.4) X¢ 5 X° o X,

defined on the level of moduli problems by
(4,000 m) = (A, %0y, 0 A1)
(A,°,0,n) = (A, oy A gt - 1)-

Let Xé denote the generic fiber of X ? for? = <, 0, or 0, and let XF?q denote the special fiber.

Proposition 10.2.7. There are isomorphisms
X4 = Shy (VD)
for? =<, 0, or 0, such that the generic fiber of (10.4) recovers (10.2).

Proof. This follows from the discussion in [56, §2]; note the isomorphisms depend on our choice of g-adic
uniformization datum in Construction 10.2.4. O

10.2.8. We let O be the ring of integers of a finite extension of Q,, where ¢ # p, andlet w € O be a
uniformizer.

Lemma 10.2.9. For all i and for ? = $, o, or , there are canonical Gq,-equivariant isomorphisms
Hét(ShK7 (Vl;)@7 O) = Hé-t (Xﬁ?qa O)
Hét,c(ShK? (Vg)@’ O) =~ H (X%qa O)

ét,c

These isomorphisms commute with the actions of prime-to-q Hecke correspondences and with the pullback
and pushforward maps induced by (10.4).
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Proof. Let RV -0 denote the nearby cycles complex on X . Since X" is smooth over Zq)» the natural
map O — RV x-O is an isomorphism. On the other hand, by [57 Corollary 5.20], the base change map

Rrét (X@, O) — RFet (XF s R\I’X7 O)
q
is also an isomorphism, and the lemma follows. O

10.3. Unramified Rapoport-Zink spaces.

Notation 10.3.1.
(1) Recall from Remark 1.4.5(2) that our choice of g-adic uniformization datum in Construction 10.2.4
entails a choice of isomorphism
EndO(ZO,Zo)T:Ltr:O = VDq,
hence an inclusion V < Vp,. Let
VS, = Vi C Vpg
and
Ve = (e1)* C Vi
(2) For each ? = ¢, 0, or , let V'’ denote the Rapoport-Zink space over Spf Zq parametrizing framed
polarized deformatlons (X, "\, p) of (Ag[q™], 75 @ Zyg, \o), where Zg ®ZLy:0p @07 @ Ly —

End®(Ay[¢™]) is the induced embedding, and likewise for 75, Zo. We let M denote the underlying

reduced scheme of N/”.
(3) Let ¢ : N7 55 0* N7 be the natural Weil descent datum as in (6.1.4).

10.3.2. We have natural closed embeddings
(10.5) NO o N° = N
compatible with the actions of
GSpin(V;5,)(Qq) € GSpin(V5,)(Qy) € GSpin(Vpy)(Qy)-

From the Rapoport-Zink uniformization theorem, we deduce:

Proposition 10.3.3. For each 7 = {,o, or (), let X%s(" denote the supersingular locus. Then there is a
q

canonical isomorphism
X3 2 GSpin(Vi,) (Q)\ GSpin(Vi,) (A}) x MT/KT,

compatible with prime-to-q Hecke correspondences, Frobenius action, and the maps arising from (10.4),
(10.5).

Here K" is viewed as a subgroup of GSpin(V}, q)(A;{) by Remark 1.4.5(2).

Proposition 10.3.4.
(1) Each irreducible component of M° or M is isomorphic to ]P% ; in particular, M° is a union of
q

irreducible components of M.

(2) The group GSpin(Vp,)(Qq) acts transitively on the set of irreducible components of M, and the
stabilizer of each component is a paramodular subgroup.

(3) There are two GSpin(V5 q)(Qq)-orbits of irreducible components of M interchanged by ¢, and the
stabilizer of each component is a hyperspecial subgroup.

(4) For any irreducible component A C M, we have p?(A) = (62)* ((¢) - A) .
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Proof. See [56, §4] and [55, §4] for the structure of M and M°, respectively. O
Notation 10.3.5.
(1) Fix an irreducible component M (1) C M? as a basepoint, and let K}'* C GSpin(Vp,)(Qq) be the
stabilizer of M(1).

(2) Forall g € GSpin(Vpy)(Qq)/K;?, define
M(g) =g - M(1) C M.

By Proposition 10.3.4(2), this defines a bijection between GSpin(Vp,)(Qq)/ K, ; # and the irreducible
components of M.

(3) Let F € GSpin(Vpy)(Qq) be an element normalizing K} * such that F2 = (g) and p(M(g)) =
a*M(gF) for all g € GSpin(Vpq)(Qq); such an F' exists by Proposition 10.3.4(4).

(4) Let K] = K};a N GSpin(VBq)(Qq), which is hyperspecial by Proposition 10.3.4(3).!! We also set
K°® = K?K; C GSpin(Vp,)(Af).

Remark 10.3.6. By Proposition 10.3.4(3), under Notation 10.3.5 the irreducible components of M° are
labeled by M(g) and M(gF’) for g € GSpin(Vp,)(Qq)/ K.

10.4. Tate classes on X% .
q

Definition 10.4.1.
(1) We label the irreducible components of Xﬁo as B§(g) for

(976) € ShK° (Vl%q) X {07 1}7

by defining B§(g) to be the image of (g9, M (g, F°)) under the uniformization of Proposition 10.3.3.
(2) We define the incidence map

inc® : H*(Xg ,0(1)) — D H*(B;(9),O(1))
(10.6) (9:8)€Sh o (V)% {0,1}
= O[Shf(o(‘/Doq)]EB2

and dually

incf : OShe (V)™ = D H*(B;(9),O(1))
(10.7) (9:9)€8hco (V) x (0.1}
— HZ(Xg ,0(1)).
q

10.4.2. Let S° be the set of primes ¢ such that K is not hyperspecial. For the rest of this section, we shall
apply the results and notations of Appendix A, with the added superscript o for consistency. In particular,
we obtain a compact open subgroup K° = [[ K € CT(V5)*(Ay), where K is hyperspecial for £ ¢ S°.

Proposition 10.4.3. The integral model X° for Shio (V) extends to a smooth canonical model X° over
Spec Zg) for Shz, (V3), with an open and closed embedding

(10.8) X° <y X°

extending the map on generic fibers. Moreover, the universal abelian variety on X extends naturally to X.

Since the subgroup K. 4 C GSpin(Vp)(Qq) from (10.1.3) is also hyperspecial, we hope this will not produce any confusion.
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Proof. Under the condition (3) from Appendix A, this follows from the construction of the embedding on
generic fibers in [68, Proposition 2.10, Remark 2.11]. O

Lemma 10.4.4. For each i, there are canonical Gq,-equivariant isomorphisms

Hét(éﬁf(o(‘/ﬁ)@, 0) = Hi (X2 ,0)
(BCz.) "o
et c(ShKO(VD))QvO) Hét c(Xquo)'

compatible with those of Lemma 10.2.9.

Proof. See [68, Lemma 4.4].
O

10.4.5. The Clifford algebra C* (V3 q) is a totally definite quaternion algebra over F', whose local invariants

coincide with those of C* (V) at all finite places; let Q* be the Q-algebraic group of units of C* (V3 )
Then by [68, Theorem 3.13], we have a uniformization

(109 X5 = QX (QN\Q (A]) x MO/K™

compatible with Proposition 10.3.3 for 7 = o. Here K% is viewed as a compact open subgroup of Q* (A;)
using the isomorphism
Vb ®q AT =~ Vi ®g A%
that follows from the choice of q -adic umformlzatlon datum, cf. Notatlon 10.3.1(1).
We may therefore extend inc®* to a map inc’ ﬁttmg into the following commutative diagram:

inc®* ° o2
HE(Xg ,0(1) 2 0 [Shie (V3,)]

(10.10) j j

v 1nc o b2
HE (X2 ,0(1)) " 0 [Shz. (V)|

On the bottom right, the level subgroup is K° = K% K/, where K is the unique hyperspecial subgroup of
Q*(Qq) containing K, and by definition

Shizo (Vhg) = Q@ (Q\Q™ (Af)/K°.
Similarly, we have a map &:z fitting into a commutative diagram

C

O [shwe (V)] 5 2 (Xg .00)

(10.11) j j

0[S (V)] L g2 (X2 01).

ét,c

10.4.6. Hecke actions. Recall the local and global Hecke algebras T9, 'ﬁ‘;, T°5°, and T°5° from (A.1.3).
We define actions of the local Hecke algebras Ty = T, on Hét(X%qv 0), H} (X%q, 0), Hét(X%qv 0), and

ét,c
H (X% , O) via the isomorphisms of Lemmas 10.2.9 and 10.4.4.
q

ét,c

Lemma 10.4.7.
(1) The maps inc®* and inc’ are equivariant for T°5° and T°°°, respectively.



BLOCH-KATO FOR SOME FOUR-DIMENSIONAL SYMPLECTIC GALOIS REPRESENTATIONS 127

. .N o . . o i~ o . .
(2) The maps inc® and inc, are equivariant for T°5° and T°%°, respectively, after extending scalars to
Q-
P

*

—~—O0 i
Proof. Tt is clear that inc®*, inc , incj, and inc, are equivariant for all prime-to-g Hecke operators, so it

suffices to consider the action of T; = 'f; Also, by the commutative diagrams (10.10) and (10.11), it

O3k i
suffices to consider inc  and inc,. The final reduction is that we may prove both statements of the lemma

after extending scalars to @p, since the target of inc " is O-torsion-free.
Applying Lemma 10.4.4 and the étale comparison theorem, for (1) it therefore suffices to show that any
map

H2(Shiz,(Vb)(©), C) = C [Shz. (V5,)]

which is equivariant for ToS°Ua) s also equivariant for ’f‘q’; but this is clear from the Jacquet-Langlands
correspondence and strong multiplicity one for GLo. The proof of (2) is the same. (I

Definition 10.4.8. Let7 € ’f‘g = Ty, be the double coset operator represented by (q O) in any basis such

01
that K;) = GLQ(Zqz).

Lemma 10.4.9. (1) The composite maps

O [She (V5,)] % 2% B2

ét,c

° ° inc®* o 2
(X, 0(1) — H&(Xg ,0(1)) # O [She- (V5,)]
and

—~ 0%

(X2 ,0(1)) — HE(Xg ,0(1)) 2,0 [SB;(O(VB(])} -

—2q T7{g)~"
T —2q ’
(2) The restricted map

ine™ 1 (T;%(q) ™" — dq*) HE, (X3, O(1)"*"=9 — O [Shyeo (V3,)] **

€

0 [éif(o(vgq)}@? s, 2

ét,c

are both given by the matrix

has w-power-torsion kernel.

Proof. For (1), see [66, Proposition 2.21(4)]; the off-diagonal entries follow from the intersection combi-
natorics of M described in [55, §4]. For (2), it suffices to prove the analogous statement for inc " due to
the commutative diagram (10.10). Let us fix an isomorphism ¢ : @p = C. Extending scalars to @p and
applying Lemma 10.4.7 and Proposition A.1.4, it suffices to show that

—~— o% So = rob2— _ — [ ° _

ine”" ¢ 1, (Xg Q)™ rg] = @, [Shie (V5| 1772
is injective for all discrete automorphic representations 7 of C*(V}3)* (A) such that
(Hecke,) T22(g)"' — 44> #0on K"

Now note that Frobg = (q) on the image of

0 a1 o @2 2
inc, : O [Shf{o (VDq)] — H .

(X2 .0(1)):

this follows from Proposition 10.3.4(4). In particular, we have a well-defined composite map

—~ o%

_ —~ o @2 _ ;I;:i So rob2—= _ inc oy aL o @2 —
T [Shge (VB,)] 171 5 HELRR ()0 ] 2o T, [Shge (V)| L)
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given by the matrix in part (1), which is invertible by the assumption (Hecke,).
It therefore suffices to show that

: Yo rob2= — . oL o _
dlm@p Héztj!(XFq,Qp(l))F ba=(a)y, 171l < 2dimQ, {Shf(o (VDq)} [7hry)

for all 7 satisfying (Hecke,). This dimension count follows from [111, Proposition 2.25] when 7 is cuspidal;
when 7 is not cuspidal, it is clear from Proposition A.1.4. ([

10.4.10. Consider the algebraic cycle class
(10.12) (X2 € H (X2 ,0(1)).
q q

which makes sense by Lemma 10.2.5.

Lemma 10.4.11. There exists a special cycle Z € SClso (V) such that

1nc°*([X§q ])=(Z,Z) € O [Shg-(V5,)] -

Proof. Since [X%> | is Frobenius-invariant, it suffices to consider the first coordinate of inco*([X%> |), which
q q

we write as inc(l’*([X%> ]). Since M? is zero-dimensional, all the intersections of Xg with supersingular
q q

curves on Xz are proper. Hence imc‘l’*([X%> ]) is computed by
q q

(10.13) > m(gq)[(9% 94)];

[(99,94))€GSpin(V,S ) (@)\ GSpin(V, )(A%4) x GSpin(VE, ) (Qq) /K ¥Ix K
where, for g, € GSpin(V3,)(Qy), m(gq) is the degree of the divisor A N M(g,) on M(g,) = PL . In
q

particular, m(g,) depends only on the G:Spin(VB> ) (Qq)-orbit of g4. Moreover, g, — m(gq) is a compactly
supported function on GSpin(V,f> ) (Qg)\ GSpin(V}5,)(Qq) since each point of M lies on only finitely many
irreducible components.'> Hence (10.13) is a finite linear combination of special cycles
Z(WD Ve NV, VB ke € Z [Shice (V)]
for some elements
hy) € GSpin(V5,) (Qy)\ GSpin(V5,) (Qy) /K.
which completes the proof. O

Remark 10.4.12. It would not be difficult to make Lemma 10.4.11 more explicit, but it is unnecessary for
the main results.

Theorem 10.4.13. For any h € T, there exists a cycle Zj%q € SC}@ (Vf)q, O) such that

incS[(Zhg, Zpg)]l = (I57 — 40°(q) *hIXT | € HE (X3 ,O(1)

ét,c

has w-power-torsion image in H2 (X5 ,0(1)).
2 q
Proof. Let Z € SC. (V5 ;) be the special cycle in Lemma 10.4.11, so that

inc™ (X2 ) = (2,2),

and define
Zpg = (T3 — 46%(q)) - (T +2q) - h - Z € SCio (V3. O).

120ne can see this using that M is locally of finite type over [F,, or more concretely from [55, §4].
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By Lemma 10.4.9(2), it suffices to show that
(10.14) inc™ incg[(Zpg, Zp,)) = inc™ (1% — 4q2<q>)2h[X%>q ].

By Lemmas 10.4.9(1) and 10.4.7, the left-hand side of (10.14) is

07 @) (17 + 20 -h- <_qu T;—<%>q_l> ' <§> = (T;% — 4¢%(q))* - h- (9

because the Hecke operator (g) acts trivially on special cycles. This coincides with the right-hand side of
(10.14) by Lemma 10.4.7 and the definition of Z, so the proof is complete. (|

10.5. Pushing forward from X° to X.

10.5.1. Now let S be a finite set of primes of Q such that K is hyperspecial for £ ¢ S, and let m C ’]I‘gU{Q}

be a generic, non-Eisenstein maximal ideal.
Notation 10.5.2. We denote by j the closed embedding X° — X of (10.4).

Notation 10.5.3. Let
Ongme, - CH*(Xr,) = H' (B, H (Xg,, O(2))m)

denote the local Abel-Jacobi map constructed analogously to (4.4.2).

Lemma 10.5.4. The composite map

OAT,m Fy

CH'(X§,) = CH*(X,) H'(Fq, H,(X5,, 0(2))m)

factors through the specialization map

HZ(X]}?q, 0)) — HQ(X%(I, O(l))Froqul.

Proof. For any variety Y defined over IF;, we have the Hochschild-Serre spectral sequence:
(10.15) Ey = H'(Fy, H (Y5,,0(n)) = Hi7(Y,0(n)), Vn€Z.
Since [, has cohomological dimension one, it follows immediately that the map
H'(Y,0(n)) — H'(Y,, O(n))"e"=!
is surjective. Let H (Y, O(n))? C H(Y,O(n)) be the kernel of this map, and let
0: H(Y,0(n))" — HY(F,, H“l(YFq, O(n))

be the edge map from (10.15).
It then suffices to show that the map

H(X5,,0(1)) £ H(Xg,, 0(2) % H'(Fy, H*(X5,, 0(2))m)

factors through the surjection H2(X§q, O(1)) - H? (Xz, O(1))¥roba=1 j e, is trivial on H2(X§q, 0(1))°.
q
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Consider the commutative diagram arising from the functoriality of (10.15):

HE(XR,,0(1)" —"— H'(Fy, Hi (X ,0(1)))

b b

HY (Xp,,0(2))° —"— H'(F,, H}(Xg,, 0(2)))

llocm llocm

H{ (Xz,,0(2)5 —* H'(Fy, H},(Xg,, O(2))n).

m
Now note that the composite map
o j locm
HA(Xg ,0(1) 25 H (X5, 0(1)) 22 HE (X, 0(1)m

is identically zero: indeed, the source is ww-power-torsion by [73, Chapter IX, Corollary 7.15(iii)], and the
target is ww-torsion-free by Theorem 2.7.5(2). In particular, the composite from the top left to the bottom
right of the commutative diagram vanishes, which proves the lemma. (]

10.5.5. We now construct a map
Dssym O[ShKQK}fa(VDq)]m - H&nr(QQ? Hgt(ShK(VD)@a 0(2))m)

in several steps.

Construction 10.5.6. Assume (g) = 1 in 'JI‘%VD’O m
(1) Forg € SthKga(VDq), let B(g) C X" be the image of (g%, M(gq)) under the uniformization of
q

Proposition 10.3.3.
(2) Define an action of Frob, on Sh K};a(VDq) by g — g[F'. Then using Proposition 10.3.4(4), we

obtain a map
O[Shiagra(Vpg)]"**=! — CH*(Xp,, O).
(3) By our assumption (q) = 1, the natural map gives an isomorphism

Frob2=1 ~
O[Shycaepa(VDg)lm " — O[Shycagcra(VDg)]m-

(4) Finally, we define the map
Dssym O[ShKQKg’a(VDq)]m — H'(Fy, Hgt(ShK(VD)@ O(2))m)
to be the composite

-1 FI‘Ob2:1 F rob,—=
OlShicarcrs(Vig)lm = OlShycurcrs (Vo) ™" L7 O[Sk e (Vg I

OnJFg,m

2 ~
2 CH2 (X, O)n H (Fy, HE, (X, O(2))m) 5= e @y HE (X O(2))).

{q}

Theorem 10.5.7. Suppose m C Tgu satisfies:

(1) m is non-Eisenstein and generic.
(2) (@) =1in TR v, 0.m

Let h € TOOS ° be any element, and let C > 0 be an integer such that w
in H? (Xé, O(1)). Then there exists a special cycle

C annihilates the w-power-torsion

Zpy € SCk (Vg O)
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such that
wC ’ Res@q 8AJvm <-7* <(T;2 o 4q2<q>)2 “h [XQ])> = wc ’ 85$7m(ZDq) € H&nr(@Qa Hgt<X@7 0(2))m)

Proof. Let
— -gd
J: Shice (V) = Shycara (Vig)

be the natural map, induced by the embedding Vj;, — Vpq from Notation 10.3.1(1). In particular, we have

(10.16) §(B3(g)) = B(j(9)F°), (g,6) € Shyo(V,) x {0,1}.
Then we take

Zf)q = Z n(g)[g] € SC}(O(VBW O)
g€Shgo (ng)

to be the special cycle provided by Theorem 10.4.13, and let
Zpe =17 (Zp,) € SCk(Vg, O)
be the pushforward. If we let
%N(Zh) = Y, nle) ([Bi(9)] +[B5(9)) € CH'(XE,, 0),
9€Shgco (VS,)
then by (10.16),
aSS,m(ZDq) =BCx (aAJ,m,qu* Cl:s(Z%q>) € H&nr(@‘]’ HS(X@ 0(2))01)-

In light of Lemma 10.5.4 and the local-global compatibility of the Abel-Jacobi map, it then suffices to show
that

cl2u(Zhy) = (T;* = 44%(a))* - h- [X$ ) € CH'(XR,)

has co-power-torsion image in HZ, (X3 ,O(1)). But this is precisely the content of Theorem 10.4.13. [
q

10.5.8. Now let 7, S, and Ej be as in Notation 4.0.1, and let p be a prime of E satisfying Assumption 4.1.1.
We set m := m , as usual.

