
ON THE BLOCH-KATO CONJECTURE FOR SOME FOUR-DIMENSIONAL SYMPLECTIC
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Abstract. The Bloch-Kato conjecture predicts a far-reaching connection between orders of vanishing of L-
functions and the ranks of Selmer groups of p-adic Galois representations. In this article, we consider the
four-dimensional, symplectic Galois representations arising from automorphic representations π of GSp4(AQ)
with trivial central character and with the lowest cohomological archimedean weight. Under mild technical
conditions, we prove that the Selmer group vanishes when the central value L(π, spin, 1/2) is nonzero. In the
spirit of bipartite Euler systems, we bound the Selmer group by using level-raising congruences to construct
ramified Galois cohomology classes. The relation to L-values comes via the GSpin3 ↪→ GSpin5 periods on
a compact inner form of GSp4. We also prove a result towards the rank-one case: if the π-isotypic part of
the Abel-Jacobi image of any of Kudla’s one-cycles on the Siegel threefold is nonzero, it generates the full
Selmer group. These cycles are linear combinations of embedded quaternionic Shimura curves, and under the
conjectural arithmetic Rallis inner product formula, their heights are related to L′(π, spin, 1/2).
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0. Introduction

0.1. Main results. Let π = ⊗′πv be a cuspidal automorphic representation of GSp4(AQ) of trivial central
character and conductorN(π), such that π∞ belongs to the discrete series L-packet of parallel weight (3, 3).
In particular, π appears in the étale cohomology of the GSp4 Shimura variety with trivial coefficients. Let
E be a sufficiently large coefficient field; then we have a compatible family of p-adic Galois representations

ρπ,p : GQ → GSp4(Ep)

indexed by primes p|p of E, and normalized so that the similitude character of ρπ,p is cyclotomic. Let Vπ,p
be the underlying four-dimensional Ep[GQ]-module of ρπ,p, and consider the Bloch-Kato Selmer group

H1
f (Q, Vπ,p) = ker

H1(Q, Vπ,p)→ H1(Qp, Vπ,p ⊗Bcris)×
∏
ℓ ̸=p

H1(IQℓ , Vπ,p)

 ,

where IQℓ is the local inertia subgroup. The Bloch-Kato conjecture applied to Vπ,p predicts

dimEp H
1
f (Q, Vπ,p) = ords=1/2L(π, spin, 1/2),

where the L-function is normalized so that s = 1/2 is the central value. Our first main result proves many
cases of the Bloch-Kato conjecture for Vπ,p in rank zero.

Theorem A (Theorem 9.1.4). Suppose π is not CAP or endoscopic, and for some ℓ|N(π), πℓ has a local
Jacquet-Langlands transfer to the compact inner form of GSp4,Qℓ . Let p|p be a prime of E such that:

(1) πp is unramified.
(2) The residual representation ρπ,p is absolutely irreducible and generic (Definition 2.7.3).
(3) There exists a prime q ∤ N(π) such that q4 ̸≡ 1 (mod p), and ρπ,p(Frobq) has eigenvalues

{q, 1, α, q/α}

with α ̸∈
{
±1,±q, q2, q−1

}
.

Then
L(π, spin, 1/2) ̸= 0 =⇒ H1

f (Q, Vπ,p) = 0.

Remarks. (i) The conditions (1) and (2) are always satisfied for cofinitely many p. Condition (3) is
always satisfied for the primes p lying over a set of rational primes of positive Dirichlet density; it is
satisfied for all but finitely many p under conditions listed in Theorem C.4.11.

(ii) When p > 5, which is necessary for (3), π is CAP or endoscopic if and only if Vπ,p is reducible.
(iii) For all but finitely many of the primes p satisfying the conditions in Theorem A, we are able to

strengthen the result to the vanishing of the dual Selmer groupH1
f (Q, Vπ,p/Tπ,p), where Tπ,p ⊂ Vπ,p

is a Galois-stable lattice; see Definition 9.3.7 and Corollary 9.3.9.

For instance, from Theorem A we can deduce the following:

Corollary B (Corollary 9.3.10). Suppose π is not CAP or endoscopic, and there exists a prime ℓ|N(π) such
that πℓ is of type IIa in the notation of [95]. Then

L(π, spin, 1/2) ̸= 0 =⇒ H1
f (Q, Vπ,p/Tπ,p) = 0

for all but finitely many p.