Corollary 10.5.9. Suppose q t D is n-admissible and K is an S-tidy level structure for GSpin(Vp). Then
for any o € Testx (Vp,m,0/w™) and any h € T,

ordeAP (q) > ords loc, 00y 0 Oaym (j* ((T;2 —4g2())? - h- [XO])) —c,
where C'is a constant independent of n and q.

Proof. Recall the conditions on m from Theorem 10.5.7 are satisfied by Lemmas 4.1.7 and 4.3.2. Let o’ be
the composite map

ass,m

0 [SthK};a(VDq) m E— H&nr(@qﬂ Hgt(ShK(VD)@v O(2))m) = H&nr(quTmn) ~O/w",

where the last isomorphism is from Proposition 4.2.8. Then A2 (q) contains o/ (Zp,), where Zp, € SC% (Vpq, O)
is the cycle from Theorem 10.5.7, and the corollary follows. ([l

11. SECOND EXPLICIT RECIPROCITY LAW

The goal of this section is to prove Theorem 11.2.6 below.
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11.1. Setup and notation. Let 7, S, and Fj be as in Notation 4.0.1, and fix the following data:

A prime p of Ej satisfying Assumption 4.1.1, with residue characteristic p.
A squarefree product D > 1 of primes in S, with o(D) even.

An S-tidy level structure K for GSpin(Vp).

A Schwartz function ¢ = @) ¢ € S(VA ® Ay, O)K.

O O O O

11.1.1. Forall ¢ ¢ S, let L, C Vp ® Qg be the unique self-dual lattice stabilized by K.

11.2. Modifying the test function. In several steps, we now construct a new Schwartz function ¢’ which
coincides with ¢ at cofinitely many primes.

Construction 11.2.1.

(1) Label the finitely many imaginary quadratic fields contained in p, = pr as EFq,..., E for some
s > 0.

(2) Foreach1 <i < s, fix an odd prime ¢; € SU{p, ¢1,...,¢;—1} inert in E; such that p,(Froby,) has
distinct eigenvalues (possible a fortiori by Assumption 4.1.1(2)).

(3) Let

Xy = {(%w eVE®Qy :x-x € (L)) x-y €Ly y yELy~ (22)2}.
(4) We define a test function
P = (Lt 1) l{(:fc,y)eL?nXQ} + 1{(w,y)€LeiX(@ZlL*in)ﬂX&} € S5(Vp @ Qe Z)7"-

(5) Now fix a prime ¢y & SU{p, {1, ..., ¢} such that p,(Froby,) has distinct eigenvalues.
(6) Let

Qplﬁo € S(Vg ® Qfo» Z)KZO
be the indicator function of the set
{(m,y) € L%O rxex €Ly — (ZZXO)Z, -y €Ly, Y-y E KOZZXO}.
(7) Finally, we define

¢ =R e ® Q) ¢l € S(VE® As, 0)F.
0A£0; i=0

Lemma 11.2.2. Suppose k" (1,; K) # 0. Then there exists a test function o € Testy (Vp,m,O) and a
matrix T € Symy(Q)~o satisfying (T1) and (T2) of (10.1.1) such that

ax 0 p1m (Z(T,¢")K) # 0.
Moreover, for all 1 < i < s, {; is split in the quadratic field F' = Q(\/T11) and T lies in GL2(Zy,)).

Proof. Repeatedly applying Corollary 5.6.6, we conclude k” (1, ¢'; K') # 0;i.e., there exists T € Symy(Q)>o
and a € Test g (Vp,m, O) such that

0 Oa1m (Z(T,¢") k) # 0.

By definition of Z(T, ¢') g, it follows that, for all 0 < 7 < s, there exists z,y € Q7 v, (Qg,) such that
SDZi (z,y) # 0. Now the choice of gp’go implies that 7" is positive definite, 777 is not a rational square, and the
quadratic space defined by 7" has nontrivial Hasse invariant at ¢ 1 D, and this proves the first claim of the
lemma. Similarly, for each 1 < i < s, £; is splitin I and 7" lies in GL2(Z4,)) by the choice of 9021_. D
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11.2.3. We will now assume x” (1,; K) # 0, and fix and T satisfying the conclusion of Lemma 11.2.2.
We choose a base point (e, el) € QT v, (Q) such that e, el € L, forall 1 < i < s (possible by the last
point of Lemma 11.2.2), and we adopt the setup of §10 for this choice of T', (el , el'), and K; the choice of
go is postponed to Proposition 11.2.5.

Definition 11.2.4. For each ¢ split in F’ and each hyperspecial subgroup K; C GSpin(V})(Qy), we define
a Hecke operator T}y € T, as follows. Choose an isomorphism

GSpin(Vp)(Qy) ~ Gy == {(g1,92) € GL2(Qy) x GL2(Qy) : det g1 = det g}

mapping K to Gy N (GLa(Z¢) x GL2(Z¢)). Then T is the double coset operator represented by

(o) 1)<

Proposition 11.2.5. There exists an element gg € GSpm(VD)(A{K1 }) such that, adopting the notation
of (10.1.3) for this choice of go:

(1) The compact open subgroups K; C GSpin(Vp)(Qy,) are hyperspecial for 1 <i <'s.
(2) We have

Qt © OAJ mJx (H 17, - [ShKO(VB)]> # 0,
=1

where [Shio(V5)] € CH!(Shgo(V3)) is the class of the cycle from (10.2).

Proof. By definition of Z(T,¢')k and the assumption « o dagm(Z(T, ¢ )k) # 0, there exists gy €
GSpin(Vp) (A1) such that

(11.1) Z == > ( oh, (95" (ef ,eQT))> -Z(g0g, Vr, VD) K
g=I1ge, €lTi—1 GSpin(V5)(Qe;)\ GSpin(Vp)(Qe, )/ K,, \i=1

satisfies a*BA 3m(Z) # 0. We will check the claimed properties for this choice of go. First, if ¢y ( g[il (eF el)) #

0, then g[i N el =el el ¢ Z(XZ,), so in particular

—-1.T —-1.T
Lfi mez‘géi €1 = Zfig&- €1 -

On the other hand, we chose (e7,el) so that Ly, N el = Z,.el'. Hence by Proposition 3.1.8, we have

ge, € GSpin(V3)(Qy,) - Ky,. In particular, we can rewrite (11.1) as
(11.2)

Z = > [0 (a; (el €3)) - Z(g09. Vi, VD) ke

g=ITg¢, €lTi—; GSpin(VE)(Q,)\ GSpin(V3)(Qp,)/ K¢, NGSpin(VS)(Qy,) =1

= > [T o el €8)) - 5. 2(9, Ve N VS, V) ke
9=I1g¢,€]Ti—1 GSpin(V5)(Qe,;)\ GSpin(VE)(Qq, )/ K, NGSpin(V5)(Qy,) i=1
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Again because el - el € Z(Xe_), L? == Ly, N (Vp ® Qy,) is self-dual, and so its stabilizer Kj = Ky, N
GSpin(V3)(Qy,) in GSpin(V}3)(Qy,) is hyperspecial, which proves (1). To prove (2), by definition we have

l; + 1, g[ileg e Lgi,
Ph (el g,es) = 4 1, g€y € 67 Ly, — Ly,
0 g, tel Qﬂ_ngi
(11.3) ’ éll S
(fz‘ + 1, g;i ey € L°,
=<1, g[ileQ € E;lLO — L°,
07 952162 ¢ g;lLo’
where
T €2T ' €1T T o
e =€ — e € Vp.
1 €1

Note that ez - e € Z(X“ because, for (el g[ile%’) to lie in the support of @21,, we automatically have e

Z(Xei) —(2})%, el -ej € Ly,y.andej - €] € Z(Xei) N(Z;)>.
Letg; € S (VpeQy,, Z)Kfi be the indicator function of L°; by our specification e € L, and Proposition

IT-eiFE

3.1.8, we see that oy, (g[ileg) is the indicator function of GSpin(V}5)(Qy,) - K7 . The proposition therefore
follows from (11.2), (11.3), and the following:

Claim. When restricted to {y eVi®Qy, :y-ye ZZ} ,wehave Tp - @y = (£ + 1)pp. + 1170 1o

To prove the claim, observe first that
T3 - o6 = > i,
L'~Le
where L' runs over self-dual lattices in Vp ® Qg, such that
(11.4) 0;L° Cy &L/ 4+ 0;L° Co L'nL° cy L°.
Note that such a chain (11.4) uniquely determines L’ because L’ and L° correspond to the two isotropic lines
in the split two-dimensional Fy,-space L° + L'/L° N L’. We can also write the chain (11.4) as
(11.5) éiL" Cq1 L1 Co L\l/ Cq LO,

i.e. such chains correspond bijectively to isotropic lines L /¢; L° in the [Fy,-quadratic space L°/¢; L°.
Now for any y € V; ® Qp, withy - y € Z;, we wish to calculate

7 95 y) = #{L ~L° iy e L'},
If y € L°, then the choices of L’ correspond to isotropic lines orthogonal to y in the four-dimensional Fy, -
space L°/¢;L°; there are /; + 1 such lines because y C L°/¢;L° is a non-degenerate three-dimensional
Fy,-space. Hence Ty - ¢j (y) = £; + 1 fory € L°.

On the other hand, since any L' ~ L° is contained in ¢, Lre,if 17 - oy, (y) # 0 we must have y € £, 1.
So suppose y € £; 1L° — L°. Now, lattices L' ~ L° with y € L' (equivalently £;y € ¢;L') are in bijection
with chains (11.5) satisfying ¢;y € Ly; since ¢;y ¢ ¢;L°, the unique such chain is given by L1 = ¢;L° + ¢y,
and this makes sense because ¢;y is isotropic in L°/¢;L°. We therefore conclude that TZ‘Z . @?i (y) = 1 for
Y€ Ei_lLo — L°, which completes the proof of the claim. g

Theorem 11.2.6. Suppose  is non-endoscopic, k” (1) # 0, and admissible primes exist for p,. Then there
exists a constant C' > 0 such that, for all N, there exist infinitely many admissible primes q with n(q) > N,

ord locy I-ig(q)(l) >n(q) — C,
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and
ord Af(q)(q) >n(q) — C.

Proof. Since kP (1) # 0, we can choose the data ¢ and K in the beginning of this section so that P (1, ¢; K) #

0 (where K can be made S-tidy by Lemma 4.4.7). Then fix gy € GSpin(VD)(Ayl"“’&} ) as in Proposition
11.2.5, so that

S
(11.6) Q0 OAJ mJx (H 1 [ShKo(VB)]> # 0;
i=1

equivalently, by Lemma 4.1.6, (11.6) is non-torsion. Let S° be the set of primes £ such that K is not
hyperspecial. Without loss of generality, we may replace O by a finite extension such that all the eigenvalues
of ’]I%SO acting on HZ (Sh o (VB)@, Q,) liein 9; lethy,..., hy,: TOOSO — O be the finitely many characters
that appear in the action on HZ, ,(Shye (VB)a Q,(1))%e, cf. Corollary A.2.2. Then we may choose elements
hj € Tg" such that T acts on h; H2 | (Shgo (VD)o @p(l))G@ through h;, and moreover

Z hj = ’wOO on HéQt’!(ShKO (VDO)@y @p(l))GQ
7=1

for a constant Cy > 0. In particular, by Lemma 10.5.4 and Proposition 11.2.5,

¢ = a0 0A)mJx (h_j . (H Tgi) [Shxo (VB)]>
=1

is non-torsion for some 1 < j < m. Write h := h; and h := h;. Let us fix an isomorphism ¢ : Q, = C.
By Corollary A.2.2, we are in one of the following two cases:

Case 1. The character ¢ o h is given by the action of T°" on a global newform in an automorphic represen-
tation o of Br(Ap)* unramified outside primes above S°. Moreover JL(0) = BCp/q(00) ® x where oy is

a cuspidal automorphic representation of GLy(Ag) of weight 2 and  is a finite order character of F*\A%.

Case 2. The character ¢ o h is given by the action of T°*° on the automorphic representation o o v/, where
v : GSpin(V}) — Gy, is the restriction of the norm character in (A.1.1) and x is a quadratic character of

Q™ \A /v (K®).
Claim 1. In Case 1, o does not have CM by any imaginary quadratic field Ky C F'(pr).

Proof of claim 1. 1f so, then Ky # F, and K| is contained in the compositum of F’ and one of the quadratic
fields E; C Q(p,) from Construction 11.2.1; in particular, since ¢; is inert in K; but split in F' by Lemma
11.2.2, ¢; is inert in K. It follows that tr p, ,(Froby,) = 0. On the other hand, it is not difficult to compute
using the Satake transform and Theorem 2.2.1(1) that

Ty, = tr po,.(Froby,) - tr ps,, (7 Froby, 1

on a local newform in oy, where 7 € Gg projects to the nontrivial element of Gal(F/Q). Hence h - T} =
h(1}) - h = 0, which contradicts the nontriviality of c.

Now fix an element g € Gal(F(p-)/Q) such that:

(1) g is admissible for p, and has nontrivial image in Gal(F'/Q).
(2) ¢(g) has nonzero component in the 1-eigenspace for g for any cocycle representative of c.
(3) In Case 1 above, p,, ,(g?) has distinct eigenvalues.

This is possible by Proposition C.5.3 because c is nontorsion. Now fix constants C, C, C's > 0 such that:
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(1) The component of ¢(g) in the 1-eigenspace for g is nonzero modulo wCr.
(2) In Case 1 above, tr(p,,(9%)) — 4det p,.(g%) # 0 (mod w®?). In Case 2, Cy = 0.
(3) @ annihilates the O-torsion in H?2 &1 (Shie (Vp)g: 0).

Now fix N > Cy + Cy + C3 and let cy € H'(Q, T} ) be the reduction of ¢ modulo w™. All but
finitely many primes with Frobenius conjugate to g in Gal( (Tr,N,cn)/Q) are N-admissible and satisty
Assumption 10.2.1; let ¢ be one such and abbreviate n := n(q) > N. If a,, € Testg (Vp,m, O/w") is the
image of «, then:

(11.7) ordg locg au, « 0 OAT mix ( (H Te ) [Shgo( VD)]> >n— (1.
We have:
Claim 2. ordh(T;? — 4¢*(q)) < Ca.

Proof of Claim 2. In Case 1, we have
h(T;? — 4¢°(q)) = tr po, (Frob?) — 4det p,, (Frob?) = tr p,,(g°) — 4det py,(g°) (mod ="),
so this follows from the choice of C. In Case 2, we have h(T;) = (¢* + 1)x0((q)) and h((q)) = x0((q))

so h(T7% — 4¢*(q)) = (¢* — 1)*>x0((g)), which is a z-adic unit because ¢ is admissible. O
Now, by Corollary 10.5.9 we have
ordw)\g(q) > ordg locy oy« © Oag mJx ((TO2 (H 1y, ) [Shice( VD)]> —Cs
= ordg locy ay « 0 OAT mJx (h(TO2 <H 1y, > [Shge( VD)]) —Cs

> ordg locg v, © Oa g mJs ( (H 1y, > [Shgo( VD)]> —C3 — ordwh(Tq02 —44¢%(q)).

By Claim 2 and (11.7), we conclude that

(11.8) ordw)\,?(q) >n—Cy—Cy— Cs.
Since j. (k- (TT;2; T7)) [Shke(V5)]) € CH?*(Shg(Vp), O) lies in SC% (Vp, O) by Remark 3.1.6, (11.7)
and (11.8) together show the theorem. ]

In the endoscopic case, we similarly obtain:

Theorem 11.2.7. Suppose 7 is endoscopic associated to a pair (w1, m32), such that m, and o are not both
CM for the same imaginary quadratic field. For j = 1 or 2, assume k" (I)U ) =£ 0 and admissible primes
exist which are BD-admissible for pr;. Then there exists a constant C > 0 such that, for all N, there exist
infinitely many admissible primes q which are N-BD-admissible for pr;, such that

ordg loc, mf(q)(l)(j) >n(q) —C
and

ordeg )\T?(q)(q) >n(q) — C.

Proof. By using Corollary 5.6.7 in place of Corollary 5.6.6, we can refine Lemma 11.2.2 to obtain the same
conclusion where o : H3 (Sh K (VD)g: O(2))m — T is required to factor through T7;. From here, the rest
of the proof follows that of Theorem 11.2.6, substituting Proposition C.5.4 for Proposition C.5.3. U
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12. MAIN RESULT. RANK ONE CASE

12.1. Setup and notation. Let 7, S, and Fy be as in Notation 4.0.1, and fix a prime p of Ey satisfying
Assumption 4.1.1, with residue characteristic p.

Definition 12.1.1. An automorphic representation 7 of GL4(A) is of general type if it is neither an auto-
morphic induction nor a symmetric cube lift.

For this section, we shall assume:

Hypothesis (% ). If 7 is non-endoscopic, then BC(7) is either of general type, or a symmetric cube lift of a
non-CM automorphic representation 7y of GLa(A), or induced from a non-CM automorphic representation
mo of GLa(Ax) with K /Q real quadratic; in the latter two cases Ej is also a strong coefficient field of 7.

12.2. Choosing Chebotarev primes.

12.2.1. Let L, C Endp(7) be the underlying O-module of ad’ Pr = ad Prp» Which is free of rank 10
over O. In general, L, ® @, is not absolutely irreducible, even if V; is. In the endoscopic case, we also let
L., be the underlying O-module of ad® p,,, for i = 1, 2.

Proposition 12.2.2. Suppose 7 is not endoscopic. We have the following cases for L:

(1) If BC(m) is an automorphic induction of 7y as in Hypothesis (%), then
Ly = Indg¢ ad® Ty @ (@ — IndG2 Ty ) (1
T = Gr & L Ndg,. Lo (—1).

Both direct summands are absolutely irreducible after inverting p.
(2) If BC(m) is a symmetric cube lift of wy as in Hypothesis (%), then

L, = ad’ Try & Sym6(Tﬂ0)(—3),

with each summand absolutely irreducible after inverting p.
(3) If BC(n) is of general type, then Ly @ Qy, is absolutely irreducible.

Proof. In the first case, T, exists by Lemma 2.2.19, and we have
G
T = IndG?; Tro;
so the claimed decomposition follows from, e.g., the discussion in [13, §7.5.16]. For the irreducibility, if 7r6W
is the Gal(K/Q) twist, then one checks using Hodge-Tate weights that V;;, % Vﬂgw ® x for any character

x of Gg. It follows that ® — Indgi Vr, is absolutely irreducible, since if it reduces it must have a one-

dimensional constituent. Similarly, if Indg?; ad® Vy, is not absolutely irreducible, then ad® V;, = ad® Vatw,
so by Corollary C.3.7, Vo la, = Vﬂgw |, for a finite extension L /K, and this is a contradiction by Lemma

C3.4.
In the second case, Ty, exists by Lemma 2.2.18, and by definition, 7, = Sym? T; 7o (—1). Then we have

End(Ty) = Sym®(T},)(—3) @ Sym*(Ty, ) (—2) @ Sym? (T, )(—1) & O

as an O[Gg|-module, and by dimension counting, L, consists of the first and third summands. The ir-
reducibility of each summand of L after inverting p is clear because the Zariski closure (over E) of the
projective image of p,, is PGLa(E) by Theorem C.3.2.

The third case follows from Lemma C.4.3, noting that p > 3 by Remark 4.1.2. U
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12.2.3. We write Ly, = Lr/w"L, for all n > 1 and likewise for L, , when 7 is endoscopic. We will
be applying the results and notations of Appendix B to p. (and p,, when 7 is endoscopic), using Lemmas
8.2.1 and 8.3.7 to check the relevant assumptions. The notion of admissible primes for Notation B.2.4 is as
explained in (8.2.5) and (8.3.10). In particular, if 7 is not endoscopic and ¢ is an n-admissible prime for p,,
let H! 1(Qq, Lrn) C H(Qq, L) be the subspace defined in Definition B.2.5.

ord

Lemma 12.2.4. Suppose w satisfies Hypothesis (%) and is not endoscopic. There exists a Gg-stable de-
composition L, = LY & LS such that LY ® Qp and L3, ® Qy, are absolutely irreducible and distinct, and
moreover, if q is an n-admissible prime:

(1) We have H'(Qy, L;?’n) + H}4(Qq, Ly ) = HY(Qq, L)

(2) We have Hy,,,(Qq, L ;) = H'(Qq, L7 ,,)-

(3) If Tmn|GQq = My n © M, is the decomposition of Lemma 4.2.2, then the composite

LY, < Lry — ad” My,

is surjective.

Here Lf&n = LY /w" LY, and likewise for L3 .

Proof. In case (3) of Proposition 12.2.2, the lemma is clear, taking L, = 0. Suppose we are in case (1)
of Proposition 12.2.2. Then if ¢ is admissible for p,, we have tr p.(Frob,) # 0 (mod w), which im-
plies ¢ splits in K. Let 7§" be the Gal(K/Q)-twist. Because det pr, = x5, comparing the decompo-
sition Ty, = Moy, & My, with Ty |g, = Try @ Tﬂgw shows that, up to replacing my with 7r8w, we have

My, = Txy,n- Now note that H! (Q(p (® — Indg?; TWO’n) (—1)> = 0 because the Frob, eigenvalues on
<® — Indg?; T,m) (—1) are q/a, a/q, a, and 1/a for some o # ¢2, ¢!, £1, +¢q. Hence the lemma holds
in this case with LY = Indg?; ad® Ty, and LS = (® - Indg?; Tm)) (—1).

Now suppose we are in case (2) of Proposition 12.2.2, and take LY = Sym®(T,,)(—3), LS = ad’ Ty,. I
Frob, acts on T, with generalized eigenvalues {«, 3}, then the admissibility of Frob, implies that (up to
reordering) we have 3% = ¢ and o = 2. Choose a basis for T such that

o?/f q

Fl"Ob - =
I B p
3o 1
One sees immediately that the eigenvalues of Frob, on ad T, are {1, 8,871 }, which are all distinct from
q ' s0o HY, (Qq, L (1)) = 0, and this implies (2) by local Poitou-Tate duality.
To prove (1) and (3), we use the following:

Claim. The two decompositions into one-dimensional O /ww-vector spaces

LFrobq=l _ (L(;T,]_)Fr()bq:l @ (L?,l)FrObq:1 _ (adO M071)Fr0bq:1 ® (adO Ml,l)FrObq:1

m,1

are both orthogonal with respect to the Killing form, and not the same.

Before proving the claim, we show it implies (1) and (3). Indeed, by (2), we can rewrite (1) as asserting
the surjectivity of

H&nr((@lﬁ ado Ml,n) = H&nr(QlI? LW,”) N Hérd(@qﬁ LW,”) - H&nr«@qﬂ L;)r,n)'

Since Frob, acts on L, with eigenvalues that are all either 1 or not congruent to 1 modulo o, this is equivalent
to the surjectivity of
(adO MLl)Frobq:l - (L;’I)Froqul’
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which follows from the claim.
For (3), we can take n = 1. Since Frob, acts with distinct eigenvalues {1, q, q_l} on ad’ Moy,1, and
the eigenvalues ¢ and ¢~! do not appear in L7, = ad’ Tr,, it again suffices to consider the Frob, = 1

eigenspaces. In particular, it suffices to show that (Ljfl)Fmbq:1 is not contained in the kernel of the map

Lir(f Pa=t (ad® My 1)Fr°Pa=1, which again follows from the claim.
Now we return to the proof of the claim. In our basis of 77, (adO M 171)H°bq:1 consists of the matrices
0 x
x — . . . eps .
B ,and (ad” Mg 1)Fr°Pa=1 consists of the matrices 0 . This decomposition is
0 x

plainly orthogonal for the Killing form.
Meanwhile, (L‘7°r71)Fr°'°q::l = (ad® T, )FroPa=1 consists of the matrices of the form

3y

)
The decomposition L, & LST? is necessarily orthogonal for the Killing form because the form is Galois-

invariant, and the claim follows.
O

Lemma 12.2.5. Suppose 7 is not endoscopic and satisfies Hypothesis (% ). Then:
(1) The action of Gg on T} contains a scalar of infinite order.
(2) The projective image of pr is a compact p-adic Lie group with semisimple Lie algebra.

Proof. If BC(7) is not an automorphic induction, then the lemma follows from Corollary C.2.6 combined
with Lemma C.2.2(4,5). If BC(7) is an automorphic induction of the kind in Hypothesis (), it follows
from Corollary C.3.7. H

Lemma 12.2.6. Suppose 7 satisfies Hypothesis (% ). Then:

(1) If w is not endoscopic, there exists a constant C' > 0 such that

wCHl(Q(pW)/@v Lrn) = wCH' (Q(pr)/Q, Lrn(1)) =0

foralln > 1.
(2) If 7 is endoscopic, then for j = 1 or 2 such that 7j is non-CM, there exists a constant C' > 0 such
that

@ H' (Q(pr)/Q, Ly 0) = @ H (Qpr) /Q, L (1)) = 0
foralln > 1.

Proof. We start with the non-endoscopic case. For ¢ = 0 or 1, consider the inflation-restriction exact se-
quence:

0— H' (Q(ado pr)/Q, Lﬂ,n(i)GQ(HdO pr)) — H' (Q(px)/Q, L (i) —
HomGQ(Gal(Q(pﬂ)/Q(ado pﬂ'))’ Lﬂ',n(i))'

We claim the third term vanishes. Indeed, the G action on Gal(Q(p,)/Q(ad” p,)) by conjugation is trivial,
so the third term is

(12.1)

Hom(Gal(Q(pﬂ)/Q(ado Pr)); Lﬂ,n(i)GQ) =0
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because the absolute irreducibility of T’ implies L (i)“® = 0. If i = 1, the first term is uniformly bounded
in n by Lemma 12.2.5(1), because any g € G that acts as a scalar z on 77 lies in GQ( ) and acts by z?
on L (1), so the lemma is proved in this case.

For the case 7 = 0, we have Lf%("do ) — Ly . By Lemma 12.2.5(2) combined with [29, Lemma B.1],
the first term in (12.1) is uniformly bounded in n, which proves the lemma when 7 is non-endoscopic.

Now consider the endoscopic case. Using Theorem C.3.2 to replace Lemma 12.2.5, the same argument
as above shows

ad? P

wcHl(Q(ij)/Qy LWj,n) = wcHl (Q(ij )/Qv ij,n(1>) =0
for some constant C' > (. By inflation-restriction, it suffices to show

HomGQ (Gal((@(pw)/@(pm))a Lﬂ'j»n(i))

is uniformly bounded in n for ¢ = 0, 1. By the same argument as for the claim in Lemma 9.2.2, any Galois-
invariant group homomorphism Gal(Q(px)/Q(px;)) — Lx; »(7) lies in the proper subspace on which com-
plex conjugation acts by —1; since Lr; ® Qj, is absolutely irreducible by Theorem C.3.2 again, this suffices
by [69, Lemma 2.3.3]. ]

Lemma 12.2.7. Let L = L1 @ Lo be a free O-module of finite rank with Gg action, where L; @ Q,, are
absolutely irreducible and distinct. Then there is a constant C > 0 with the following property: for any
Gq-stable O-submodule H C L/w"L, we have

H > w®pri(H) ® w" pry(H).

Here pr; : L/w"L — L;/w™L; is the natural projection.

Proof. Write L; ,, = L; /=™ and note that we have isomorphisms
pry (H) o H o~ pry(H) ‘
HnN Ll,n HnN L2’n ®HN Ll,n HnN Lgm

In particular, it is enough to show that any isomorphic O[Gg|-module subquotients of L; and Lo are
w®-torsion for some universal constant C. Suppose on the contrary that for all integers m > 0, there exist
submodules B/ C A" C L; with AT"/B* = A} /B3 not w"™-torsion. Rescaling, we may assume without
loss of generality that A" has nonzero image in wL;, so by [69, Lemma 2.3.3] we know w@L; C A7 for

some constant Cjy depending on L and Ls.
For each m, let N;(m) be the maximal integer such that

B c oMM,

which implies

(12.2) wNim+Cp, ¢ B ¢ N,
In particular, for A7" / B;" not to be @ -torsion, we must have

(12.3) Ni(m)+Cy >m

for all m. Now consider the chain of maps:

(12.4)

@O Ly oM MTCO L s DL ) (BPNw D Ly) — ATY/BY = AR/BY < La/BY — Lo /w2 (™ Ly,
The two injections in the diagram have cokernel annihilated by w®®, so in particular the composite has
cokernel annihilated by ww?“0. By (12.3), after reindexing, we may assume without loss of generality that

N;(m) is increasing in m. Then by compactness of Homp (L1, L2), up to passing to a subsequence, the
maps in (12.4) fit together and give in the inverse limit a Galois-equivariant map

wCOLl — L2
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with cokernel annihilated by w20 This is absurd because there are no nontrivial maps L1 ®Q, — La®Q,,

so we have a contradiction and the lemma is proved. O

Lemma 12.2.8. Suppose 7 is not endoscopic and satisfies Hypothesis (%), and admissible primes exist
for pr. There is a constant C > 0 with the following property: suppose given integers n, m and cocycles
c€ HY(Q,Trn), ¢ € HY(Q, Lym), ¥ € HYQ, Ly (1)). Let (0%, ¢°) be the decomposition of ¢ with
respect to

H' (Q, me) = Hl(Qv LS,m) ®H' (Q, LTOr,m)a
and likewise for 1. Then for any N > max {n, m}, there are infinitely many N -admissible primes q such
that all of the cocycles are unramified at q and:
e ordg loc, ¢ > ordge — C.
o We have
unr(Qq7 ﬂ' m)
unr (Q(P U m) ord (Q!p ™ m)

ordy (Resq ®, ) > 01"dw<pQQ —C.

o We have

ordw (Resq 1/}7 unr(@qv 7rm( ))

unr(@q7 7rm< )) N Hérd(QWLW,m(l))

Proof. By Lemma 12.2.6(1), Corollary C.2.8, and inflation-restriction, the restrictions of ¢, y, and v corre-
spond to Gg-invariant homomorphisms

) > Ordw'l/}@ -

Res(c) : Gor, ) = Trpns
Res(¢) = Res(p") @ Res(¢°) : Go, ) = Lrms
Res(1) = Res(¢") @ Res(¢°) : Gor, ) = Lam(1)

satisfying
(12.5)
ordg Res(c) > ordg(¢) — Cp, ordg Res(¢”) > ordeg(¢”) — Cp, ordg Res(¢p’) > ord (v7) — Co

where 7 = Q or o and Cj > 0 is a constant. We combine these homomorphisms into a map
H GQ(TW,N) — T7r,n D me D me(l).

Let pry, pry, pr3 be the projections onto each of the three factors.
For any g € G that acts on T as a scalar z, we have

m(H) 5 (g — 1)(g — 22) im(H) + (g — 2)(g — #*) m(H) + (g — 1)(g — =) im(H)
= (z = 1)(22 = 1) pryim(H) @ (z — 1)(2* — 1) proim(H) ® (2* — 1)(z — 1) pry im(H)
= (2 —1)(2* — 1) (im Res(c) @ im Res(¢) @ im Res(v).)
By Lemma 12.2.7 combined with Lemma 12.2.5(1), this also implies

im(H) > w (im Res(c) @ im Res(¢¥) ® im Res(¢°) @ im Res(y%) @ im Res(z/f’))

for some constant C; > 0 indepedent of n amd m. In particular, by (12.5) combined with [69, Lemma 2.3.3],
there exists a constant C' > 0 independent of n and m, such that

(12.6) o - 1m(H) S wnfordw(c)JrCTmn e wmfordw(gp@)+CL;9’m @ wmfordw(wo)JrCLg’m(l).

Now fix an admissible element g € G, which is possible by Lemma 4.2.3. By repeatedly raising g to pth
powers and taking the limit, we may assume without loss of generality that p(g) has finite order coprime to
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p. Choose a basis {e1, ea, e3, e4} for T with respect to which we have
Xy (9)
Pr (g ) = >

and set My = Span, {e1, e2}, My = Span, {e3, e4}. Note that, by Lemma 12.2.4(3), LY surjects onto the
direct summand ad® M, of L.
Hence, using (12.6), we may choose h € Gg,,) as follows:

(1) The ea-component of ¢(h) has order at least ord(c) — C.

x
(2) The component of ¢(h) in the g-invariant line - 0 C L, has order at least
0
ordg (%) — C.
0 0
(3) The component of ¢)(h) in the g-invariant line * 0 C Lr(1) has order at least ord (/) —

In particular, because g has finite order coprime to p, the same is also true for the corresponding components
of ¢(gh), ¢(gh), and ¥ (gh), with respect to any choice of cocycle representatives.

Now suppose g ¢ S U{p} has Frobenius conjugate to g in Gal(Q(7 v, ¢, ¢, v)). To show that ¢ satisfies
the conclusion of the lemma, it suffices to observe that the O-modules

H&nr((@q? Lﬂ’,m) H&nr((@fb Lﬂ',m(l))
H&nr(Qtp Lﬂ',m) N ngd(qu Lﬂ',m) ’ H&nr(QlI? Lﬂ’,m(l)) N Hérd((@q? Lﬂ',m(l)) 7

which are both free of rank one over O /@™, are generated by the cocyles

1 0 0

-1 10

Froby , Froby — ,

respectively. U

The Selmer groups in the next lemma (and the rest of this section) are the ones from Definition B.2.5.

Lemma 12.2.9. Suppose m is non-endoscopic and satisfies Hypothesis (%), and let C be the constant of
Lemma 12.2.8. If

@}'(Qy Lﬂ',m) =0
for some m > max {1,C}, and q, is an N-admissible prime for some N > 5m, then either:
(1) @}'(ql)((@’ Lﬂ',5m) =0, or:

(2) For any cocycle c € HY(Q, Trn) withn < N, and any M > N, there exist infinitely many M-
admissible primes qs such that

@}‘(m@) (Q7 L7f75m) =0

and

ordg locg, ¢ > ordge — C.
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Proof. Without loss of generality, assume (1) does not hold, and let ¢ € Sel;(ql)(Q,Lﬂﬁm) be an el-

ement whose image in @}'(ql)((@v L 5m) is nonzero; it follows from Lemma B.2.7(1,2) that ordp =
5m. Similarly, by Lemma B.2.8, there exists an element ) € Selz(4,)(Q, Lz 5m (1)) whose image in

Selz(g)(Q, Lz 5m(1)) is nonzero, and we have ord1) = 5m. Write

=0 " ®¢°, p=9° DY°

as in the statement of Lemma 12.2.8.
Claim 1. We have ord " > 4m and ordo9" > 4m.

Proof of claim 1. Suppose that ord¢” < 4m; then by Lemma B.2.7(1,2), the images of ¢ and ¢° coincide
in HY(Q, Ly ). However, by Lemma 12.2.4(2) we have

H&nr(QQI ’ L7Or,m) = Hl(@(h ’ Lfr,m)’

so it follows that the image of  lies in Selz(Q, Ly ,,,); this contradicts the assumption Sel(Q, Ly ) = 0.
Similarly, if ord1" < 4m, then 1) and 1° have the same image in H'(Q, Ly ,,(1)). However, the local
Tate dual of Lemma 12.2.4(1) shows that H*(Qy,, L3 ,,,(1)) N HY,4(Qq,, Lxm(1)) = 0, so then the image

ord

of 9 lies in Sel 7 (Q, L (1)), and this contradicts Lemma B.2.8. O

By Claim 1 combined with Lemma 12.2.8, there are infinitely many M -admissible primes g such that:

e ordg locy, ¢ > ordgc — C.
e We have

H&nr<QlI2?L7ﬁ5m)
H&nr(qu L7T75m) N ngd(Qth L7l',5m)

ordg <Resq2 ®, ) > 01"dwg0QQ —C > 3m.

e We have

H&nr(@% ’ L7T75m(1))
H&nr(qu Lm5m(1)) N ngd((@qw L7r,5m(1))

ordy (Resq,2 P, ) > ordg ¢ — C > 3m.

Put
Selz,, (41)(Q, Lr,5m) = Selr(g,)(Q, Lz 5m) N Selr(qy,)(Q, Lr5m)
and
Sel]—'q1 (Q7 L7r,5m) = Sel]:(@, L7r,5m) N Sel}'(ql) (Q; L7r,5m)-

Our next claim is:

Claim 2. We have
wSm—l Sel;q2 (q1)(Q7 Lw,5m) =0.

Proof of claim 2. First, we have the exact sequence
12.7)

Hl (Q ) LTI' Sm)
0— Sel}-q Q, L7r,5m — Sel Q, LTr,5m - ord\=q1 )
' ( ) }—(ql)( ) Hérd (QQU L7T75m) N H&nr(@m ) L7r,5m)

where the final isomorphism is by Lemma 8.2.11. Because Selr, (Q, Ly 5m) is @™ L-torsion by Lemma

B.2.7(3), but ™! Selj:(ql)((@, L 5m) # 0 by assumption, from (12.7) we have an isomorphism of O-
modules

(12.8) Selr(g)(Q, Lasm) ~ O/w™ & T

~ 0/w”™,
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m—1

where T is ™ !-torsion. In particular, for any = € Selfq2 (@)(Q, Lz sm), @™ 2 = wy for some a > 0.

We conclude

- unr(QQm s Sm)
(12.9) 0 = ordy <Res o™ g > 3m — a,
q2( ) unr (qu’ g 5m) N ngd (quv T 5m)

so a > 3m, hence w1z = 0. L]

Now we are ready to complete the proof of the lemma. We have the exact sequence
(12.10)

Hl
ord(QQZ7 7T Sm) ~ O/wt’)m.

ord(QQZ’ ™ 5m) N Hunr(@qza L7’r,5m)

On the other hand, for any ¢’ € Sel Flaig )(Q, L 5m), we can compute the global Tate pairing

0="> (¢ ¥) = (¢, ¥)as

v

by the definition of the local conditions for F(q1¢2) and F(q1). Now, the induced local Tate pairing
0/ x O/w”™ ~

0— Sel}‘q2(q1)(Q, Lﬂ75m) — Sel}-(qqu)(Q, Lﬂ-75m) —

grd(Q‘D’ ™ 5m> % ord(QQZ’ ™ Sm( )) —+ Hunr(qua L7T,5m(1)) N O/w5m
ord(QfD’ ™ 5m) N HLIHI‘(QQQ’ L7‘r,5m) ord(QqQ7 T 5m(1))
is perfect, so we conclude
H,4(Q 5m)
ord Res (,0 , ord q2> L 5m ~ 0 w5m>
v < * ord(QQ27 m Sm) N Hunr(@qza T 5m) /

7 5m H! s Ly sm(1
S 5m, — ordw <R€Sq2 1/}’ ord(Q(D’ 5 ( )) + unr(QQQ ,5 ( ))) S 2.

ord(QQ27 s 5m(1))

In particular, the image of the final map in (12.10) is ©w>™-torsion, so we have
@1 Sel}'(lhth)(@? Lﬂ',5m) =0
by Claim 2. Hence by Lemma B.2.7(1,2), Sel 7(4, ¢o)(Q, Lz 5m) = 0, as desired. O

We also have an endoscopic analogue:

Lemma 12.2.10. Suppose 7 is endoscopic associated to a pair (71, 72), and let j = 1 or 2. Suppose m; is
non-CM. Then there exists a constant C with the following property: if

@}—(Qv Lﬂ'j,m) =0
for some m > max {1, C}, and ¢, is an N-admissible prime for some N > 5m which is BD-admissible for
™, then either:
(1) Selz(g,)(Q, Lx; 5m) = 0; or:
(2) For any cocycle ¢ € H'(Q, Tﬂjm) withn < N, and for any M > N, there exist infinitely many
M -admissible primes q2, BD-admissible for 7, such that

@}—(qIQZ)(Qv L7r_7',5m) =0

and
ordg locg, ¢ > ordge — C.