In §9.4, we give applications of Theorem A to certain π arising by automorphic induction; this gives new
results towards Bloch-Kato for Hilbert modular forms over real quadratic fields of non-parallel weight (2, 4)
(including CM forms), and for twists of classical modular forms of weight 3 by certain Hecke characters of
imaginary quadratic fields.
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Our second main result concerns the rank one case of Bloch-Kato for Vπ,p. To state it, let V be a quadratic
space of signature (3, 2), and suppose π admits a Jacquet-Langlands transferΠ to the inner formGSpin(V ) of
GSp4; for instance, if V is split, then GSpin(V ) = GSp4 and we can take Π = π. LetK ⊂ GSpin(V )(AQ)
be a neat compact open subgroup such that ΠKf ̸= 0, and let ShK(V ) be the Shimura variety for GSpin(V )

at level K, which is a classical Siegel threefold when V is split. Let p|p be a prime of E; then we have

(0.1) H i
ét(ShK(V )Q, Ep)[Πf ] =

{
ΠKf ⊗ Vπ,p(−2), i = 3,

0, i ̸= 3.

In particular, if CH2(ShK(V ))mπf denotes the Chow group of codimension-two algebraic cycles, localized
at the maximal ideal of an appropriate Hecke algebra corresponding to the eigenvalues of π, we have an
Abel-Jacobi map

∂AJ,Πf : CH2(ShK(V ))mπf → H1
f (Q, H3

ét(ShK(V )Q, Ep(2))[Πf ])

= H1
f (Q, Vπ,p)⊗ΠKf .

(0.2)

We consider the codimension-two Kudla cycles

(0.3) Z(T, φ) ∈ CH2(ShK(V )),

which are indexed by the data of a 2 × 2 symmetric, positive-semidefinite matrix T and a test function
φ ∈ S(V 2 ⊗Af ,Z). When T is nondegenerate, Z(T, φ) is a linear combination of Shimura curves over Q,
embedded into ShK(V ) by GSpin(V )(Af )-translates of group maps of the form

GSpin(1, 2) ↪→ GSpin(3, 2);

conversely, any such embedded Shimura curve can be written as a Kudla cycle for some T and φ.

Theorem C (Theorem 12.3.1). Suppose π is not CAP or endoscopic, and its base change to GL4(AQ) does
not arise by automorphic induction from an imaginary quadratic or quartic CM field. Let p|p be a prime of
E satisfying (1)-(3) from Theorem A. Then for any Kudla cycle Z(T, φ) ∈ CH2(ShK(V )),

∂AJ,Πf (Z(T, φ)) ̸= 0 =⇒ dimEp H
1
f (Q, Vπ,p) = 1.

We now explain the relation of the Bloch-Kato Conjecture to Theorem C, in whichL-values do not directly
appear. According to the resolution by Bruinier and Westerholt-Raum of Kudla’s modularity conjecture [15],
the formal q-series

(0.4) Θφ :=
∑

T∈Sym2(Q)≥0

Z(T, φ)qT

lies in CH2(ShK(V )) ⊗Z M5/2,2, where M5/2,2 is the space of holomorphic Siegel modular forms of de-
gree 2 and weight 5/2. Let f ∈ M5/2,2 generate the automorphic representation of the metaplectic group
Mp4(AQ) corresponding to Π under the generalized Shimura-Waldspurger correspondence of Gan-Li [33];
then the Petersson inner productΘφ(f) := ⟨Θφ, f⟩ lies inCH2(ShK(V ))C. The still-conjectural1 arithmetic
Rallis inner product formula proposes that, up to some local factors depending on φ and f , the derivative
L′(π, spin, 1/2) is related to the height of the cycle Θφ(f) (suitably interpreted). Assuming Beilinson’s
conjecture on the injectivity of the p-adic Abel-Jacobi map, Theorem C could then be reformulated as

L′(π, spin, 1/2) ̸= 0 =⇒ dimEp H
1
f (Q, Vπ,p) = 1,

which is consistent with the Bloch-Kato conjecture.

1But see the important progress towards this result by Li-Zhang [63], and the unitary case proved by Li-Liu [61, 62].



4 NAOMI SWEETING

0.2. Overview of the proofs. Before giving more detailed sketches below, we briefly indicate the methods
of proof of Theorems A and C. Pursuing a strategy initiated by Bertolini and Darmon for elliptic curves
[7] – and later extended to many new contexts by other authors [24, 26, 66, 67, 68, 69, 120] – we bound
the Selmer group by constructing ramified Galois cohomology classes through level-raising congruences
and special cycles on Shimura varieties for ramified GSpin5 groups. Proving the classes we construct are
ramified is the most delicate part: by a calculation on the special fiber, the ramification is essentially measured
by linear combinations of compact GSpin3−GSpin5 periods for a Jacquet-Langlands transfer of π.2 To
access the underlying representation theory of these periods and relate them to L-values, we interpret them
as the Fourier coefficients of certain theta lifts in M5/2,2.