Proof. The same argument used to prove Lemma 12.2.9 applies formally, taking L, := 0 and Lf = L.
When proving the appropriate analogue of Lemma 12.2.8, one uses the claim in the proof of Lemma 9.2.2
in place of Corollary C.2.8, Lemma 12.2.6(2) in place of Lemma 12.2.6(1), and Theorem C.3.2 in place of
Lemma 12.2.5(1). ]
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12.3. Proof of the main results.

Theorem 12.3.1. Suppose 7 is non-endoscopic and satisfies Hypothesis (%), and let p be a prime of Ey
satisfying Assumption 4.1.1, such that admissible primes exist for pr . Then for all D > 1 squarefree with
o(D) even,

KP(1)p #0 = dim H}(Q, Vxp) = 1.

Proof. Let N be a large integer to be specified later, and let M/ > N be the number from Lemma 1.6.3(3)
applied to T; and n = N. By Theorem 11.2.6, there exists a constant Cy > 0 independent of N and an
M -admissible prime ¢; such that

(1) = n(q1) = Co

D
orde locg, Ky (g

and
orde Al gy (@1) = n(a1) = Co.
Because x” (1) € HY(Q, Ty) is a free O-module by Lemma 4.1.6(1), we may fix a class x”(1)o € s (1),
with image k2 (1)o in HY(Q, Ty ) for all m > 1, such that
(12.11) ordy locg, k2(1)g > m — Co

for all m < n(q1).

Claim. Suppose dim H(Q, V) > 1. Then there exists a class ¢ € H(Q,Ty), with images ¢, €
H}(Q, T ,m) for all m > 1, such that:

(1) ordgc,y, = m for all m.
(2) ordg locy, ¢ < Cp for all m < n(qy).

Proof of claim. By the assumption dim H} (Q, Vz) > 1, we may choose c € H }(Q, T) such that
(12.12) c+ ok (1) € wHH(Q,Ty), Vo€ O.

Adjusting ¢ by an O-multiple of x”(1)g and using (12.11), we can ensure that (2) holds. By definition, we
have an injection

HY(Q, Ty HY (Qu, Vx
1(@ ) SN H 1(QU ) 7
HNQ. Ty) HHQ,. V)
hence the quotient H'(Q, Tﬂ)/H} (Q, Ty,) is O-torsion-free, and in particular ¢ & wH ' (Q, T};) by (12.12).
Then (1) holds as well by Lemma 4.1.6(2).

v

O

By Theorem 9.1.3 and Lemma B.3.6, there exists a constant mg > 1 such that @;(Q, ad’ Pmo) = 0.
Without loss of generality, we assume N > 10mg and mo > max {1, C'}, for the constant C' of Lemma
12.2.8. Now consider the following two cases:

(1) If Q;(ql)(Q, Lz 10me—1) = 0, then we choose (by Lemma 9.1.2 and (1) of the claim) an n(q;)-
admissible prime g2 such that ord locg, Cn(qr) = n(q1) — C} for a constant C; > 0 independent of
N, q1, and ¢-.

(2) If Selz(g,)(Q, Lr,10mo—1) # 0. then a fortiori we have Selr(4,)(Q, Lz 5m,) # 0. We choose (by
Lemma 12.2.9) an (n(q1) + 5mg)-admissible prime g2 # ¢; such that @;(qm)(@, Lxsme) =0
and ord locg, Cn(q) = ordn(q1) — C1 for a constant C; > 0 independent of N, g1, and go.

By Theorem 8.5.1 combined with Corollary B.4.3, in either case we can conclude — as long as [V is sufficiently
large in a manner depending only on 7, p, and mg — that

3112“5((11)(611612) 2 AS((n)(Ql) ) (WCQ)
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for a constant C that is independent of N, g1, and ¢2. Hence we may choose an element /ir?(ql) (q192)0 €
D
n(q1)

(12.13) ord 0y, k5 (q192)0 > m — Cy — Ca.

We now compute the Tate pairing

(12.14) (en, kR (qraz)o) = > _(en, kR (q1g2)o)y = 0 € O/,

(2

kP (q1q2), with images 2 (q1q2)0 € HY(Q, Ty 1) for all m < n(q1), such that

Arguing as in the proof of Theorem 9.1.4 and using that M < n(q;), there is a constant C's > 0 so that
ords (en, N (q1a2)0)w < Cs, Vv & {q1,q2} -

By (2) of the claim, we also have
orde (en, Ky (q12)0)q < Co.
In particular, (12.14) implies
orde (e, Ky (q142)0)g, < max{Co, Cs} .
However, by Proposition 4.2.8, (12.13) combined with the choice of g implies
orde (e, KN (9142)0)g, > N — Co — C1 = Cs.

This is a contradiction if we choose N > C + C1 + C2 + max {Cp, C3}, and the proof of the theorem is
complete. O

Theorem 12.3.2. Suppose 7 is endoscopic, associated to a pair (w1, m2) of automorphic representations
of GLa(A) (in any order), and p is a prime of Ey satisfying Assumption 4.1.1, such that H}(Q, Vg ®

Viap(—1)) = 0. Assume as well that RD(l)gl) # 0 for some squarefree D with o(D) even. Then the
following hold:

(1) If my is non-CM and there exist admissible primes which are BD-admissible for pr, , then
dim H{(Q, Vp, ) = 1.

(2) If for each j = 1,2, there exist admissible primes which are BD-admissible for pr; », then
dim H {(Q, Viy p) = 0.

In particular, if for each j = 1,2, 7; is non-CM and there exist admissible primes which are BD-admissible
Jor pr; p, then
KP(1)p #0 = dim H}(Q, Vgp) = L.

Remark 12.3.3. The existence of admissible primes which are BD-admissible for each Prjp IS considered
in Proposition C.4.12.

Proof. Let N be a large integer to be specified later, and let M > N be the number from Lemma 1.6.3(3) for
T, and n = N. By Theorem 11.2.7, there exists a constant Cp > 0 independent of NV and an M -admissible
prime g1, BD-admissible for p;,, such that

orde locg, /@'g(ql)(l)(l) > n(q1) — Co
and
orde A, (a1) = n(ar) — Co.

As in Theorem 12.3.1, we fix aclass #” (1) € P (1)(Y), with image x2 (1)o € H*(Q, Ty, ;) forallm > 1,
such that

(12.15) ordy locy, k2 (1)g > m — Co
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for all m < n(qy).
Now we suppose we are in case (1) of the theorem; assume for contradiction dim H}(Q, Vi) > 1.

By the same argument as for the claim in Theorem 12.3.1, we have a class ¢ € H}(Q, T+, ), with images
Cm € H}(Q, Ty .m)> such that:

(1) ordpcy, = m forallm > 1.
(2) ordlocy, ¢, < Cpforalll <m < n(qp).

By Proposition 9.2.3 and Lemma B.3.6, there exists a constant 1mg > 1 such that

@F(Qy ado pm,mo) =0.

Increasing IV if necessary, we assume N > 10mg. Now consider the following cases:

(1) If @;(ql)((@, ad® Ty, 10mg—1) = 0, then choose (by Lemma 9.2.2) g2 to be n(q; )-admissible and
BD-admissible for p,, such that

ordg locg, ¢n(q,) = n(q1) — C1

fori constant C; > 0 independent of NV, ¢1, and gs.
(2) If Sel (4 (Q, ad’ T, 10mg—1) # 0, then a fortiori we have

@}'(fh)((@, ad’ Trey 5mo) # 0.

We choose, by Lemma 12.2.10, an (n(q1) + 5mg)-admissible prime g2 # ¢;, BD-admissible for 71,
such that

Selz(g140)(Q, ad” Ty 5my) = 0
and ordy locy, Cp(q) = n(q1) — C1 for a constant C'; > 0 independent of N, g1, and go.

By Theorem 8.5.2 and Corollary B.4.3, in either case we can conclude

8(12"67?((11)((11@) 2 )‘g(ql)(ch) : (WC2)

for all N sufficiently large in a manner depending only on 7, p, and mg, and for a constant Co > 0 that is
independent of NV, g1, and g2. The remainder of the proof of (1) is now identical to Theorem 12.3.1.

Now we suppose we are in case (2), and assume for contradiction that there exists a non-torsion class
c € H}(@, Ty,) with images ¢, € H'(Q, Ty, ) for all m > 1. By the proof of the claim in Theorem
12.3.1, we may assume ord ¢, = m for all m. Then we choose (by Lemma 9.2.2) ¢, to be n(g1 )-admissible
and BD-admissible for p;,, such that ord locg, Cn(qy) = n(q1) — C1 for a constant C'; > 0 independent of
N, q1, and g2. By Proposition 9.2.3 and Lemma B.3.6, there exists a constant mg > 1 such that

@}—(Q7 ado pT(Q,mo) =0.
By Theorem 8.5.2(1) and Corollary B.4.3, we can conclude that
O, kN (@192) D AN (1) - (@)

for all N sufficiently large and for a constant Co > 0 that is independent of IV, g1, and ¢2. The remainder of the
proof of (2) now follows the proof of Theorem 12.3.1, using that locy, ¢y = 0 because H } (Qgs Ty n) = 0.
0

AprpENDIX A. CoHOMOLOGY OF GSpin, SHIMURA VARIETIES

A.1. The auxiliary quaternionic Shimura variety.
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A.1.1. For this section, let V' be a quadratic space over Q of signature (2,2) and nontrivial discriminant
character x. Then by [50, Appendix A], C*(V) = B ®q F' = Bp, where B is an indefinite quaternion

algebra over Q and F'/Q is the real quadratic field associated to x. We abbreviate G := GSpin(V), G =
Resr/q Bj.. Then we have an exact sequence of algebraic groups over Q:

(A1) 1= G — G — (RespigGm) /G — 1.

Let K = [[ K, C G(Ay) be a neat compact open subgroup, and let S be a nonempty set of primes such
that K, is hyperspecial for £ ¢ S. Fix a neat compact open subgroup K = [[ K, C G(Ay) satisfying the
following conditions:

(1) Forall ¢ ¢ S, Ky is hyperspecial.

(2) K NGSpin(V)(Ay) = K.

(3) We have v(K) N Oy, = (Op N K)?, where v : G — Resr/q G, is the norm character and Op; ,
is the group of totally positive units of F'.

Such a K exists because S is nonempty. Let Sh (V) be the Shimura variety for G atlevel K.

Proposition A.1.2. Under conditions (1) - (3) above, the natural map

(A2) Shg (V) — Shz(V)

is an open and closed embedding.

Proof. This follows from [68, Proposition 2.10, Remark 2.11]. O

A.1.3. Hecke algebras. For a prlme ¢ ¢ S and aring R, let Ty g (resp. T, .r) denote the spherical Hecke

algebra of Ky-biinvariant (resp. K, ¢-biinvariant) R-valued functions on G(Qy) (resp. G(@g)) IfS" > Sis
a finite set of primes, then we set

T%/ = ®I€€S’TZ,R7 ’]Af%/ = ®Z€S/T&R.
When R = Z we drop it from the notation.

Proposition A.1.4. Fix an isomorphism ( : @p =5 C. There is a decomposition of TS -modules:

et'(Sh Q’QP @ ) ( Q’QP LIRS @@ &) Q’@p)xodet@“ (Xodet)Kv

where T ¢ runs over finite parts of cuspidal, infinite-dimensional automorphic representations 7 of By (Ap)*
with discrete series archimedean components of parallel weight 2, and x runs over finite order characters of
F* \A; As G-representations, we have

ss G
et '(Sh ( )Qa Qp) =& — IndG% pJL(ﬂ'),L
and
HZ (Shz(V)g, Qp)inaer = ¢ rec(x|px)(=1) @ ! rec(x|px) - wr/o(=1),

where wrq is the quadratic character of G associated to F.

Proof. When By is split, this follows from the discussion in [112, §XI.2]. In the nonsplit case, the Hecke
module decomposition is clear from Matsushima’s formula, and the Galois actions follow from [58]. ]
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A.1.5. Let? ¢ S be aprime; then we may identify BRQ, ~ Ms(Qy) in such a way that I~(g = GL2(Op®Zy)
and G(Qy) C G(Q¢) ~ GL2(F ® Qy) consists of those matrices having determinant in Q. Let 7'(Qy)

and T(Qg) be the standard diagonal tori in G(Qy) and G (Qp), respectively, and let B(Qy) and B (Qy) be the
upper triangular Borel subgroups.

Proposition A.1.6. Let xo : T(@e) — C* be an unramified character. Then (Indggg‘;
4

unique Ky-spherical constituent, which is isomorphic to the unique spherical constituent of Indgggg (x0 |T(Q o) ).

Xo) () has a

Proof. This is clear from the observation that E(Qg) Ky = E(Qg) Ky = é(@g); indeed, K, - (INQ N
T(Qy)) = Ky because v(T(Qy) N Ky) = v(Ky). O

It follows immediately that:

Corollary A.1.7. Let T be an irreducible admissible representation of é(@g) which is K, ¢-spherical, and

Ko Then, viewing T as an admissible

let xz : Ty — C be the character giving the Hecke action on T
representation of G(Qy), Ty stabilizes the one-dimensional space 75¢ and acts on it via the composite of

Xz with the homomorphism Ty, — T, determined by the Satake transform and the map of dual groups
L'Resp/q By — ~ GSpin(V).

A.2. Hecke action on Tate classes for GSpin,. For anautomorphic represention w of GL2(Ag), let BCg ()
denote the base change to GLy(Af).

Lemma A.2.1. Continue the notation of Proposition A.1.4.

(1) IfHét,! (STIR(V)@, @p(l));}? # 0, then there exists an automorphic representation mo of GL2(Aq),
with T oo discrete series of weight 2, and a finite-order character x of F*\AZ, such that JL(7) =
BCr/q (ZTVO) & X

(2) If HE, ,(Shz(V)g, @P(l))ft?det # 0, then X|A6 = wpyg or L.

Proof. Part (2) is obvious from Proposition A.1.4. Part (1) follows from the proof of [112, Theorem X1.4.6(i)],
except for the assertion about 7( .; but this is clear by [3, Chapter 3, Theorem 5.1] and the archimedean
condition on 7 in Proposition A.1.4. g

Corollary A.2.2. The T-module HZ, (Shi(V),Q,(1))“2 decomposes completely into a direct sum of
characters h : TS — @p, each of which arises from the action of T® on either:
e A newform in an automorphic representation w of Br(Ap)*, unramified outside S, such that
satisfies the conclusion of Lemma A.2.1(1).

o The automorphic character xoov of GSpin(V') (Ag), where X is either trivial or the Hecke character
associated to F/Q.

Proof. Because (A.2) is an open and closed embedding, we have a split inclusion of T*-modules

HZ \(Shg(V)g, Qy(1) € HE ((Shi(V)g, Q,(1))

and so the corollary is immediate from Lemma A.2.1 and Corollary A.1.7. U
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APPENDIX B. RELATIVE DEFORMATION THEORY AND LEVEL-RAISING

In this appendix, we recall the relative deformation theory of Fakhruddin, Khare, and Patrikis [29] in a
format useful for characteristic zero level-raising. In the hope that this discussion will be helpful in future
work, we work with representations valued in more general groups than are needed for the main text.

B.1. Notation.

B.1.1. The group. Let GG be a smooth, split group scheme over the ring of integers O of a finite extension
E of Qy, such that the neutral component of G is a connected reductive group. Let G4 be the derived
subgroup of G. Write w for the uniformizer of O. We suppose p > 2 and G satisfy [29, Assumption 2.1].
When G = GSp, or GLs9, which are the cases relevant for the main text, loc. cit. is satisfied for all odd p.
Let d be the dimension of Lie G9°T.

B.1.2. The Galois representation. Let k be a number field, and fix a Galois representation p : G, — G(O).
For an integer n > 1, let p,, : Gy — G(O/w™) be the reduction of p, and let p := p;. Also write ad’p,
ad® Pn, and adoﬁ for the natural G-representations on Lie G LieGlr @, 0 /@™, and Lie G250 /o,
respectively. Let 3, and Y, be the set of places of k£ lying above p and oo, respectively. We will always
suppose fixed a finite set S of nonarchimedean places of k such that ¥, N.S = () and pla,, is unramified for
v & S UZX,. Wemake the following assumptions on p:

Assumption B.1.3.
(1) HO(k,ad’) = HO(k,ad’s(1)) = 0.
(2) pis odd in the sense of [29, Definition 1.2].

(3) For all primes v € %, p|g,, is potentially semistable with regular Hodge-Tate cocharacter s, :
G, — G.

Notation B.1.4. Recall the category CNLp from (1.1.3). Letp : G — H = G/ GAer be the maximal
abelian quotient of G, and let

x:GrL5 Gco)5 HO)
be the multiplier character of p. For all primes v of k, let D, be the functor on CNL defined by
(B.1) Dy(A) ={pa: Gk, » G(A) : pa®a (O/w)=p, popa=x}.

The functor D, is represented by a universal deformation ring Ev. For v € X, let R, be the quotient of ﬁy
corresponding to potentially semistable deformations with fixed Hodge type 1, [4, Proposition 3.0.12]; for
v &Y, set R, = R,.

Our final assumption on p is:

Assumption B.1.5. For all primes v € S U Y, the point y, of Spec R,[1/w] defined by plg, : Gk, —
G(0O) — G(F) is formally smooth.

In particular, Assumption B.1.5 implies that y, lies on a unique irreducible component of Spec R,[1/w].
Let R, — R, be the quotient corresponding to the Zariski closure of this irreducible component. We have
the following simple criterion for Assumption B.1.5 to hold:

Lemma B.1.6. For all v, y, is a formally smooth point of Spec R,[1/w] if and only if
H°(WD(ad’ plg,, )(1)) = 0.

Proof. This is immediate from [6, Corollary 3.3.4]; note that, in the notation of loc. cit., ad WD(p|g,, ) is
by definition the Weil-Deligne representation associated to ad p|g,, . cf. [6, §2]. O
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B.2. Selmer groups and relative deformation theory. Recall that a Selmer structure F for an O[Gy]-
module M is a collection of O-submodules (the “local conditions’)
HY-(ky, M) € H (ky, M)

for all nonarchimedean'? places v of k, such that HL(k,, M) = H}

unr (Kv, M) for all but finitely many v.
The associated Selmer group is

HL(k, M) = ker | H (b, M) — T 2L e M)
v
If M is finite and M’ = Hom(M, (E/O)(1)) is the Cartier dual, then H!(k,, M) and H'(k,, M’) are
dual under the local Tate pairing. The dual Selmer structure F* to F is the Selmer structure for M’ defined
by the orthogonal complement local conditions.

H kv,M)>

Proposition B.2.1. Let v be a nonarchimedean place of k. There exists a nonempty open setY, C Spec R, (O)
containing the point corresponding to p,, and a collection of submodules Z,, C Z (e adopr) with the
following properties.
(1) Zy, is free over O/w" of rank dim Spec Ry[1/w] (= dg if v & ¥p).
(2) LetY,’ be the image of Y,, in Spec R,,(O/w") and denote by go}fjr 1Y), — Y, the reduction maps
for n,r > 1. Then given ro > 1, there exists ng > 1 such that, for alln > ng and all 0 < r < rg,
the fibers of (piT are nonempty principal homogeneous spaces for Z, ,,.

(3) The natural O-module maps adopr —» adopr,l and ado,or,l — adopr induce surjections Z,, —
Zy—1,v and inclusions Zy_1 .y < Zy .
(4) Z,., contains all coboundaries in Z'(Gy,,ad"p,.).

Proof. See [29, Proposition 4.7]. O

Remark B.2.2. Although Y, C Spec R,(O) is not uniquely determined by the properties in Proposition
B.2.1, the property (2) shows that Z;., depends only on p|g, (by considering the fiber over p,|c, ).

Definition B.2.3. For all n > 1, we define a Selmer structure F for ad® p,, by

H (ky, ad® py) = 4 ™ (Zno = H'(k,adpn)) v € SU,
, HL (ky,ad’ p,), v e SUD,U S,

Notation B.2.4. Now suppose given a set  of finite primes g of k called admissible, and, for each ¢ € Q,
a quotient Rgrd of R, with the following properties:

(D) Rgrd is formally smooth of dimension dg.
) Rf;rd is stable under the conjugation action by
ker (G(O) — G(O/w)).
We also suppose Q N (S UX,) = 0.