0.3. Sketch of the proof in the rank zero case. Let us explain the main ideas involved in the proof of
Theorem A. Fix aGQ-stable lattice Tπ,p ⊂ Vπ,p, and let Tπ,n := Tπ,p/p

nTπ,p for n ≥ 1. The mechanism for
bounding the Selmer group is a collection of auxiliary Galois cohomology classes

κn(q) ∈ H1(Q, Tπ,n),

indexed by primes q satisfying appropriate level-raising congruence conditions modulo pn, and having the
following two properties:

(1) The restriction Resℓ κn(q) is unramified for all ℓ ∤ N(π)q, and crystalline for ℓ = p.
(2) Under the assumption L(π, spin, 1/2) ̸= 0, Resq κn(q) is ramified (if n is sufficiently large).

Given such a system of classes, a standard argument using Poitou-Tate duality shows that H1
f (Q, Vπ,p) van-

ishes.
As indicated in §0.2, we obtain the classes κn(q) by level-raising congruences from special cycles on

Shimura varieties for ramified GSpin5 groups. More precisely, fix the prime ℓ|N(π) such that πℓ has a local
Jacquet-Langlands transfer (we will see later that this is crucial for the argument). Let Vqℓ be the unique five-
dimensional quadratic space of signature (3, 2) and trivial discriminant that ramifies precisely at q and ℓ; one
exists by the local-global classification of quadratic forms. On the corresponding GSpin Shimura variety
Sh(Vqℓ) we have the codimension-two Kudla cycles Z(T, φ) ∈ CH2(Sh(Vqℓ)) as in §0.1. (For simplicity,
we suppress the choice of level structure.) After localizing at the maximal ideal m of the Hecke algebra
corresponding to ρπ,p, the main result of [42] implies that H4(Sh(Vqℓ), Op)m = 0, where O ⊂ E is the
ring of integers – this is the most crucial way that the condition (2) of Theorem A enters the argument. In
particular, one has an Abel-Jacobi map

∂AJ,m : CH2(Sh(Vqℓ))m → H1(Q, H3
ét(Sh(Vqℓ), Op(2))m).

However, it is no longer true that Vπ,p appears in the étale cohomology H3
ét(Sh(Vqℓ)Q, Ep), because, as πq

is unramified, π does not have a Jacquet-Langlands transfer to GSpin(Vqℓ).
Instead, we construct level-raising maps (see below)

αn : H3
ét(Sh(Vqℓ), Op(2))m → Tπ,n.

Then we obtain a family of Galois cohomology classes

κn(q, T, φ, αn) := αn ◦ ∂AJ,m(Z(T, φ)) ∈ H1(Q, Tπ,n),

for varying T and φ ∈ S(V 2
qℓ⊗Af ,Z). Any κn(q, T, φ, αn) will satisfy the property (1) above, as long as the

level structure for Sh(Vqℓ) is chosen to be hyperspecial outside N(π)q. The proof of (2) is far more subtle,
as we explain below, and we are only able to show that some κn(q, T, φ, αn) is ramified at q; in particular,
the choice of T cannot be made explicit. Once we have any ramified class, however, we can use it as the class
called κn(q) above.

2Or a congruent automorphic form to π, in the case of Theorem C.
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0.3.1. Ramification and the relation to L-values. Let Vℓ be the unique five-dimensional, positive-definite
quadratic space of trivial discriminant that ramifies only at ℓ. By the assumption that πℓ has a local Jacquet-
Langlands transfer, one can find a function

(0.5) βπ : GSpin(Vℓ)(Q)\GSpin(Vℓ)(Af )/K → O

with the same spherical Hecke eigenvalues as π, whereK is a sufficiently small compact open subgroup, with
Kq hyperspecial. We abbreviate this double coset space as Sh(Vℓ). Because π has trivial central character,
βπ descends to an automorphic form on SO(Vℓ); in particular, for any φ ∈ S(V 2

ℓ ⊗Af ,Z), one can consider
the classical theta lift

Θφ(βπ) ∈M5/2,2 ⊗Z O.

The classical Rallis inner product formula computes the Petersson norm of Θφ(βπ):

(0.6) ⟨Θφ(βπ),Θφ(βπ)⟩
.
= ⟨βπ, βπ⟩ · L(π, spin, 1/2)

up to local factors depending on φ and βπ.
On the other hand, the Fourier coefficients of Θφ(βπ) can be computed as GSpin3-periods of βπ. In fact,

for T ∈ Sym2(Q)≥0 and φ ∈ S(V 2
ℓ ⊗ Af ,Z), one can define Z(T, φ) ∈ Z[Sh(Vℓ)] analogously to Kudla’s

cycles in (0.3), arising from group embeddings GSpin3 ↪→ GSpin(Vℓ). Then we have:

Θφ(βπ) =
∑

T∈Sym2(Q)≥0

βπ(Z(T, φ))q
T .

In particular,

(0.7) L(π, spin, 1/2) ̸= 0 ⇐⇒ ∃T, φ s.t. βπ(Z(T, φ)) ̸= 0.