Definition B.2.5.
(1) Aliftry : Gy, — G(A) of ﬁ]qu, for a complete local Noetherian O-algebra A, is called ordinary if

the corresponding map R, — A factors through Rgrd.

(2) For an admissible prime ¢ € 9, a global lift 7 : G, — G(A) of p is called g-ordinary if 7-|qu is
ordinary.

(3) For g € 9, we say q is n-admissible if p,, is g-ordinary.

B3Since p # 2, for all v|oo we have H* (k,, M) = 0.
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(4) If g is n-admissible, then we define Zgrd(qu, adopn) c Z 1(qu, ad’ pn) as the relative tangent
space to Spec R;’rd ®o O/w™ at the point corresponding to pn\gkq. Let

H) (kcp ad" pn) = Im (Zérd(ka ad’ Pn) — ' (kqa ad" Pn)) )

ord
andlet H' ,(ky,ad® p,(1)) € H'(ky,ad" p,(1)) be the orthogonal complement of H' ,(ky,ad” p,).

(5) If Q is a finite set of n-admissible primes, then we define a Selmer structure F(Q) for ad’p,, by

H}-'(kvvadopn% v QQ,

H (g (kv,ad’p,) =
7o) pr) {ngd(kq,adopn), v=9qc8

(6) If Q is a finite set of n-admissible primes, then we define the relative Selmer groups by
Selz(g)(k,ad’p,) = Im (Selx(g)(k,ad’p,) — Selz(g)(k,ad"p))
and, dually,
Selz(g)(k,ad’pn (1)) = Im (Selz(g) (k,ad’pn(1)) = Selzg)-(k, ad’p(1))) .

Proposition B.2.6. Suppose q is n-admissible.
(1) Z}.4(Gh, ad®p,,) is free of rank dg over O /w™ and contains all coboundaries.
(2) Forall1 < r < n, the natural maps ad® p, — ad® p,_, and ad® p,_; — ad® p, induce surjections
VASI(C ad’p,) — Z3.4(Gr,, ad® p,_1) and injections Z}4(Gr,, ad’p,_1) < Z3.a(Gr,, ad® p,.).
(3) Let Yy 0ra C Spec Rgrd(O) be the set of points reducing to Pn‘qu modulo @™, and let Y7 be

m,n,ord
the image in Spec Rgrd(O/wm)for allm > n. Then for any 1 < r < n, the fibers of Y,?
q

m,n,0r

~+r,n,ord -
4 are nonempty principal homogeneous spaces over Z érd(G kg ad’ or).

Proof. Parts (1) and (3) are immediate from the conditions on Rgrd in Notation B.2.4. For (2), it is clear
from the definition that

Z;rd(quv ad’ pT—l) 2 Im (Zérd(qua ad’ Pr) — Z;rd(ka ad’ pT—l)) )
and equality holds by (1) and counting. A similar argument shows the compatibility with

Z1(Gy,,ad’ pp—1) = Z'(Gy,,ad" py).

Lemma B.2.7. Let Q be a finite set of n-admissible primes. Then:
(1) Forall a,b > 0 with a 4+ b < n, there are natural exact sequences

0 — Selr(g)(k,ad’pa) — Selr(g)(k,ad’pass) — Selr(g)(k, ad’py)
and
0 = Sely(g)- (k;ad’pa(1)) = Selr(g)- (k, ad’pats(1)) — Selr(g)-(k, ad’ py(1)).
(2) The exact sequences in (1) identify
Sely(g)(k; ad” pa) = Selr(g) (k, ad’ py) [
and
Sely(g)- (k; ad” pa(1)) = Selr(g)- (k, ad’ p,(1))[w?]

Jorall a < n.

(3) If@]:(g)(k‘, adopm) = 0 for some integer m < n, then for all m’ withm—1 < m’ < n, the natural
map induces an isomorphism

Sely(g) (K, ad’pm—1) = Selz(g)(k, ad’ ppy).
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Proof. Using Proposition B.2.6(1,2), the first part is [29, Lemma 6.1], except for the injectivity on the

left, which follows from Assumption B.1.3(1). Part (2) is a corollary of (1), because the kernel of w® :
Selr(g)(k, ad’ p,) — Selr(g)(k, ad® p,) coincides with the kernel of Selr(g)(k, ad’ p,) — Selr(g)(k, ad® pp_a),
and likewise for dual Selmer groups. So we show (3). For any m’ with m — 1 < m’ < n, the map

—0
Sel (o) (k, ad®p,) — Selz(g)(k,ad p)
factors through Sel 7 (k, ad’p,, ), hence vanishes; in particular, we have an isomorphism
Sely(g)(k, ad’ppr 1) = Selr(g) (k, ad’ )

by (1). The claim follows by downwards induction on m/.

Lemma B.2.8. Suppose Q is a finite set of n-admissible primes. Then for all m < n,
dimg /o Selz(g) (k, ad’pm) = dimg ., Selz(g)« (K, ad’ pm).
Proof. This is [29, Lemma 6.3]. Note that the local conditions are balanced in the sense of loc. cit.: for

v & Q, this is [29, Proposition 4.7(3)], and for ¢ € Q the same calculation applies because by Proposition
B.2.6(1). O

Remark B.2.9. The proof of [29, Lemma 6.3] uses Assumption B.1.3(1).

Definition B.2.10. For any finite set of primes Q disjoint from SUY,,, we define the Shafarevich-Tate groups:

(B.2) 13 (ad%py) = ker [ H?(k5V% Y2 /k ad%p,) = [ H?(kv,ad%pn)
vESUL,UQ

and

(B.3) MMIg(ad®pn (1)) == ker | H' (E¥*2 /k,ad’p,(1)) —» [ H'(kw,ad’a(1)) | ,
vESUT,UQ

forall n > 1.

Lemma B.2.11. Suppose given a finite set Q of n-admissible primes such that
@]:(Q)(k‘, adopn) =0.

Then the natural map
1113 (adp) — 113(ad”p,,)

is identically zero.

Proof. In the commutative diagram

111} (ad’py (1))~ 1T} (ad’p(1))

[ [

Selz(g)- (k, ad’p,(1)) —— Selz(g)-(k, ad’p(1)),

the bottom map is identically zero because Selz(g)-(k,ad”p,(1)) = 0 by Lemma B.2.8. Hence the top map
is identically zero as well. But by global Poitou-Tate duality, the top map is canonically dual to the map

113 (ad"p) — 1113 (ad’p,,),
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so this shows the lemma. O

Theorem B.2.12 (Fakhruddin-Khare-Patrikis, [29]). Fixm > 1. Then there exists a constant ng = ng(m, p) >
1 with the following property. For any N > ny, if Q is a finite set of N-admissible primes and

@F(Q)(lﬁ adopm) = 0,

then there exists a representation
,09 G — G (O)
satisfying:
(1) p=p? (mod wV—H1),
(2) p? is unramified outside S U Yp,UQ.
(3) Forallv € SUY,, the points of Spec R, [1/w]| corresponding to p9|Gkv and p|g,, lie on the same
irreducible component.
(4) Forall g € Q, p? is g-ordinary.

Proof. For all primes v € SUY,,, apply Proposition B.2.1 with 7y = m to obtain an integer ng , and a subset
Y, C R,(O). Then let
np = max {maxvegugp {nop} +m, 2m} .
We construct p2 as the inverse limit of representations p2 : G — G(O), compatible under reduction
maps, with the following properties for all n > 1:
(i) Forallv ¢ SUX, U, p|g,, is unramified.
(ii) Forg € Q, p%]gkq is ordinary.
(iii) Forv € SU X, p%‘@kv lies in the set Y)Y (cf. Proposition B.2.1(2)).
This suffices because Y,, C Spec R, (O) C Spec R, (O) and Spec R;’rd(O) C Spec Rq4(O) are both closed

in the w-adic topology, for all v € S U X, and g € Q. The representations p2 are constructed inductively,
but, when constructing p% 1> we will allow ourselves to modify the representations

Q Q Q
Prn—m+2>""" s Pn—1sPn-

The base case of the induction is p2 = p,, forn < N.

For the inductive step, first fix local lifts p% 1,0 Of ngm 11l forv € SU Y, U Q, with the following
property: if v € SUY,, then pfﬂ’v liesinY,’, |, andif v = ¢ € Q, then pgﬂ,q lies in Spec Rgrd(O/w"+1).
Such choices are possible by Proposition B.2.1(2) and the formal smoothness of Spec Rgrd. Now let ¢ €
H?(kSY2rY2 /[ ad®p) denote the obstruction class defined by choosing a set-theoretic lift

P Grsus,ue — G(O/="tH)

of p2; we have
(B.4) c € 113 (ad’p)

since the local lifts p2 1 existforallv € SUY, UQ.
Then by Lemma B.2.11, c has trivial image ¢, in 113 (ad®p,,). But, because n—m-~+1 > N—m-+1 > m,
cm is precisely the obstruction to lifting pf_,, . ; modulo ", Thus we may choose a lift

ﬁ%ﬂ : Gg,sus,uue — G(O/w”“)
with

~0 _ 9 n—m+1
Pn+1 = Pn—m+1 (IHOd w )
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For each place v € SU QU X, comparing [)ff lay, o p% 41, as lifts of pff_m +1lc,, produces a collection
of local classes

1 aU
(e J[ gy wtthe)

1 0 :
vESUQUE, HI(Q)(k”’ ad” i)
Now consider the commutative diagram with exact rows coming from the Poitou-Tate long exact sequence:
()

locm HY (ky,ad®pom
Hl(ksuguzp/kv adopm) B HUGSUQUEP H;_—@f)(kiad%pr)n) Sel}—(Q)*(ka adopm(l))v

J | J

locy,— H(ky,ad®p,,
Hl(kSUQUZp/k7 adopmfl) *% HUGSUQUZP H}T(;)(kj,ad%pmi)l) Sel}'(Q)*(k> adopmfl(l))va

where the superscript VV denotes Pontryagin duality. The injectivity of the rightmost map, or equivalently the
surjectivity of its dual Sel 7(g)« (k, ad’pp_1(1)) — Sel z(gy (K, ad’p,, (1)), follows from Lemma B.2.7(1),
Lemma B.2.8, and the vanishing of Selz(g)- (k, ad’p,,(1)).

Our next claim is that the image of ( f,) under the central vertical map of (x) lies in the image of loc,,,—1.
Indeed, because p% satisfies (i)-(iii) above, it follows from Propositions B.2.1(2) and B.2.6(3) that the image
of (f,) coincides with the image of the global cocycle formed by comparing 5 1 (mod ™) and p2 as lifts
of p%_m 1- Then because the rows of (x) are exact, we conclude that (fv) lies in the image of loc,,. Picking
a preimage, we may then modify [)% 1 to arepresentation ol 1 :Gr =GO/ w" 1) with

/ — 92 n—m+1
Pn+1 = Pn—m+1 (mOd w )

Properties (i)-(iii) hold for p;, ; by Propositions B.2.1(2), B.2.6(3) again. To complete the inductive step,
we set pffH = py, 41 and relabel p%_erQ, cee p% to be the reductions of p}, ;. g

B.3. Relation to Bloch-Kato Selmer groups.

Notation B.3.1. Let ¢ C X, be the set of places v|p of k such that p|g, is crystalline. For v € %,
we write Rffis for the crystalline quotient of R, (constructed in [4]).

Remark B.3.2. Recall that Spec R%[1 /] is a union of irreducible components of Spec R,[1/w]; in
particular, R, is a quotient of R, and Spec RS™S[1/w] is equidimensional of the same dimension as
Spec R,[1/w@].

Definition B.3.3. For all finite places v of k, and all » > 0, define
Zi,eq} C Zl(kv, ad’ pr)
to be the subspace of cocycles c corresponding to lifts p. : Gy, — G(O[e]/(e?,@"¢)) such that the corre-

sponding map f, : R, — Ole]/ (€2, w"¢) factors through R, (resp. RSS) if v ¢ Zlc,ris (resp. v € Z;ris). In
particular, Z1% = Z'(ky,ad’ p,) if v & 5.

Proposition B.3.4. Fix a place v of k.
(1) Forallr > 1, we have Z,, C ijeq}
(2) The cardinality of ijej /Zy. is uniformly bounded in 7.

Proof. Let I C R, be the kernel of the map to R, (resp. RYS) if v ¢ XS (resp. v € ™). For (1),
suppose given a cocycle ¢ € Z,.,, which corresponds to a lift

fe: R, — Ole]/(?, @"e)
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of the map f : R, — O determined by p]Gkv. Because c € Z,,, for all n sufficiently large the map

R, L5 0l /(e w"e) =5 0 )t
factors through R, /I; hence

fo(I) C (@ =€) N (€) in Ole]/(€%, @ e)
for all n sufficiently large. We conclude f.(I) = 0, hence c lies in Z¢

AR

For (2), letp C R} be the kernel of £, and note that Z'! is canonically identified with

HomO(p/(p27 I)a O/wr)
Since R, is Noetherian, p/(p, I) is a finitely-generated O-module, hence
lgo Z;S) = r - ranko(p/(p?, 1)) + O(1)

as 7 varies. But because p|, ~defines a formally smooth point of Spec R,[1/w], the O-rank of p/(p?, 1) is
also dim Spec R, [1/w] (which equals dim Spec R{™S[1/w] for v € ¥57%). Moreover

lgo Zy» = rdim Spec R, [1/w]
by Proposition B.2.1(1), so (2) follows.

which proves (1).

Proposition B.3.5. For all places v of k, let

H}-—(k’wado p) - @H}:(kv7ad0 Pn) - Hl(k’wado p)

n
Then we have
Hz(ky,ad” p) ®0 E = H}(ky,ad’ p ®0 E).
Proof. Suppose first that v € 3,,. Then
dim H' (ky,ad’ p @0 E) — dim H} (ky,ad’ p ®0 E) = dim H"(ky, ad’ p(1) ®0 E) =0

by the local Euler characteristic formula, local duality, and Lemma B.1.6 (under Assumption B.1.5). By
Proposition B.2.1(1,3), we also have

dim Hx(k,,ad’ p) @0 E = dg — dim H°(k,,ad’ p @0 E)
= dimp Lie G ®¢ E — dim H°(k,,ad’ p @0 E)
= dim H} (ky,ad’ p @0 E),

and the proposition follows.
Now we consider the case v € X,,. By Proposition B.2.1(1), we have

dim Hx(k,,ad’ p) @0 E = dim Spec R,[1/w] + dimad’ p ®o E — dim H°(k,,ad’ p @0 F)
= dim Dgr(ad® p ®0 E)/ Fil° Dgr(ad® p @0 E) — dim H°(k,,ad’ p @0 E),

where the latter equality is by the proof of [6, Theorem 3.3.2] and by Assumption B.1.5. In particular, by [9,
Corollary 3.8.4], we have

dim Hz(ky,ad’ p) ®0 E = dim H(ky,ad’ p ®0 E).

It therefore suffices to show that H}(kzv, ad’ p ®o E) C Hx(ky,ad’ p) @0 E.
By Proposition B.3.4, we have

(m Z,,) @0 E = (m Z;5) @0 E C Z' (ky,ad’ p @0 E).
T T
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In particular, by the definition of Z2¢! H}(kv, ad’ p)®o E consists of cocycles ¢ such that the corresponding

v’
G-valued deformation p.. of p to E[e]/(€?) is crystalline (resp. potentially semistable) with Hodge type fi,
ifv € E;ris (resp. v € X, — E;ris). By [4, Proposition 2.3.2], it suffices to check this condition for
the representation o o p. : Gy, — GL,(E[e]/(¢?)) obtained by composing p. with any faithful algebraic
representation o : G — GL,, g.
Consider the case when v € X, — Egris. Suppose given a cocycle ¢ € H }(ku, ad’ p ®o E); a fortiori, c
lies in the kernel of the map

H'(ky,ad’ p @0 E) — H'(ky,ad” p ®0 Bar),
hence the cocycle corresponding to the deformation o o p. of ¢ o p lies in the kernel of the map
H'(ky,ad’(o 0 p)) = H'(ky,ad’(0 0 p) @ Bar).

In particular, o o p. is potentially semistable by the argument of [2, Lemma 1.2.5], and this completes the
proof. When v € X7, an analogous argument applies, using that ¢ lies in the kernel of the map

H'(ky,ad” p @0 E) = H'(ky,ad’ p ®0 Beris)
by definition of H}(ky,ad’ p @0 E). O

Lemma B.3.6. Suppose H}(k, ad’ p ®o E) = 0. Then for all n sufficiently large,
Selz(k,ad’ p,) = 0.

Proof. We first claim:
Claim. We have Selz(k,ad’ p) = lim Selr(k, ad® p,,).

Proof of claim. Set Z,,, = Z} (Gkv,adO pr) for all finite v ¢ S U X, and set Z, = %inn Zn,p for

unr
all finite v. It follows from Proposition B.2.1(1,3) and a direct calculation in the unramified case that

ZY(Gy,,ad’ p)/Z, is torsion-free and Z,, , is the image of the map Z, — Z'(Gy,,ad’ p,) forall n > 1.
Then the claim follows from [75, Lemma 3.7.1]. O
Now we return to the proof of the lemma. By Proposition B.3.5, the assumption H} (k,ad’ p@o E) =0

implies that Sel z(k, ad’ p) is torsion, hence trivial because H*(k, ad’ p) is w-torsion-free by Assumption
B.1.3(1). So by the claim, we have

]'&n Selr(k, ad’ pn) =0,
which implies o o
I'LIII Sel}—(k’ ado pn) = mnsel]-'(ka ado pn) =0.
Hence Selz(k,ad’ p,) = 0 for n sufficiently large. O

B.4. Controlling congruences for level-raised representations.

Definition B.4.1. (1) For each place v of k, we define
C, =sup# (Zﬁi}/Zm) ,
T

which is finite by Proposition B.3.4.
(2) If Q is a finite set of n-admissible primes for some n > 1, define a Selmer structure F(Q)™ for
ad® p,, by

im (Z5L — H'(ky,ad’ pn)), v € SU,

H: ret (Kv, d° n) —
F(Q) (v, ad"pn) {H}:(Q)(kv,adopn), otherwise.
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Proposition B.4.2. Let Cy =} c g5 Cv, where C., is as in Definition B.4.1. Then

180 Sel gy (k, ad” pn) < lgo Selz(g) (k,ad’ pn) + C1
Jorall n > 1 and all n-admissible Q.

Proof. This follows from the exactness of the sequence
Ho(ko,ad’py)
H(ky,ad’py,)

(B.5) 0 — Selr(g)(k,ad’py) — Sel gy (k,ad’0p) =[]
veESUL,

O

Corollary B.4.3. Fix ¢ > 0. There exists a constant Co > 0, depending only on c and p, with the following
property: for alln > m — 1 > 0 and all n-admissible Q with |Q| = c,

Selr(g)(k,ad’ pr) = 0 = 10 Selz(gyei (k, ad’ pp) < Co(m — 1) + C1,

where C' is the constant in Proposition B.4.2.

Proof. By Lemma B.2.7(3), if @;(9) (k,ad’ p,,) = 0 then
@™ Selz(g) (k,ad” p,) = 0.
Hence
lgo Sel;(g)(k, ad’ pn) < (dimo/w Self(Q)(k:, ad® pn)[w}) (m—1)

= (dimo/w Selr(g)(k, ad’ p)) (m—1)
(B.6)
' (kqa ad’ p)

———— | (m—1);
I-I]l_-(kq,ad0 )

< | dimp, Selx(k, ad’p) + Z dimg /o
qeQ

in the second line we have used Lemma B.2.7(2). By the local Euler characteristic formula, dimg /o, H I kq, ad’p)
is uniformly bounded in g, so (B.6) becomes

(B.7) lgo Selz(g)(k,ad’ p,) < Co(m — 1)

for a constant C depending only on ¢ = |Q| and p. Combined with Proposition B.4.2, this proves the
corollary. (|

Notation B.4.4. Let X be a finite set of places of k.