The connection to Galois cohomology classes comes from the following (idealized) identity, for a certain
choice of αn:

(0.8) Resq κn(q, T, φ
q ⊗ φram

q , αn) = βπ(Z(T, φ
q ⊗ φunr

q )) (mod pn).

Here φq ∈ S(V 2
qℓ⊗Aqf ,Z) ≃ S(V

2
ℓ ⊗Aqf ,Z) is any test function, φram

q ∈ S(V 2
qℓ⊗Qq,Z) is designed so that

Z(T, φq⊗φram
q ) ∈ CH2(Sh(Vqℓ)) will have a reasonable integral model over Z(q) – in fact, Z(T, φq⊗φram

q )
is a linear combination of quaternionic Shimura curves ramified at q, with the usual maximal compact level
structure – and φunr

q ∈ S(V 2
ℓ ⊗ Qq,Z) is an explicit test function whose origin is described in the next

paragraph. Finally, to make sense of the identity (0.8), we use that H1(IQq , Tπ,n)
Frobq=1 is free of rank one

over O/pn, by the congruence conditions imposed on q; so we are viewing both sides as elements of O/pn.
The main tool for proving (0.8) is an analysis of the weight spectral sequence for a semistable integral

model of Sh(Vqℓ) over Z(q); this is obtained by blowup from the canonical PEL model, which has ordinary
quadratic singularities. The double coset space Sh(Vℓ) enters the picture as the indexing set for the irreducible
components of the (two-dimensional) supersingular locus of the special fiber of Sh(Vqℓ), and indeed φunr

q

arises from considering the intersections of the special fiber of Z(T, φq ⊗ φram
q ) with various strata in the

supersingular locus. (Of course, for this discussion to be accurate, the level structures for Sh(Vqℓ) and Sh(Vℓ)
are chosen to be compatible away from q.)

However, even once we have proved (0.8), one major obstacle remains to proving that at least one of the
classes Resq κn(q, T, φq⊗φram

q , αn) is ramified. From (0.7), one can deduce that there exists φq and T such
that βπ(Z(T, φq ⊗ φsph

q )) ̸= 0 (mod pn) for sufficiently large n, where φsph
q is the indicator function of a

self-dual lattice. Unfortunately, althoughφunr
q is invariant by a hyperspecial subgroupKq ofGSpin(Vℓ)(Qq),

it is not equal to φsph
q . To get around this, we give a criterion onKq-invariant functions φq ∈ S(V 2

ℓ ⊗Qq,Z)
under which we can prove:

(0.9) βπ(Z(T, φ
q ⊗ φsph

q )) ̸= 0 (mod pn) =⇒ ∃T ′ s.t. βπ(Z(T ′, φq ⊗ φq)) ̸= 0 (mod pn).
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The function φunr
q satisfies the criterion, so indeed we can use (0.7), (0.8), and (0.9) to obtain the local

ramification of some class Resq κn(q, T
′, φ, αn). The lack of control over T ′ (in particular its possible

dependence on q) is the reason that we must consider the full family of classes κn(q, T, φ, αn).
The proof of (0.9) uses that the theta lift map

Θ−(βπ) : S(V 2
ℓ ⊗ Af ,Z)→M5/2,2 ⊗Z O

factors as a product of local maps, defined purely in terms of the local Weil representation. Thus (0.9) can be
reduced to a local question about the mod-p Weil representation of Mp4(Qq)× SO(Vℓ)(Qq) on S(Vℓ,Fp).

0.3.2. Level-raising. In the discussion above, we asserted the existence of a level raising map

(0.10) αn : H3
ét(Sh(Vqℓ), Op(2))m → Tπ,n

such that the classes κn(q, T, φq ⊗ φram
q , αn) satisfy the identity (0.8). We now explain the construction of

αn in more detail. The weight spectral sequence for Sh(Vqℓ) gives rise to a diagram of the following form:

(0.11)

M−1H
1
(
IQq , H

3
ét(Sh(Vqℓ)Q, O(2))m

)
H1
(
IQq , H

3
ét(Sh(Vqℓ)Q, O(2))m

)Frobq=1

Op [Sh(Vℓ)]m /(T
lr
q )

O/pn ≃ H1(IQq , Tπ,n)
Frobq=1,

ξ

αn,∗

βπ

where Tlrq is a certain spherical Hecke operator measuring the level-raising congruence at the prime q; M−1

refers to the monodromy filtration; and the equality in the bottom row uses the level-raising condition on
q. Any level-raising map as in (0.10) induces a map αn,∗ as in (0.11), not necessarily making the diagram
commute.

Using an idea of Scholze [98] on “typic-ness” of Galois modules, we show that the data of a Hecke-
equivariantαn,∗ is actually equivalent to the data ofαn. Moreover, the identity (0.8) is more or less equivalent
to the commutativity of the diagram (0.11). So our task is to find the Hecke-equivariant dashed arrow in (0.11)
lifting βπ ◦ ξ.