(1) Let A € CNLg. Alift ps : G, — G(A) of p is called X-good if:
(i) p o pa = x (notation as in Notation B.1.4);
(ii) pa is unramified outside S U X, U Yo U X;

(iii) For.all v E Egris (resp. v € Xp — Z;’;ris), the map R, — A defined by pala,, factors through
RS™S (resp. Ry).
(2) Let D%Obal be the functor on CNL defined by

DEPN(A) = {pa: Gy — G(A) : pa©4 (O/w) =pand p4 is S-good} / ~,

where the equivalence relation is ker (G(A) — G(O/w))-conjugacy. By (the same argument of)
[25, Proposition 2.2.9], Dg obal i represented by a global deformation ring which we denote R*>.
(3) Now suppose ¥ = Q for some finite subset @ C 9. Let Dg_%?jl C Dg(’bal be the subfunctor
consisting of deformations which are g-ordinary for all ¢ € Q. By (the same argument of) [25,
Proposition 2.2.9], Dgl_(gigl is represented by the Q-ordinary quotient of R®, which we denote Rg.
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(4) Given a homomorphism fg : Rg — O, define the congruence ideal
(B.8) Ny C 0= fQ(AnnRQ (ker fg)) c 0.

Lemma B.4.5. Let m > 1 be an integer. Then we may choose the integer no(m, p) > 1 in Theorem B.2.12
such that the following holds: suppose n > ny(m, p), and Q is an n-admissible set such that

@]:(9) (adopm) =0.
Let fg : Rg — O be the homomorphism corresponding to the representation p? from Theorem B.2.12. Then

orde M fo < lgosel]:(g)rel (adopn_m+1).

Proof. Let ny(m, p) > 1 satisfy the conclusion of Theorem B.2.12, and let C; be the constant from Propo-
sition B.4.2. We set ng(m, p) := max{ni(m, p),C1 +2m — 1}, and check the claimed property. Write
I = ker fg. We have

Fittp,(I) C Anng, (1),
so by base change for Fitting ideals,

Fitt g, /r(1/1°) C ny-
Because Rg /I = O, it therefore suffices to bound lg, /1.

Now note that O-module maps /I — O/w*, for any integer s > 1, are canonically in bijection with

lifts Rg — Ole]/(¢?, w®¢) of fg. Taking s = n —m + 1 and using that p2 = p (mod " ™*+1), such lifts
are in bijection with classes in Sel r(gyrei (K, ad’p,_m1). Hence

(B.9) Hom(1/1?,0/@" ™) 2 Sel z(gyrer (K, ad” pp—m+1)-
Now, by Lemma B.2.7(3), Sel;(g)(k,adopn_mﬂ) is @™ !-torsion. In particular, (B.5) shows that

Selr(gyrei (K, ad®py_mi1) is @™t~ Ltorsion, hence a fortiori @™ ™-torsion. Since I is finitely gener-
ated over Rg, we conclude that /12 is o™~ ™-torsion.
Thus
lgo I/1? = lgo Homo (I /17,0 /="~ 1),
and the lemma follows from (B.9). [l

We remark that essentially the same argument shows:
Remark B.4.6. The map fg : Rg — O is an isomorphism if and only if Sel gyra (, ad’p) = 0.

Definition B.4.7. Let g be n-admissible. We say that g is standard if:

(1) There exists a representation 7, : G, — G (O) which is both ordinary and unramified.
(2) For all m < n, both
H&nr(kqv adopm) + ngd(kqv adopm)
H&nr(kqv adopm)

and
Htllnr(kqv adopm) + H;rd(kqv adopm)

H;rd(k;fﬂ adopm)

are free of rank one over O/w™.

Lemma B.4.8. Fix an integer m > 1 and let ny = no(m, p) be the integer of Theorem B.2.12. Let n >
max {ng, 3m} be an integer and suppose given a finite set Q of (n+m)-admissible primes and two additional
n-admissible primes p,q & Q, such that:

(1) q is standard and not (n + 1)-admissible.

(2) @F(Q)(ka adopm) = @}'(qu)(ka adopm) =0 but Q}'(Qq)(k@ adOPmel) # 0.
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Then the representation p2P constructed in Theorem B.2.12 is ramified at p modulo w™™.

Proof. Let p2 and p29° be the representations afforded by Theorem B.2.12, so that p® = p (mod w"*!)
and p29° = p (mod " ™). Modulo @"*™, pg and pgg, differ by a cocycle ¢ € H(k,ad’papm_1).
(This make sense because 2m — 1 < n —m + 1.) Alsoletd & Sel;(gq)(k, adopgm_l(l)) be an element

whose image in @].‘(Qq)* (k,ad’pam,_1(1)) is nonzero, which exists Lemma B.2.8. By global Poitou-Tate
duality, we have

(B.10) > {e;d)y =0,
v
where (c,d), is the local Tate pairing. By Proposition B.2.1(2) and by the choice of ng, loc, ¢ lies in
H}(Qq)(kv, ad®po,, 1) for all v # p, q. In particular,
(B.11) (¢;d)p #0 <= (c,d)q # 0.
Our next claim is that:

(B.12) (¢,d)g # 0.

Indeed, Res, c lies in H_, . (kq, ad’porn_1) + H L (kg ad®pa,,_1); one can see this by comparing both p2

and p®9° to the representation 74 in Definition B.4.7(1). Because ¢ is not (n + 1)-admissible, p? is not

ordinary at ¢ modulo "1, so

H&nr(kqv ad" pam—1) + ngd(kqa ad’ p2m—1)
H} (kg ad” pom—1)

is nonzero modulo ™. On the other hand,

Resg c € ~ O/w*™ 1

Hy,y (kg ad’ pam-1(1))
H,, 4 (kg. ad®pam-1(1)) N Hiyy (kg, ad’p2m-1(1))
_ Hya(kg, ad’pam—1(1)) + Hiy (g, ad®pam—1(1))

B Hne (kg 2’ o1 (1))
is also nonzero modulo @™ . Otherwise, the image of d modulo @™ would lie in Sel (g)- (k, ad’p, (1)),
which contradicts the assumption that @;(Q)* (k,ad’p,(1)) = 0. Since local Poitou-Tate duality gives a

perfect pairing
H&nr(kqa adOPQm—1> + H(%rd(kcp adOme—l) % H&rd(kqu adOPQm—l(l))
Hérd(kqa adOPQm—l) Hérd(kqa ad0p2m—1(1)) N H&nr(kqv adOPQm—l(l))
O/w2m71

Res, d €

zO/w2m*1

we indeed have (B.12). Then by (B.11), we conclude
(c,d)p # 0.
Since loc,, d is unramified, we must have
Resp c € H&nr(kpv adOme—l)-

Since PQ|GkP is unramified, and Res, ¢ measures the difference between p9|ka and quP|GkP modulo
w™t™  this proves the lemma. O

APpPENDIX C. LARGE IMAGE RESULTS

Throughout this appendix, let I be a finite extension of ,, with ring of integers O C FE.



BLOCH-KATO FOR SOME FOUR-DIMENSIONAL SYMPLECTIC GALOIS REPRESENTATIONS 161
C.1. Generalities on p-adic Lie groups.

Lemma C.1.1. Let by be a simple Lie algebra over E.

(1) If g C b¥" is a Lie subalgebra that surjects onto each factor, then g is isomorphic to Y™ for some
integer m < n. Up to an automorphism of h®", the map g = h®™ — h®" is given by

(hl,...,hm)'—)(hl,...,hl,hg,...,hg,...,hm,--' ,hm)

n1 times no times Nm times

withng + -+ +npy = n.
(2) The only ideal I C H®" that surjects onto each factoris I = ho".

Proof. We prove (1) by induction on n, with the case n = 1 being trivial. Supposing we know (1) for n — 1,
let g C h®" be a subalgebra surjective onto each factor, and let g’ be the image of g under the projection
heE" = h®(—1) g — H 1) Then by the inductive hypothesis, g’ = §®™ for some integer m < n — 1.
Now, g C ¢’ @ b is a subalgebra surjective onto each factor, so by Goursat’s Lemma for Lie algebras, g is
either g’ @ b or the graph of isomorphism between b and a simple factor of g’. In particular, g is isomorphic
to either g’ =2 h®™ or g’ @b = h®(m+1) and it is easy to check that the embedding g — h®" is of the desired
form using that g’ — hEB("*l) is. For (2), it suffices to check that the subalgebras in (1) are never ideals unless
n = m (and hence n; = no = --- = n,, = 1). Indeed, it suffices to check that the diagonal subalgebra
h C h @ b is not an ideal, but this is clear: since b is simple, it is not abelian, so for some h1, ho € h we have
[h1, ho] # 0. In particular, the bracket [(h1, h1), (h2,0)] is not contained in the diagonal subalgebra, which
witnesses that the latter is not an ideal. (Il

Corollary C.1.2. Let Yy be an absolutely simple Lie algebra over Q. Then for any finite extension E /Q,:

(1) The base change b == ®q,, E is simple as a Lie algebra over Q).
(2) For any Qp-Lie subalgebra g C b such that E - g = b, g is simple.

Proof. For any subalgebra g C b, consider the extension of scalars
= = ~ IE:

9®g, Q, C b ©g, Q, = b 7.
P

For (1), suppose g is an ideal; then the image of g ®q, @p in each factor of hgj @l g @p-stable ideal, hence
_ o P
either O or b . Now, g®q, Q, C br®q, Q, is stable under the action of G, , which transitively permutes
P
the factors of hg ‘@l Hence if g # 0, then g ®q, @p surjects onto each factor of hgj ‘@] Then by Lemma
P P

C.1.1(2), g ®q, @p = bp ®q, @p, so g = bp. This proves (1). For (2),if g- ' = bhp, then g ®q, @p

generates hp ®q, Q, = hg U] under the action of £ ®q, Qp = @[E:Qp}, 30 g ®g, Q, surjects onto each
P

P

factor. By Lemma C.1.1(1), we conclude g ®q, @p = h%m for some m < [E : Q).
P

If I C gisanonzeroideal, then I - F is anonzeroidealof g- £ = hp,sol - E = hg. Butthen | ®qQ, @p

E:Qp]

is an ideal of g ®q, @p that surjects onto each factor of b% , and, inspecting the possible embeddings
P

(£:Qp]

=~ r@m
g®Qp Qp—b@p %b@p

from Lemma C.1.1(1), we conclude that I ®q, @p surjects onto each factor of g ®q, @p = h%m. But by
N J— D
Lemma C.1.1(2), I ®q, Q, = g ®q, Q. so then I = g. This proves (2). ]

C.2. Strongly irreducible representations. For the following definition only, we allow E' to be an arbitrary
algebraic extension of Q,,.
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Definition C.2.1. Suppose V is a finite-dimensional E-vector space, G is a group, and p : G — GLg(V)
is a representation. Then V' (or p) is said to be strongly irreducible if, for any finite-index subgroup H C G,
(p, V) is absolutely irreducible as a representation of H.

Lemma C.2.2. Let V be an E-vector space of finite dimension, and let G C GLg (V') be a compact p-adic
Lie subgroup. If V' is strongly irreducible as a representation of G, then:

(1) No nontrivial element of G | Z¢ is fixed under conjugation by an open subgroup U C G in particular
G/ Z¢g has trivial center.

(2) The group G/ Z¢ contains no finite normal subgroup.

(3) If g € G acts unipotently on Lie G, then g has only one eigenvalue on V.

(4) The Lie algebra Lie G/ Z is semisimple.

(5) The natural maps G N\ SLg(V) — G/Zq and Zg — det G induce isomorphisms on Lie algebras.

(6) V is absolutely irreducible as a representation of Lie(G N SLg(V)).

Proof. (1) Let h € G be an element whose image in G/Z¢ is invariant under conjugation by U. Then
forall g € U, hgh~'g~! lies in Zg, so by Schur’s Lemma

(C.1) hgh™' = g\ (g) for a scalar \y(g) € E*.

It is easy to check that g — Ap(g) is a group homomorphism U — E*. On the other hand,
if dimg V' = n, then (C.1) implies that A\, (g) lies in u,(F) for all ¢ € U. In particular, the
homomorphism g — A (g) has open kernel, so h commutes with an open subgroup of U. By strong
irreducibility and Schur’s Lemma again, A is scalar, so has trivial image in G/Z¢.

(2) Let H C G/Z be a finite normal subgroup. Then the map G — Aut(H) has open kernel, so (1)
implies that H is trivial.

(3) Let g = g**g" be the Jordan decomposition in GLg (V). Then

ad(g) — 1 = (ad(¢*") — 1)(ad(g") — 1) + (ad(g") — 1) + (ad(g**) — 1)

as operators on gl (V). In particular, if ad(g) — 1 is nilpotent on g C gl (V), then for N sufficiently
large, g lies in the kernel of (ad(g**) — 1) .

But since adg®® — 1 is diagonalizable over @p as an operator on gl (1), we conclude g lies in the
kernel of ad(¢g®*) — 1; hence g* commutes with an open subgroup of G, so by Schur’s Lemma ¢**
is a scalar in GLg (V). In particular, g = ¢g%*¢g" has a single eigenvalue on V.

(4) By [11, §6, Proposition 5], g is a direct sum g = § & s, with h semisimple and s abelian. Since
Lie(G/Z¢) has trivial center by (1), it follows that the natural maps induce isomorphisms f —»
Lie(G/Z¢) and Lie Zg —» s. In particular, Lie(G/Z¢) is semisimple.

(5) The map Lie(G N SLg(V)) — Lie(G/Zg) = b is injective with abelian cokernel; hence it is an
isomorphism. Since g = h®s, it follows that the determinant identifies Lie Z¢ = s — Lie(det(G)).

(6) By (5), g is adirect sum g = Lie(Zg) @ Lie(G N SLg(V)). Soif Lie(G N SLg(V)) stabilized any
subspace of V' after extending scalars, g would as well, which contradicts strong irreducibility.

O

Lemma C.2.3. Let V be a symplectic E-vector space of dimension 2 or 4, and let G C GSpg (V) be a
compact p-adic Lie subgroup. If V is strongly irreducible as a representation of G, then every nontrivial
closed normal subgroup of G | Z¢ has finite index.

Proof. Abbreviate G = G/Zg and g = Lie G. Then § is a Lie subalgebra (over Q) of sp,, g, with n = 2 or
4. After replacing £ with a finite extension, we may assume F - g C sp,, g is split. It is also semisimple (by
Lemma C.2.2(4)) of rank at most 2, so - g is isomorphic to sl g, slo g X 5l g, or 5Py - The second case is
impossible by Lemma C.2.2(5, 6), since sly g x slp g admits no faithful irreducible two- or four-dimensional
symplectic representation. Hence E - g is simple, so g is simple by Corollary C.1.2(2). Now if H C G is
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any closed normal subgroup, it has the structure of a compact p-adic Lie subgroup by [59, Ch. III, Théoréme
3.2.3]. In particular, h := Lie H is an ideal of g, hence h = 0 or h = g. By arguing with the exponential
map, we see that H is either finite or has finite index; but if finite it is trivial by Lemma C.2.2(2), so the
lemma is proved. O

In fact, we extract the following more precise statement in the four-dimensional case.

Proposition C.2.4. Let G C GSp,(F) be a compact p-adic Lie subgroup, such that the defining represen-
tation is strongly irreducible. Write ) := Lie(G /Zq) C sp, . Then after a finite extension of E:

(1) E - b is isomorphic to either sp, g or sla p.
(2) Inthe latter case G is contained in the image of the symmetric cube representation Sym? : GLg (E) —
GL4(E) up to GL4(E)-conjugacy.

Proof. We have seen (1) in the proof of Lemma C.2.3, so we prove (2). Let V be the four-dimensional
defining representation of G; as a representation of E-h = sl g, V' is isomorphic to the symmetric cube. In
particular, after extending E if necessary, the embedding - = sl p — sp, f is conjugate to Lie Sym? by
some g € GL4(E). We may assume without loss of generality that g = 1. Let S C GSp,(E) be the image
of the symmetric cube embedding over @p; we first claim that G is contained in S - E* C GL4(FE). Indeed,
for any g € G, Ad(g) preserves sly p = E - b. Since the automorphism group of sly g is PGLy(E), for each
g € G there exists h € S such that Ad(h) = Ad(g) on slp g. In particular h~1g € GL4(E) commutes with
an open subgroup of G (by arguing with the exponential map), so by Schur’s Lemma and strong irreducibility
h~lgis scalar. So G C S - E*, as desired.

If £’ denotes the compositum of the finitely many cubic extensions of F, then S - E* is contained in the
image of the symmetric cube map GL2(E’) — GL4(E"), and this completes the proof. O

The following lemma is a corollary of [16, Lemma 4.3].

Lemma C.2.5. Fix a number field F, and let p : Gp — GLg (V') be a continuous, absolutely irreducible
representation of Gp. Assume there exists a place p|p of F such that V|g 18 Hodge-Tate with distinct
weights. Then, after possibly replacing E by a finite extension, there exists a number field K O F and a
strongly irreducible, continuous representation py : Gx — GLEg(Vp) such that p = Indgf< P0-

Proof. After taking a finite extension of F, there exists a Galois extension K of F' such that each constituent
of p|g, is strongly irreducible. Write

J
ol =P
=0

for some 0 < j < n. Then the p; are all distinct because p has distinct Hodge-Tate weights, so there is
a well-defined action of Gal(K/F') on the set of p;’s. This action must be transitive or else p would be
reducible; hence p|q, is semisimple and each p; has the same dimension m. Replacing K by the fixed field

of the stabilizer of pg, it follows that p = Indgi £0- (|

Corollary C.2.6. Let 7 be a relevant, non-endoscopic automorphic representation of GSp,(Aq) such that

BC(7) (Lemma 2.2.17) is not an automorphic induction. Then for each isomorphism v : Q, = C with
p > 3, Vi, is strongly irreducible.

Proof. By Lemma 2.2.12, V., is absolutely irreducible. Suppose for contradiction that it is not strongly

irreducible. By Lemma C.2.5, we may assume that V;, = Indg?; po, where K /Q is either quartic or
quadratic and pg is strongly irreducible and Hodge-Tate. If K is quartic, py corresponds to Hecke character
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of K with algebraic infinity type via the usual recipe, and BC(7) is the automorphic induction of x| - |_1/ 2,
a contradiction.

If K is quadratic, then V; , & Vi, ® wg /g Where wq is the quadratic character of G corresponding to
K. Hence BC(7) = BC(7) ® wg /g by strong multiplicity one for GL4, so by [3, Theorem 4.2(b)] BC()
is an automorphic induction. This is a contradiction, so indeed V7 , is strongly irreducible, as desired. U]

C.2.7. For the next corollary, we use the following notation. Let w € Op be a uniformizer; then for an
Og-lattice T in an E-vector space V', we write T}, := T'/w"T forall n > 1.

Corollary C.2.8. Let F be anumber field, and let (p, V') be as in Lemma C.2.5 above. Assume, if dimV = 1,
that there exists a place p|p of F' such that the character p|g o has nonzero Hodge-Tate weight. Then for any
Galois-stable Og-lattice T' C 'V, there exists a constant C' > 0 such that

wCH' (F(p)/F,T,)) = 0
foralln > 1.
Proof. Without loss of generality, we can extend E so that the conclusion of Lemma C.2.5 holds, for some

finite extension K /F and some py : Gx — GLg(Vp). Let K€ be the Galois closure of K; then by inflation-
restriction, it suffices to show

(C.2) HY(K¢(p)/K®,Ty,) is uniformly bounded in 7.
We label the Gal(K ¢/ F)-conjugates of (po, Vo) as (pi, V;), for 0 < i < dim V/ dim Vp, and let

G c [[eLem)

be the image of G- under p. We assume without loss of generality that T = &7; for Galois-stable Op-
lattices T; C V;. Hence to show (C.2), it suffices to show H' (G, Tp ) is uniformly bounded in n.

Case 1. Z contains an element 2 that acts nontrivially on Vj.

Then by inflation-restriction, we have an exact sequence
0— Hl(G/<Z>,T§7n) _ Hl(G,Toyn) N Hl((z),Tg,n)G/@,

The outer terms are clearly uniformly bounded, so we are done in this case.
Case 2. Z acts trivially on Vj.

For this case, note that G/Z¢ is a compact p-adic Lie group with semisimple Lie algebra; indeed, if
G; = pi(Gge) with center Z;;, C G;, then we have an injection

(C.3) Lie(G/Za) — | [ Lie(Gi/Za,),

and the semisimplicity of Lie(G/Z¢) follows by Goursat’s Lemma and Lemma C.2.2(4). In particular, by
[29, Lemma B.1], H'(G/Z¢, Tp »,) is uniformly bounded in n. By inflation-restriction again, it then suffices
to show

HY(Zg, To.n)%"%¢ = Home(Zg, To.n)

is uniformly bounded. Since G acts trivially on Zg and Vj is strongly irreducible, it suffices to ensure V) is not
the trivial representation of G. However, if this occurs then pg : Gx — GLg(Vp) is a finite-order character,
so all its Galois conjugates p; also have finite order. This would mean that p|q,, has trivial Hodge-Tate
weights, which is ruled out by our assumptions on p.

O
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Lemma C.2.9. Let I’ be a number field, and let p : Gp — GLE(V') be as in Lemma C.2.5 above, so after
an extension of scalars we can write

p = Indgr po

for a number field K O F and a strongly irreducible representation py : Gx — GLg(Vy). Let L be an
abelian Galois extension of F (possibly infinite) which is disjoint from K ; then p|q, is absolutely irreducible.

Proof. Let K° be the Galois closure of K'; then

ploe = P rflae,

where pJ runs over the distinct Gal(K ¢/ K )-conjugates of pg. In particular, if v is a prime of K lying over
the p from Lemma C.2.5, then

(C4) pola e and polg .. have distinct Hodge-Tate weights if p§ 2 po.

If p|, is reducible (after replacing E by any finite extension), then
1 < dimg Hompg, | ((Indgf( po)lcy, (Indgi P0)|GL)
= dimp Hompg, | <Indgfd p0|GKL,Indgf<L PO’GKL>
= dimp Hompg, <p0|GKL’ Resgf@ Indgfﬂ PO\GKL)
< dimg HomE[GKCL] (pO’GKcLa @ pg|GKCL> :
In particular, we may fix o € Gal(K¢/K) such that pJ 2 po but

HomE[GKCL} (po,GKcL7p8‘GKCL) # 0

We claim po|q ., is absolutely irreducible; indeed, if Gy = po(Gke), then H = po(Ggey) is a normal
subgroup of G with abelian cokernel. Then Lie(H NSLg(Vy)) C Lie(GoNSLE(Vh)) has abelian cokernel,
which implies Lie(H N SLg(Vy)) = Lie(Go N SLg(Vy)) by Lemma C.2.2(4, 5). Then H N SLg(V}) acts
strongly irreducibly on Vj by Lemma C.2.2(6), so a fortiori po|G ., is absolutely irreducible, as desired.

This implies that Hompq,.,](po, p§), which is nonzero by assumption, is in fact one-dimensional. It
is also preserved by the natural action of G’ on Hompg(po, pf), because G ey, is normal in Gxe. Hence
Gal(K°L/K¢) acts on Hompgq,.,1(po, pg) by scalars, and in particular we conclude that

(C.5) polGre = Pglaxe ® X

for a character y of Gal(K°L/K¢) C Gal(L/F). Because Gal(K¢/K) acts trivially by conjugation on
Gal(L/F) and o € Gal(K¢/K) has finite order, (C.5) implies

po = po @ x" for somen > 1,
hence x has finite order. But then (C.5) contradicts (C.4), so the lemma is proved. ]
C.3. Galois representations associated to Hilbert modular forms.

C.3.1. Fix atotally real field F'. The following result is due to Nekovar:

Theorem C.3.2. Let 7 be an automorphic representation of GLo(Ap) corresponding to a non-CM Hilbert
modular form of weight (Zk:v)v|oo, with each k, > 1. If Ey is a strong coefficient field for 7, then there exists
a subfield £\ C Ey and a quaternion algebra D over E1, along with a finite abelian extension K of F, such
that for all primes p of Ey, with residue characteristic p:
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(1) The image of prp contains an open subgroup of
Hy={x € (D®p, E1p)* : Nm(z) € Q) },

where the embedding Hy, — GLo(Ey ) is induced by the natural embedding D @, E1p, — D ®F,
Ey , and an isomorphism D ®p, Eo, ~ Ma(Epy).
(2) The image pry(G) is contained in H,,.

Moreover, for any finite abelian extension K'/K and all but finitely many p, the image of pr ,(Gk) is a
conjugate of

{9 € GLy(Op,,) : detge Z)}.

Proof. Let K be the field written F in [80, Theorem B.5.2]. Then the first two claims, and the last part
when K’ = K, follow from loc. cit.

For the general case, note that det pr p|G = Xp,cye. If K’/ K is a finite abelian extension, restrict to those
primes p such that p, , (G i) contains SL2(Op, ) and K/ NQ(ppee) = K NQ(ppe). Thendet pr p(Gr) =
det pr »(G k). Onthe other hand, pr ,(Gx) is a normal subgroup of p, ,(G i) with abelian cokernel, which
necessarily contains SLa(Og, p); it follows that pr ,(Gi) = prp(G k), which completes the proof. O

C.3.3. Now let m; and 73 be two automorphic representations as in Theorem C.3.2, with Fy a common
strong coefficient field. For the rest of this section we will always write p for the residue characteristic of a
prime p of Ey. Also, let By, D1, K1, Hyp, Ea, Dy, Ko, and Hj j, be as in the conclusion of Theorem C.3.2
applied to 7, and 72, respectively; we can and do fix a finite abelian extension K D K - K5 such that

(C.6) det pr, plax = det pryplae = Xpeye
for all p, and the conclusions of Theorem C.3.2 hold for this choice of K.
We will also consider the joint representation
Pry,p XPrg,
(C.7) Py oyt GF —22=2% GLo(Eo,p) x GLa(Eoyp).

Lemma C.3.4. Suppose there exists a prime p of Ey and a finite extension L/ F such that

p7r1,p‘GL = p7T27F"GL'

. . . . X
Then my is the twist of g by a finite-order automorphic character of A .

Proof. By [90, Theorem 2], we have
Prip = Prap @ X

for some character x of G, which is of finite order because it vanishes on GG1,. Viewing x as a finite-order
character of F*\ A, via class field theory, we conclude that pr, y = proyp, andhence 1 =T @ x. O

C.3.5. If m is as in Theorem C.3.2, corresponding to a holomorphic Hilbert modular form f, then for any
o € Gal(Q/Q) we write 7 for the automorphic representation corresponding to f?. The following result
generalizes [70] to the setting of Theorem C.3.2.

Theorem C.3.6. In the setting of (C.3.3), suppose w1 # 75 @ X for any o € Gal(Q/Q) and any finite-order
automorphic character x of Ay. Then:

(1) For all primes p of Eo, pr, xop(GK) contains an open subgroup of H X Q3 Hs .
(2) For all but finitely many , the image of pr, ,,(Gr) contains a conjugate of

{(gl,gg) € GL2(Og, p) x GL2(Op, ) : detg =deth € Z;}.
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Proof. The proof is analogous to [70, Theorem 3.2.2, Proposition 3.3.2], where we replace Lemma 3.1.1 of
op. cit. with Lemma C.3.4 above. For completeness, we recall the argument. Let Gy, = pr, 7 p(GK), 5O
that we have a natural embedding

It follows from Goursat’s Lemma for Lie algebras that Lie G}, is either Lie (H 1,p XQ; H zp) or LieGy =

Lie Hj p, diagonally embedded by an isomorphism Lie Hy , — Lie Ha , that preserves the linearized deter-
minant maps to Q,,. To prove (1), we assume that we are in the latter case, and aim to show 7 is a conjugate
twist of 5.

By [70, Lemma 1.1.4], any isomorphism Lie H7 = Lie Hs y is induced by an isomorphism ¢ : £ act
E» , and an i-linear isomorphism Dy ®p, E1y = Dy ® E, Eop. In particular, assuming without loss of
generality that Fy is Galois, there exists an automorphism o € Gal(Ey/Q) that preserves p and induces
1 By = Es p. Since all automorphisms of My (Eo,p) are inner, it follows from the description of the
embedding in Theorem C.3.2(1) that, after conjugating pr, p, Lie Gy C gly(Eop) % gly(Eop) is contained
in a subalgebra of the form

{(X,0X) : X € gly(Eop)} -

Exponentiating, for some finite extension L /K we have

p7r17P|GL =00 pTF27P|GL'

Since 0 © pryp = prg p, Lemma C.3.4 concludes the proof of (1).

For (2), we restrict our attention to those p such that pr, ,(Gx) = GL2(Og, ) (after conjugating) for
1 = 1,2, which eliminates only finitely many primes of Ey by Theorem C.3.2. Let S be the set of primes
p as above such that the conclusion of (2) does not hold; we assume for contradiction that .S is infinite. By
[70, Proposition 3.2.1], for all p € S, we have an element o € Gal(Ey/Q) preserving p such that, after
conjugating pr, p:

(CS) Pry,p (g> =Z+oo Pra,p (g) (mOd p)7 vQ € GK
If S is infinite, then there exists a single o € Gal(Ey/Q) such that (C.8) holds for infinitely many of the
p € S fixed by o.

Let ¥ be the set of primes v of F' such that either 7y ,, or 7g ,, is ramified, and for v ¢ ¥, let a1, and ag ,
be the eigenvalues of the standard Hecke operator at v on the spherical vectors of 7 ,, and 7o ,,, respectively.
By (C.8), for all v ¢ ¥ that split completely in K/F, aiv — o(agy)? € Og, is divisible by infinitely many
primes p € S, hence vanishes. Now take a single p € S fixed by o such that (C.8) holds, and assume without
loss of generality that p # 2. Let K’ be the compositum of the fixed fields of Prrp |G and ﬁwz,p‘G - Then
for all v ¢ X that split completely in K,

ai, =0(azy) Z0 (mod p),

so the identity af,, — o(az,)* = 0 implies a1, = o(a,). In particular, the traces of pr, 4|, and
0 0 pmypla,., coincide, so we have pr, plc,., = 0 0 pr, pla,,- Now we can conclude by Lemma C.3.4.
U

We also have the following complementary result.

Corollary C.3.7. In the setting of (C.3.3), there exists a finite abelian extension L of K with the following
property:
(1) For all primes p of Ey, either pr, r, ,(G1) is an open subgroup of Hj , X Hs p, or there exists
an isomorphism oy, : E = Es y and a oy-linear isomorphism iy : D1 @p, Eq = Dy Qp, Eayp
such that px, =, ,(GL) is an open subgroup of

id.ip
Hip — Hip Xgx Hap.
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(2) For all but finitely many v, either the image of px, =, ,(G1) is a conjugate of
{(gl,gg) S GLQ(OEMJ) X GLQ(OEQV’J) : detg =deth € Z;} s
or there exists an isomorphism oy, : E1 = Es p such that pr, , ,(G1) is a conjugate of

{(g.0p(9)) € GL2(Og,,) x GL2(Og,,) : g € GL2(Op, ), det g € Z;}.

Proof. By Theorem C.3.6, we may assume without loss of generality that m; = 7§ ® x for some o €
Gal(Q/Q) and some finite-order automorphic character x of A, which we also view as a character of G
via class field theory. Then for all primes p of Ey,

Prap QFop.0 £0.0(p) = Prg.om) = Pryo(p) @ X-

By [80, Theorem B.4.10], for all but finitely many p the image of prg , »(G K, ) is one of the groups listed
in part (2), for a certain abelian extension Ky of F' such that detp7r2 »la Ko = Xpicye- If L is the compositum
of Ky with K and with the fixed field of the kernel of Y, it follows from the same argument as in Theorem
C.3.2 that the image of pﬁgm,p(G L) = Pr,m.p(G L) coincides with that of Prg o (G, ) for all but finitely
many p, and this proves (2). t

C.4. Large image for relevant representations.

C.4.1. Fix a relevant automorphic representation m of GSp,(Aq), with trivial central character and with
strong coeflicient field Ey. In this subsection, we prove some results on the image of the Galois representation
Pr.p associated to , with an eye towards studying the existence of admissible elements (Definition 4.2.1) and
assumption (R1) from (9.3.1). Throughout this section we write p for the residue characteristic of a prime p
of EO .

Lemma C.4.2. Suppose 7 is not endoscopic, and BC() is the symmetric cube lift of a non-CM automorphic
representation mo of GLa(Ag). Consider the map of algebraic groups

f=Sym®®det™!: GLy — GSp,.

For all but finitely many primes p of Ey, the image of pr , contains a conjugate of f(GLa(Zy)). In particular,
for all but finitely many p, admissible elements exist for py p.

Proof. By Lemma 2.2.18, 7  is discrete series of weight 2. Without loss of generality, extend Fy so that
it is also a strong coefficient field for 7. Then for all primes p of Ey, pr, = Sym? prop(—1). Comparing
similitude characters, we see that the central character of 7 is cubic; by twisting, we may assume without
loss of generality that it is trivial. Then the claim about the image of p, , follows from [94, Theorem 3.1].
Restricting to these p, if p is sufficiently large we may fix z € Z; with

(C.9) 2# 41,423 2% 273 (mod p), z2#1 (mod p).

Then applying f to the diagonal matrix <g ZOQ> , it follows that the image of p, , contains a matrix with

eigenvalues {1, z, 2%, 2 }; in particular, admissible elements exist for py . O

Lemma C.4.3. Suppose 7 is not endoscopic, and BC(r) is neither a (weak) symmetric cube lift nor a (weak)
automorphic induction. For all but finitely many primes p of Epy:

(1) The image of . ,, contains a conjugate of Spy(Fy).
(2) If Eop = Qp, the image of p,. ,, is a conjugate of GSp,(F).

Moreover, for all primes p with p > 3, the Zariski closure (over Eq ) of the image of prp is equal to
GSpy(Eo,p)-
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Proof. Part (1) is [123, Theorem 1.2(ii)]. Part (2) follows immediately. For the final claim, by Proposition
C.2.4(2) and Corollary C.2.6, it suffices to rule out the case that p; , factors through the image of the sym-
metric cube representation. In this case, we can write p, ,(1) = Sym? po, for some pg : Gg — GLa2(E) /3
with Zariski-dense image (over ). By Lemma C.4.4 below, pg lifts to

Po - GQ — GLQ(@p).

Comparing similitude factors, we see that det pg/xp,cyc is cubic; so after twisting, we may assume without
loss of generality that det pg = Xp,cyc. For all but finitely many primes ¢, we have po(I;) C ps, so the
determinant condition implies pg is unramified almost everywhere. By [87, Corollary 3.2.13], po!c@p is
geometric. Since pg is also clearly odd, [86, Theorem 1.0.4] implies pg arises from a modular form, hence
BC(m) is a symmetric cube lift, and this concludes the proof of the final claim. O

Lemma C.4.4. For all n, we have H*(Q,Z/nZ) = 0.

Proof. This lemma is well-known, but we were unable to find a reference. Without loss of generality, n = pis
prime. By a theorem of Tate [87, Theorem 2.1.1], H?(Q, Z,,/Q,) = 0. On the other hand, by the Kronecker-

Weber theorem, H1(Q, Q,/Z,,) = Hom(Z, Qp/Zy,) is p-divisible. So the lemma follows from the long exact
sequence

= HY(Q,Qp/Zy) =5 HY(Q,Qy/Zy) — HA(Q,Z/pZ) — H*(Q,Qp/Zy) — -+ .
]

C.4.5. For an automorphic representation 7 of GL2(A k) as in Theorem C.3.2 with K/Q real quadratic, let
75" denote the Gal(K/Q)-twist. We say m is exceptional if there exists o € Gal(Q/Q) and a finite-order
automorphic character x of Aj such that

e 21l ® .
Lemma C.4.6. Suppose 7 is not endoscopic, and BC(r) is the automorphic induction of a non-CM auto-
morphic representation 7y of GLo (A k) with K/Q real quadratic. Then for all but finitely many primes p of
FEy, the following hold.

(1) The image of px contains a conjugate of GLo(Z,,), embedded diagonally via
GLQ — GL2 XGm GLQ — GSp4 .

(2) If p splits in K or g is not exceptional, the image of pr contains a conjugate of GLa(Zy) Xz
GL2(Zp).

Proof. Recall from Lemma 2.2.19 that 7y is the automorphic representation associated to a Hilbert modular
form of weights (2,4). Assume without loss of generality that Ey is Galois and is also a strong coefficient
field for 7§"; then

p7W|GK = Prop D Prsv p-
Hence part (1) follows from Corollary C.3.7(2). For part (2), the non-exceptional case is immediate from
Theorem C.3.6(2), so suppose without loss of generality that p splits in /. Then for any o € Gal(Ey,/Q,),
and any fixed embedding j : K <— Q,, the Hodge-Tate weights of pr,, and o o pr,, with respect to

j coincide. This rules out that pﬂéw,p|GL = 0 0 pryple, for any finite extension L/K, so by Corollary
C.3.7(2), we obtain (2). O

Lemma C.4.7. Suppose BC(7) is the automorphic induction of an automorphic representation my of GLa (A k)
with K /Q imaginary quadratic, and m is not an automorphic induction. Then for all but finitely many primes

p of Ep:
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(1) The image of prp contains a conjugate of SLo(Zy), where SLy — Spy is embedded into the Levi
Jactor of a Siegel parabolic.
(2) If p splits in K, then admissible elements exist for pr p.

Proof. By Lemma 2.2.20, after possibly extending Fy we can write

(C.10) prplGr = Pip © Xp ® Pp @ X"
for all p, where:

e p;p is the Galois representation attached to a classical modular form f of weight k& = 2 or 3 with
coefficients in Fy; here the normalization is as usual, i.e. detps, = wy - x’;;ylc
nebentype character of f, viewed as a character of G via class field theory.

e Xy is the G g -representation attached to an algebraic Hecke character x’ of infinity type (—1,3 — k).

e ;" is the Gal(K/Q)-twist of x;, which is also associated to the twist (/).

where wy is the

The symplectic form in (C.10) is given by the natural pairing

Prp @ Prp @ Xp @ Xy — det prp @ XpXp' = Xp,eye-

Let L be the fixed field of wy, which is independent of p. After discarding finitely many primes p and
changing basis, we may assume by [94, Theorem 3.1] that

p1p(G1) = {9 € GL2(0) : detg € ()"},
where O is the ring of integers of a subfield of Ej . Then the Galois group

Gal(L(psp) N LK (Xp.eyer Xp» Xp wr)/L(det(pyp)))

is a solvable quotient of SLo(O), hence trivial if p is sufficiently large; so we have

(C.1D) L(psp) 0 LK (Xp.eye: Xp: Xp" > wy) = L{det(pyyp)).

In particular, this immediately implies (1).