One approach to finding the lift in (0.11) would be Taylor-Wiles patching, in the spirit of [65]. This would
show that H3

ét(Sh(Vqℓ)Q, O)m is free as a Hecke module, and as a byproduct that the top arrow in (0.11) is
an isomorphism. However, the drawback of the patching argument is that it requires some strong “residual
ramification” conditions on ρπ,p|GQℓ

, for primes ℓ|N(π); in general, one expects that the Hecke-module
structure of H3

ét(Sh(Vqℓ)Q, O)m may be more complicated.
Instead of taking this route, our method still uses Galois deformation theory, but now only to obtain a

rather coarse quantitative control on the possible congruences between βπ ◦ ξ and other Hecke eigensystems
in H1(IQq , H

3
ét(Sh(Vqℓ)Q, Op(2))m). Indeed, if there were no congruences at all, then (0.11) would just be

a diagram of O/pn-modules, and the lift αn,∗ would exist for trivial reasons. In general, we are able to lift
βπ◦ξ only after multiplying by a generator of pC , whereC is essentially the length of a certain adjoint Selmer
group for Tπ,n. We can controlC using a theorem of Newton and Thorne [83, 110] thatH1

f (Q, ad
0 ρπ,p) = 0;

since C is independent of n and q (and actually 0 for cofinitely many p) its appearance causes no harm in the
argument.3

3We remark that the theorem of Newton and Thorne still uses Taylor-Wiles patching, but in a more flexible context.
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0.4. Sketch of the proof in the rank one case. Let V be the quadratic space from §0.1. For an auxiliary
prime q1 satisfying a level-raising congruence condition, we consider the “nearby” quadratic spaceVq1 , which
has trivial discriminant and signature (5, 0), and is ramified precisely at q1 and the primes of ramification for
V .

The key point to prove Theorem C is to produce a Hecke-equivariant map of the form
(0.12) βq1 : Sh(Vq1)→ O/pn s.t. ∃T, φ with βq1(Z(T, φ)) ̸= 0,

where φ lies in S(V 2
q1⊗Af ,Z), Sh(Vq1) is a finite double coset space like the one in (0.5), the Hecke module

structure on O/pn is given by π, and again the choice of level structure is suppressed for simplicity. Once
we have βq1 , a similar argument to the proof of Theorem A allows us to produce a Galois cohomology class
κn(q1q2) ∈ H1(Q, Tπ,n) which is ramified at q2, crystalline at p, and unramified at ℓ for ℓ ∤ N(π)q1q2. This
class is then used as the input to the duality argument to bound H1

f (Q, Vπ,p).
Let Z(T, φ) ∈ CH2(Sh(V )) be the class from Theorem C with ∂AJ,Πf (Z(T, φ)) ̸= 0. The idea to find

βq1 is to study the special fiber of Sh(V ) at q1, a prime of good reduction. The supersingular locus is purely
one-dimensional, indexed by a Shimura set Sh(Vq1). We have the Abel-Jacobi map on the special fiber:

(0.13) ∂AJ,m : CH2(Sh(V )Fq1 )→ H1(Fq1 , H3
ét(Sh(V )Q, Op(2))m).

Restricting (0.13) to supersingular cycles gives a map
(0.14) ∂AJ,m,ss : Z[Sh(Vq1)]→ H1(Fq1 , H3

ét(Sh(V )Q, Op(2))m).

Composing with a map H3
ét(Sh(V )Q, Op(2))m → Tπ,p, cf. (0.1), and noting that H1(Fq1 , Tπ,p) is free of

rank one over O/pn when q1 satisfies the level-raising congruence condition modulo pn, we obtain our βq1 .
Using the Chebotarev density theorem and the local-global compatibility of the Abel-Jacobi map, one

can ensure ∂AJ,m(Z(T, φ)Fq1 ) is nonzero for a good choice of q1. Now, if the special fiber Z(T, φ)Fq1 were
purely supersingular, then we could identify this local Abel-Jacobi class with the image of a special cycle
in Z[Sh(Vq1)] under βq1 , and obtain the nonvanishing (0.12). (This is the strategy of [7], where the role of
Z(T, φ) is played by a Heegner point.) Unfortunately, such is not the case for general Z(T, φ).4

Instead, we use an auxiliary GSpin4 Shimura variety S such that Z(T, φ) ⊂ S ⊂ Sh(V ). On the special
fiber of S, the supersingular locus is one-dimensional, and – by [111] – any one-cycle is cohomologically
equivalent to a linear combination of supersingular cycles, at least after the application of a certain GSpin4-
Hecke operator Tq1 . We leverage this to rewrite ∂AJ,m(Tq1 ·Z(T, φ)Fq1 ) as the image of someZ(T, φ′) under
∂AJ,m,ss, with φ′ ∈ S(V 2

q1 ⊗ Af ,Z).
Now it remains to choose q1 so that ∂AJ,m(Tq1 ·Z(T, φ)Fq1 ) is nontrivial. For this choice to be possible, we

need some non-entanglement between ρπ,p and the Galois representations appearing in the cohomology of S,
which are closely related to Hilbert modular forms. In particular, the support of Z(T, φ) in the cohomology
of S needs to avoid some problematic Hecke eigensystems associated to CM forms. To ensure this, we use a
version of the modifying-the-test-function trick from (0.9), this time at (non-level-raising) auxiliary primes
ℓ ̸= q1, q2. Since the trick uses representation theory, it relies on the modularity conjecture recalled after the
statement of Theorem C. (The subtleties that appear in this part of the argument prevent us from bounding
the dual Selmer group H1

f (Q, Vπ,p/Tπ,p) in the context of Theorem C, in contrast to the rank zero case.)
One final difficulty that arises in the proof of Theorem C is the application of the level-raising arguments

in §0.3.2 to βq1 . Since βq1 does not lift to a characteristic-zero Hecke eigenfunction in general, we cannot
directly apply the theorem of Newton and Thorne to produce the lift in the diagram (0.11). Instead, we use
the relative deformation theory developed by Fakhruddin, Khare, and Patrikis, along with a certain control of
level-raised adjoint Selmer groups, to show that either βq1 lifts to an eigenfunction, or the Hecke eigensystem
of π is congruent modulo pn to that of an automorphic representation π′ ramified at q1 and q2; in either case,
we leverage the congruence to solve the lifting problem in (0.11). It is at this step that the extra hypothesis in

4One could imagine modifying φq to ensure a purely supersingular special fiber, and applying a version of (0.9) to ensure that
Z(T, φ) remains nontrivial under this change of test function. Somewhat to our surprise, this strategy fails: any appropriate choice
of φq fails the criterion under which we prove (0.9).
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Theorem C (that π does not arise from certain automorphic inductions) enters the argument; if the image of
the Galois representation ρπ,p is too small, then we are unable to control the adjoint Selmer groups needed
to apply Fakhruddin, Khare, and Patrikis’ method.

0.5. Comparison to other work. When πp is Borel-ordinary with respect to p, and under a slightly different
large-image condition, Theorem A can be deduced from the main result of [71], which also covers more
general weights. However, the existence of ordinary primes is still an open problem for general automorphic
representations of GSp4, so the ordinarity hypothesis is potentially a serious one.

As indicated in §0.2, this article fits into an extensive literature of bounding Selmer groups using level-
raising congruences (the method of “bipartite Euler systems”). Compared to these works, one of the main
underlying difficulties to prove Theorem A is the non-factorizability of GSpin3−GSpin5 period integrals,
which is ultimately responsible for the appearance of the exotic test function φunr

q (rather than the indictor
function of a self-dual lattice or a translate of such by the spherical Hecke algebra) in the identity (0.8). An-
other way to formulate this obstruction is in terms of spherical functions and Hironaka’s conjecture [45, 128].
To our knowledge, the only prior work on bipartite Euler systems facing this challenge was the recently ap-
peared PhD thesis of Corato Zanarella [27]. Interestingly, rather than our change-of-test-functions technique,
the issue in op. cit. is resolved using derived algebraic geometry; in our context, the analogous idea would
be to work with Z(T, φq ⊗ φram

q ) for more general φram
q , even in the absence of a good integral model.

Another novel aspect in the present work is in finding the βq1 in (0.12). To our knowledge, the idea of
using intersection theory on the special fiber of an auxiliary Shimura variety S, in which the supersingular
locus and the special cycle are of complementary dimension, is a new one.

Finally, we warn the reader that the “first and second reciprocity laws” (corresponding to finding κn(q)
and βq1 , respectively, in the discussions above) in the table of contents are named only by analogy to [7]. In
both cases, the full reciprocity law would constitute an equality, where we only prove an inequality, and that
only up to a bounded error. The exact statements are Theorems 8.5.1 and 11.2.6.

0.6. Comments on the endoscopic case. An automorphic representation π as in the beginning of §0.1
is called endoscopic associated to a pair (π1, π2) of cuspidal automorphic representations of GL2(AQ) –
necessarily arising from classical modular forms of weights 2 and 4, respectively, and trivial nebentypus
characters – if the associated Galois representations satisfy

(0.15) ρπ,p = ρπ1,p ⊞ ρπ2,p

for one, or equivalently all, primes p of E. Here we normalize ρπi,p : GQ → GL2(Ep) to have cyclotomic
determinant; also let Vπi,p be the underlying Galois module. The set of π satisfying (0.15) is by definition
the endoscopic L-packet Π(π1, π2). If V is a quadratic space of signature (3, 2) and Π = Πf ⊗ Π∞ is an
automorphic representation of GSpin(V )(AQ) nearly equivalent to the members of Π(π1, π2), then we have

(0.16) H i
ét(ShK(V )Q, Ep)[Πf ] =


ΠKf ⊗ Vπ1,p(−2), i = 3, Π∞ generic,
ΠKf ⊗ Vπ2,p(−2), i = 3, Π∞ holomorphic,
0 i ̸= 3.