For (2), we further restrict to those p such that y,, is crystalline at all primes above p. Fix a prime v|p of K,
and let T be its complex conjugate, with inertia subgroups I,,, Iy C G%P; these are disjoint and each naturally
identified with Z; since we are assuming p is split (and unramified) in K. When restricted to inertia, the
characters x;’°, xp, and x," have the form:

ngc‘[vxjﬁ : Z;; X Z;; — Z;;
(21, 22) = 2122,
Xp‘[vxjﬁ : Z;; X Z;; — Z; C Og,p
-1_3-k
(21,29) > 27 ' 25
XEW‘]UX[F : Z;; X Z; — Z; C Og,p
3~k —1
(21,22) = 2y "2y .
In particular, one can calculate that, for p unramified in L, the image of

(Xps X;;W, Xp.eye) : Gr, — ng X Ogo,p X Z,
contains a subgroup of
{(a, b,c) € (Z))* : ab = csz}
with index at most 2. Comparing with (C.11), we see that the image of

(C.12) (PrpsXps X ) : G — GL2(0) x Op % Of
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contains a subgroup of
(C.13) {(g,x,y) € GLy(0) x ZX x ZX + det g € (ZX)*1, (zy)*~) = (det g)H}
with index at most 2. Let n := 2(k — 1) + 2(k — 2) = 4k — 6, and set
Sn = {(g,¢) € GLa(Zp) X Z : ¢,detg € (Z)"}.
Then for any (g, c) € Sy, there exists A € Z,; satisfying
A" = (det g)F 2k,

It follows from (C.13) that (gA~%, X, cA)? lies in the image of (C.12); hence (g,cg)? lies in the image of
(Prp @ Xp> Prp @ X3") = G — GLa(Egyp) x GLa(Eyy) for all (g,c) € Sy. If p is sufficiently large, this
immediately implies that admissible elements exist for pr . O

Lemma C.4.8. Suppose 7 is not endoscopic, and BC(r) is the (weak) automorphic induction of a Hecke
character xqo of a quartic field K C C. Then there exists a constant n such that, for all but finitely many
primes p of Ey, the following holds:

(1) prp(Gq) contains the scalar subgroup (Z,; )" C GSpy(Zp).
(2) If p splits completely in the Galois closure K¢ of K, then pr ,(Gq) contains a conjugate of

x
y px,y,2 € (Z,)" p C GSpy(Zy).

xz/y

Proof. Let x == xo|- |1/ 2. From Theorem 2.2.10(1), we see that the local component ,, of y takes algebraic
values on K¢ for cofinitely many primes v of K; hence X is algebraic [117, Théoreme 3.1]. Extending Ey
if necessary, for all primes p of Ej we have the p-adic character x, associated to x, and pr , = Indg?; Xy for
all p. We restrict to those p such that K“/Q is unramified at p, and ,, is crystalline at all primes v|p. The

Hodge-Tate weights of x, with respect to the four embeddings i : K < @p are {—1,0, 1,2} in some order
by Theorem 2.2.10(2); hence on the subgroup

7Y — (O ® Zy)* — GR,
Xp is given by z — 2z 10H1+2 = »2 In particular, on the subgroup
Z; — (Oge ® Zp)* — G‘;‘Pc,
Xp is given by z — 22IK%K] The same is true for all Gp-conjugates of xy, so the image of pr | . contains
the scalar subgroup (Z,; )2IEK] proving (1).
For (2), we decompose
(C.14) PrplGre = X1 8 X2 D X3 B X4,
where all of the characters x; are Galois conjugates of x;|q,. and
(C.15) X1 X2 = X3 X4 = Xpeye:
For each g € G, prp(G k<) contains the image of
g9 X1
(C.16) - x2
g-X3
g X4
Fix an embedding ¢ : K¢ — @, and for any Hodge-Tate character p of Gxe, let HT(p) denote the
Hodge-Tate weight with respect to ¢. Let I, C Gk be the inertia subgroup for the prime induced by 4. In
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particular, restricting (C.16) to I, and using that each ; is crystalline at primes above p, pr ,(G k<) contains
the image of

Z;; — GL4(Zp)
ZHT(g:x1)
SHT(g-x2)
z ~HT(g:x3)
ZHT(Q'X4)

Let
(C.17) LC{(x,y,z,w)€Z4:x+y:z+w}
be the sublattice spanned by the vectors (HT(g - x1), HT (g - x2), HT(g - x3), HT(g - x4)) for g € Gg.

Claim. For a constant n > 1 independent of p, the lattice L contains

n-{(m,y,z,w)€Z4 : x—i—yzz—kw}.

Note that the claim implies the lemma, because, as long as p is sufficiently large, there exists 2 € (Z, )"
satisfying (C.9); an element h € G such that p, ,(h) has eigenvalues {1, 23 2, 22} is admissible for py p,
and the claim implies such elements exist.

Now we prove the claim. Let pr : Z* — Z3 be the projection onto the first three factors, and note that
it suffices to show pr(L) contains n - Z3. Without loss of generality, suppose the Hodge-Tate weights of
X1, X2s X3, and x4 are 1, 0, 2, and —1 (in order). Because the action of Gk« on the set {x1, X2, X3, X4}
is transitive, for each j € 1,...,4 we have some g; € Gg such that HT(g;x;) = 1. In particular, using
(C.15), pr(L) contains (1,0,2); a vector e = (0,1,2) ore = (0,1,—1); and a vector f = (2,—1,1) or
f = (-1,2,1). In particular, the set {(1,0,2),e, f} is always linearly independent; and, since there are
only four total possibilities for this set, there exists n € Z such that the Z-span of (1,0,2), e, and f always
contains nZ.

O

Now we are ready to consider assumption (R1) from the main text (see (9.3.1)).

Theorem C.4.9. Let 7 be a relevant, non-endoscopic automorphic representation of GSp,(Aq), with strong
coefficient field Ey. Then (R1) holds for all but finitely many primes p of E.

The theorem is also true in the endoscopic case, but not used in the main text; the proof uses Lemma
C.4.13 below.

Proof. This is an immediate consequence of Lemmas C.4.2 through C.4.8.
O

Proposition C.4.10. Suppose 7 is not endoscopic, and there exists a prime { such that 7y is of type Ila. Then
for all but finitely many primes p of Ey, admissible elements exist for pr p.

Proof. The Weil-Deligne representation recgr () is tamely ramified; under the embedding GSp, — GL4
from (1.1.4), it is given by

+01/2 1

Froby = “ € GSp,(C), N = € GSp,(C)

:tefl/Q
l/a
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By the purity assertion in Theorem 2.2.10(1) (for any prime p of Ej), we know |a|] = 1. Extend Ej if
necessary so that o> € Ej. Then for all but finitely many primes p of Ej, we have:

##£1 (mod p),
o0 # +1,£0% 072 0" (mod p).
Suppose p satisfies the above conditions, and let Frob, € G be any lift of Frobenius. By Theorem 2.2.10(1),

prp(Frob?) has eigenvalues {€%,02,1,0%/a?}, hence Frob; is an admissible element for py . O

Combining Lemmas C.4.2 through C.4.8 with Proposition C.4.10, we obtain:

Theorem C.4.11. Let w be a relevant, non-endoscopic automorphic representation of GSpy(Ag), with
strong coefficient field Ey. There is a set S of rational primes of positive Dirichlet density such that for
all p € S and all p|p, admissible elements exist for py . There exists such an S containing all but finitely
many p if 7 satisfies any of the following:

(i) There exists a prime £ such that 7y is of type Ila.
(ii) BC(r) is a symmetric cube lift.
(iii) BC(7) is the automorphic induction of a non-CM automorphic representation 7y of GLa(Ag ) with
K real quadratic, and ¥ # 7§ ® x for all o € Gal(Q/Q) and all quadratic Hecke characters x
of K.

O
Finally, we handle the endoscopic case separately.

Proposition C.4.12. Suppose 7 is endoscopic, associated to a pair (w1, m2) of automorphic representations
of GLa(Aq) (in any order). Then:
(1) If m1 does not have CM, then for all but finitely many p and all p|p, there exist admissible primes for
Pr.p that are BD-admissible for py, p.
(2) If m1 has CM by a field K and 7o does not have CM by K, then for all but finitely many p split in K
and all p|p, there exist admissible primes for py , that are BD-admissible for py, p.

Proof. Let S be the set of all rational primes in case (1) and all rational primes p split in KX in case (2). Then
there exists a constant n > 1 such that, for all but finitely many p € S and all p|p, px, ,(Gg) contains the

diagonal subgroup
{(1‘ y) DX,y € (Z;)”}

In the non-CM case this follows from Theorem C.3.2 (with n = 1), and in the CM case it follows from
either [80, Proposition B.6.3] or a similar argument to Lemma C.4.8. On the other hand, there exists a
constant n > 1 such that, for all but finitely many p and all p|p, pr, ,(Gg) contains the scalar subgroup
(Z;)” C GL2(Zy).

By Lemma C.4.13 below, after enlarging n if necessary, for all but finitely many p € S and all p|p,
(prvp X Pray) (G contains
z 0 z 0\ . x\n 2 .
(5 0).(; ) e @rst ).
and this implies the proposition. O

Lemma C.4.13. Suppose 7 is endoscopic, associated to a pair (71, m2) of automorphic representations of
GL2(Aq) which do not both have CM by the same imaginary quadratic field. Then as p varies over primes

of Eo, QP p) N Q(Pr, ) has bounded degree over Q(piy).
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Proof. If both 71 and 9 are non-CM, then the lemma follows from [70, Theorem 3.2.2], or equivalently from
Theorem C.3.6(2) above. Now suppose 71 is CM and 3 is not. Since SLy(IF,) is simple for ¢ sufficiently
large and p, ,, is dihedral for all p, it follows from [94, Theorem 3.1] that Q(p,, ,,) N Q(Pyr, ,) = Q(pp) for
all but finitely many p.

If m; and 7o are CM with respect to two different imaginary quadratic fields K; and K>, fix elements
71, T2 € Gg such that 7; is a complex conjugation on K; but acts trivially on K, ¢ # j. The abelian group
H = Gal(Q(p,, )/ K1) is a subgroup of k* for a quadratic étale algebra k over the residue field of p; in par-
ticular, H is the product of at most two cyclic groups. Let G := Gal(K1K2(p,, ,) N K1K2(pr, )/ K1 K2).
Because G is a subquotient of H, the conjugation actions on GG of both 7; and 772 are by inversion, so the
conjugation action of 7y is trivial; arguing symmetrically, the conjugation action of 7 is also trivial, so G is
2-torsion and generated by at most two elements. We conclude that |G| is uniformly bounded, which implies
the lemma. g

C.5. Complements for the second reciprocity law. In this subsection, we prove some auxiliary results
needed in §11. Let us fix a relevant automorphic representation 7 of GSp,, and an isomorphism ¢ : Q,, =5 C
with p > 3.

Lemma C.5.1. Let 7 be a cuspidal automorphic representation of GLa(Ag) whose archimedean component
is discrete series of even weight k > 2. Let F' be a number field such that T does not have CM by any
quadratic imaginary subfield K C F(py,). If F(px.) N F(ad® p.,) is infinite, then F(ad® p;,) C F(px.),
and moreover one of the following occurs:

(i) m is not endoscopic, and if g € Gq is admissible for py ,, then ijL(QQ) has distinct eigenvalues.
(ii) m is endoscopic associated to a pair (11, T2) of automorphic representations of GLa(Aq), and for
Jj = lor2, m; = 77 ®x for some finite-order Hecke character x and automorphism o € Aut (Q/Q).

Proof. First, we claim that 7 does not have CM. Indeed, if 7 has CM by a quadratic imaginary field K, then
it is easy to check that any infinite subfield of F'(ad® p,,) contains K; so if F(p.,) N F(ad® p,,) is infinite
then K C F(px, ), which contradicts the hypotheses of the lemma.

Since 7 does not have CM, p,, is strongly irreducible by Theorem C.3.2. Hence by Lemma C.2.3, the
normal, infinite-index subgroup

Gal (F(ad’ pr,)/F(ad’ pr,) N F(pr,)) < Gal (F(ad’ p,)/F)

must be trivial; equivalently, we have F'(ad” p;,) C F(py..).
Suppose first that 7 is not endoscopic, so V7 , is absolutely irreducible by Lemma 2.2.12. Without loss of
generality, we assume that F' is Galois and that

(C.18) Vedar = EPVi

for some strongly irreducible representations V;, all of the same dimension n (Lemma C.2.5). Let G =
pr.(GF),and let H = ad® pr.(GF); then the inclusion F’ (ad0 pr.) C F(pr,) corresponds to a surjection
G/Zg — H (recall here that H has trivial center by Lemma C.2.2(1)). In particular, n > 1. Write g =
Lie(G/Z¢) and h = Lie H, and recall that b is simple by Theorem C.3.2 and Corollary C.1.2(2). We have
a surjection

(C.19) g—>bh

which identifies h with a simple factor of g.

Suppose first that n = 2. Then the decomposition (C.18) has exactly two factors, and g is either simple,
or isomorphic to gg X go, with go simple and the factors interchanged by the action of Gig. Since (C.19)
is Gg-equivariant, g is simple, and (C.19) is an isomorphism. If pT,L(gQ) has only one eigenvalue for some
g € Gg, then g? acts unipotently on b, hence also on g. Since g? is a square, it preserves the decomposition
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(C.18), so by Lemma C.2.2(3), we see that 92 has at most two eigenvalues on V. ,, which contradicts g being
admissible.

We are now reduced to the case n = 4, i.e. BC(r) is not an automorphic induction. Hence g is simple
by Proposition C.2.4(1) and Corollary C.1.2(2), and again (C.19) is an isomorphism. If p,,(g*) had only
one eigenvalue, then g2 € Gg would act unipotently on b, hence also on g; but by Lemma C.2.2(3), this
contradicts the admissibility of g.

It remains to consider the case when 7 is endoscopic associated to a pair (71, 72) of cuspidal automorphic
representations of GLa(Ag). We let G = pr,.(Go), Gr; = pwj,L(GQ), or = Lie(Gr/Z¢,), Or; =
Lie(Gr, /ZGM ), for j = 1,2. The assumption F'(ad’ pr.) C F(pxr,) implies that Gg does not have open
image in the product G /Zq, x H. By Goursat’s Lemma, the Lie algebra of the image of G is the graph of
an isomorphism between simple factors of g C g, ® gr, and b. Since 7 is non-CM, we conclude that for
J = 1lor2,m;isnon-CM and G has non-open image in G, /Z., x H. Hence by [70, Proposition 3.3.2],
there exists an automorphism o € Aut(Q/Q) and a Hecke character y such that 7 2 7 @ x, for j = 1or

2; this concludes the proof of the lemma.
n

For the rest of the section, we fix a strong coefficient field Ey for 7 and let p be the prime of Ey induced
by ¢.

Lemma C.5.2. Let T be a cuspidal automorphic representation of GLa(Aq) whose archimedean component
is discrete series of even weight k > 2. If 7 does not have CM by any quadratic imaginary subfield K C
Q(pr,.), then for any number field F and any Oy-stable lattice Ty, C Vi p, HY(Gal(F (py,, ad® pr.)/Q), Tr)
is finite.

Proof. By inflation-restriction, we may assume without loss of generality that F' = Q. Applying Corollary
C.2.8 and inflation-restriction again, to prove the lemma it suffices to show

(C20) Hl (Gal((@(pﬂ,m ado PT,L)/Q(PW,L)a T7r) - HomGQ(Gal(Q(pmw ado PT,L)/@(PW,L))y T7r) =0.

By Lemma C.5.1, we may assume without loss of generality that Q(px,,) N Q(ado pr,) is finite. Since Xp cye
has infinite order, there exists g € G such that ad’ p,,(g) = 1 and X, cyc(g) has infinite order, meaning
in particular that pr,(g) # 1. Then g acts trivially by conjugation on Gal (Q(pr,.,ad’ pr,)/Q(px,)) <
ad® pr.(Gg). In particular, any Gg-invariant homomorphism A : Gal (Q(pm, ad® pri)/ Q(pm)) — T
has image contained in 7 g=1 C T. If 7 is non-endoscopic, this shows h = 0 by Lemma 2.2.12; if =
is endoscopic associated to (71, 72), the same argument applies because we cannot have pr, ,(g) = 1 or
Prs,.(g) = 1 under the assumption that x;, cyc(g) has infinite order. This shows (C.20). O

Proposition C.5.3. Let 7, 1, Ey, and p be as above with m non-endoscopic, and suppose admissible primes
exist for pr = prp. Suppose given the following data:

o A quadratic field F ¢ Q(px).

o A cuspidal automorphic representation T of GL2(Aq) whose archimedean component is discrete
series of even weight k > 2, such that T does not have CM by any quadratic field K C F(p).

o A Go-stable Op-lattice Ty, C Vi, and a non-torsion cocycle ¢ € Hl(Q, Tr).

Then there exists an element g € G such that:

(1) g is is admissible for p. and has nontrivial image in Gal(F/Q).
(2) pr.(g°) has distinct eigenvalues.
(3) c(g) has nonzero component in the I1-eigenspace for g.

Note the last condition is independent of the choice of cocycle representative for c.
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Proof. First choose g satisfying (1), and with the additional property that g has trivial image in Gal(K/Q)
if 7 has CM by a quadratic field K. (This choice is possible because we have F' ¢ Q(p,) and K ¢ F(pr).)

Claim. There exists h € Gr(,,) such that hg satisfies (2).

Proof of claim. If F(p;) N F(ad® p,,) is infinite then taking h = 1 suffices by Lemma C.5.1, so we may
assume without loss of generality that F'(p,) N F(ad® p,,) is finite. If 7 is non-CM, then because F(p,) N
F(ad® pr,.) is finite, Theorem C.3.2 implies that the image of p-,|c,. () CONtains a compact open subgroup
of {x € D* : Nm(z) € Q¥ } — GL2(Q,), for a quaternion algebra D over a finite extension £ of Q.
Since zp-,(g)xpr,.(g) having distinct eigenvalues is an open condition on x € D*, the claim follows when
T is non-CM.

If on the other hand 7 has CM by an imaginary quadratic field K, then because p., ’GQP has distinct Hodge-
Tate weights, there exists hg € Gk such that p,,(ho) has eigenvalues whose ratio is of infinite order. After
replacing hq with a finite power, it acts trivially on F'(p, ) N F(ad® p,,,); thus there exists h € G F(py) SUCh
that p,,(h?) has distinct eigenvalues. Since g has trivial image in Gal(K/Q), p-.(g) and p,,(h) commute;
in particular, if p,,(g?) is scalar, then p.,(hghg) = pr..(h*)pr.(g°) has distinct eigenvalues. Hence either
g or hg satisfies (2), which shows the claim. O

Replacing g with hg as in the claim, we may now assume ¢ satisfies both (1) and (2). By Lemma C.5.2
and inflation-restriction, c has nonzero image in

H'(F(pr, ad Pry); TW)GQ = HomG@(Gal(@/F(Pm ad’ pra)) Tr),

and because V. , is absolutely irreducible, there exists h € Gy such that ad’ pru(h) = pr(h) =1 and c(h)
has nonzero component in the 1-eigenspace for g. Then either g or hg satisfies (1), (2), and (3), which proves
the proposition.

O

Finally, we have the endoscopic analogue of Proposition C.5.3.

Proposition C.5.4. Let 7, 1, Ey, and p be as above, with 7 endoscopic associated to pair (71, 72) of auto-

morphic representations of GLa(Aq), and assume that Ey is a common strong coefficient field of w1 and .

Let j = 1 or 2, and suppose there exist admissible primes for pr , which are BD-admissible for pr; = px; p.
Suppose given the following data:

o A quadratic field F ¢ Q(px).

o A cuspidal automorphic representation T of GLo whose archimedean component is discrete series
of weight at least 2, such that T does not have CM by any quadratic field K C F(py).

o A Gg-stable Oy lattice Tr;; C Vx, », and a non-torsion cocycle c € H'(Q, Tr,).

Then there exists an element g € Gq such that:

(1) g is is admissible for p, and BD-admissible for pr;, and has nontrivial image in Gal(F'/Q).
(2) pT’L(gQ) has distinct eigenvalues.
(3) c(g) has nonzero component in the 1-eigenspace for g.

Proof. Without loss of generality, suppose j = 1. Clearly there exists g € G satisfying (1), such that, if 7
has CM by an imaginary quadratic field K, g has trivial image in Gal(K/Q). We next claim:

Claim. There exists g € G satisfying (1) and (2).

Proof. If F(p,) N F(ad® p,,) is finite, then we conclude using the same argument as for the claim in the
proof of Proposition C.5.3. By Lemma C.5.1, we may therefore assume that, forz = 1 or 2, m; = 79 @ x for
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some finite-order Hecke character y and automorphism o € Aut(Q/Q). In this case, T is necessarily non-
CM (because its CM field would be contained in Q(pm.)), so 71 and 7o cannot both be CM; and it suffices
to show there exists g € G satisfying (1), such that p, (g?) has distinct eigenvalues. Hence it suffices to
show that Q(pr, ) N Q(px,) is finite over Q( 11, ); and this follows from an argument very similar to Lemma
C.4.13, using that 7, and 7y are not both CM. O

Now take g as in the claim. By Lemma C.5.2, ¢ has nonzero image in
HI(F(pﬂ., ad’ pra)s Try)-

Arguing as in Proposition C.5.3 and using the absolute irreducibility of p;,, the proposition follows. U
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