Note here that Π∞ is uniquely determined by Πf via the Arthur multiplicity formula, which is known in this
case [21]. In particular, we still have a well-defined map

(0.17) ∂AJ,Πf : CH2(ShK(V ))→ ΠKf ⊗
(
H1
f (Q, Vπ1,p ⊕ Vπ2,p)

)
.

The analogue of Theorem C is now:

Proposition D (Theorem 12.3.2). Suppose π1 and π2 are non-CM, and p|p is a prime of E such that:
(1) π1,p and π2,p are unramified.
(2) The residual representations ρπ1,p and ρπ2,p are both absolutely irreducible, and ρπ1,p ⊕ ρπ2,p is

generic (Definition 2.7.3).
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(3) For both i = 1, 2, there exists a prime q ∤ N(π) such that q4 ̸≡ 1 (mod p), ρπi,p(Frobq) has
eigenvalues {1, q}, and ρπ3−i,p(Frobq) has eigenvalues {α, q/α} with α ̸∈

{
±1,±q, q2, q−1

}
.

Suppose as well that

(∗) H1
f (Q, Vπ1,p ⊗ Vπ2,p(−1)) = 0.

Then for any Kudla cycle Z(T, φ) ∈ CH2(ShK(V )),

∂AJ,Πf (Z(T, φ)) ̸= 0 =⇒ dimEp H
1
f (Q, Vπ1,p) + dimEp H

1
f (Q, Vπ2,p) = 1.

Remarks. (i) The conditions (1)-(3) hold for cofinitely many p (Lemma 4.1.5 and Proposition C.4.12).
(ii) The condition (∗) is always expected to hold, by a classical result of Shahidi on nonvanishing of

Rankin-Selberg L-values [100]. Unfortunately, we remark that (∗) does not follow from the main
result of [60], which applies only to Rankin-Selberg convolutions of modular forms with different
central characters. The role of (∗) in the proof is to control congruences to non-endoscopic auto-
morphic representations of GSpin5 groups.

(iii) Consider the case when V is split, so that ShK(V ) is a classical Siegel threefold, and π1 is associated
to an elliptic curve E over Q. In particular, the Abel-Jacobi map (0.17) gives a way to construct
classes inH1

f (Q, TpE) from special cycles on Siegel threefolds. Weissauer asked in [124] how such
classes related to the classical theory of Heegner points, a question to which Proposition D provides
a partial answer: like the Selmer classes coming from Heegner points, these Abel-Jacobi classes can
be nonzero only ifE has rank one (at least modulo the assumption on Rankin-Selberg convolutions).

(iv) In the text, we prove a stronger version of Proposition D that includes some CM cases.

Similarly, the methods used to Prove Theorem A can also be used for endoscopic representations under
the condition (∗). This case is included in Theorem 9.2.4 for completeness, but note that the result gives
nothing new beyond Kato’s work [48].

0.7. Organization of the paper. In §1, we lay out the notational conventions for the article and cover pre-
liminary materials on involutions, Clifford algebras, and Selmer groups. In §2, we collect the necessary
background results related to automorphic representations, Galois representations, and Shimura varieties.
The most important role of this section is to make some of the results of [96] (on global Jacquet-Langlands
transfers for inner forms of GSp4) unconditional on Conjecture 7.5 of op. cit. In §3, we define Kudla’s cycles
Z(T, φ) and their analogues on compact GSpin groups, and explain their relation to classical theta lifts. In
§4, we define the Galois cohomology classes and special periods used in the Euler system arguments. In §5,
we use the mod-p theory of the Weil representation to prove the change-of-test-functions criterion explained
above in (0.9); this is one of the most crucial (and technical) parts of the argument.

In §6, we turn to geometry, studying a ramified Rapoport-Zink space for GSpin5. This section is based
on [118], although we need more details on intersection theory for our applications to special cycles. In §7,
these results are applied to study the special fiber of the ramified GSpin5 Shimura variety, and compute the
local part of the Abel-Jacobi image of special cycles. (Some of the results in this section are generalizations
of those in [119].) In §8, we perform the level-raising and complete the program described in §0.3 above.
In §9, we prove the main results in the rank zero case. In §10, we study special cycles on the special fibers
of GSpin4 and GSpin5 Shimura varieties with good reduction. In §11 and §12, we prove our main result in
the rank one case.

The paper contains three appendices: in the short Appendix A, we explain the relation of the cohomology
of GSpin4 Shimura varieties to Hilbert modular forms, which is well-known but for which we were un-
able to find a suitable reference. In Appendix B, we develop a general framework for deformation-theoretic
characteristic-zero level raising of G-valued Galois representations, using ideas from [29]. These results
are most important for the proof of the rank one case. In Appendix C, we prove some large-image results
for the p-adic Galois representations that appear in the article, which are necessary for various Chebotarev
arguments.
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1. Preliminaries

1.1. Notation.

1.1.1. Number fields and Galois groups. Let L ⊂ Q be a number field.
• We denote by OL the ring of integers. If p ⊂ OL is a prime, then we write Op and Lp for the

respective completions, and ϖp for a uniformizer of Op.
• Let GL := Gal(Q/L) be the absolute Galois group. If S is a finite set of places of L, we denote by
LS the maximal unramified-outside-S extension of L, and set GL,S := Gal(LS/L) ⊂ GL. If p is a
prime ofL, we also writeGLp for the absolute Galois group ofLp, with inertia subgroup ILp ⊂ GLp .
• For any p, χp,cyc : GL → Z×

p denotes the p-adic cyclotomic character. We normalize the definition
of Hodge-Tate weights so that χp,cyc|GQp has weight one.

1.1.2. Adèle groups and class field theory.
• For a number field K, let AK be the adèle ring; when K = Q we typically write A = AQ. For a

finite set S of places of Q, we write

AS =
∏
v∈S

Qv, AS =

′∏
v ̸∈S

Qv, ASf =

′∏
v ̸∈S∪{∞}

Qv.

• If π = ⊗′
vπv is an irreducible admissible representation of G(A) for some Q-group G, then for a

squarefree integer D, πDf denotes ⊗′
ℓ∤Dπℓ, and πD denotes ⊗ℓ|Dπℓ. The similar notations πSf , πS

hold for finite sets of primes S.
• For any prime p, let ⟨p⟩ ∈ A×

f be the image of p under the natural inclusion Q×
p ↪→ A×

f .
• We always normalize the reciprocity maps of class field theory to send uniformizers to geometric

Frobenius.
• For any number field L and finite-order character χ : L×\A×

L → k×, with k a field, we write
rec(χ) : GL → k× for the pullback by the reciprocity map.

1.1.3. Coefficient rings. For coefficient rings, we will often use a discrete valuation ring O which is a finite
flat extension of Zp, with uniformizer ϖ. In this context:

• We denote by CNLO the category of complete local NoetherianO-algebras with residue fieldO/ϖ.
• For any torsion O-module M and any m ∈ M , ordϖ(m) ≥ 0 denotes the least integer such that
ϖordϖ(m)m = 0.

1.1.4. Symplectic groups.

• For any n, let Ωn =

(
0n In
−In 0n

)
∈ GL2n(Z), where 0n is the n× n matrix of zeros and In is the

n× n identity matrix.
• Define the algebraic group GSp2n over Z by

(1.1) GSp2n(R) =
{
(g, λ) ∈ GL2n(R)×R× : gΩgt = λΩ

}
for any ring R.
• We have the natural similitude character ν : GSp2n → Gm, and the symplectic group Sp2n ⊂ GSp2n

is the kernel of ν.
• For any prime p, we write ⟨p⟩ ∈ GSp2n(Af ) for the scalar matrix corresponding to ⟨p⟩ ∈ A×

f .
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1.1.5. GSpin groups. Let V be a quadratic space over a field F .
• We denote the pairing V × V → F by (v, w) 7→ v · w.
• The Clifford algebra of V is the associative F -algebra C(V ) generated by v ∈ V , subject to the

relation
v2 = (v · v)1.

There is a natural Z/2Z grading on C(V ), with respect to which the plus part is denoted C+(V ).
• We denote by ∗ the natural involution on C(V ), determined by v∗ = v. Then GSpin(V ) is the

algebraic group over F defined by

GSpin(V )(R) =
{
(g, λ) ∈

(
C+(V )⊗R

)× ×R× : gg∗ = λ
}
.

The natural similitude character is again denoted ν.
• If F = Q, then for any prime p we again denote by ⟨p⟩ ∈ GSpin(V )(Af ) the scalar element
p ∈ C+(V )×.

1.1.6. Quaternion algebras and quadratic spaces.
• For a squarefree integerD ≥ 1, letBD be the quaternion algebra over Q which ramifies at the factors

of D, and possibly at infinity. Let ∗D be the standard involution on BD. We also denote by ∗D the
involution on Mn(BD) given by the composite of ∗D and transposition.
• For all squarefree D, let

(1.2) VD :=M2(BD)
∗D=1,tr=0,

which is a 5-dimensional quadratic space of trivial discriminant, whose Hasse invariant coincides
with that of BD. The signature of VD is (5, 0) or (3, 2) when BD is ramified or split at infinity,
respectively.
• We note that GSpin(VD) is an inner form of GSpin(V1) ∼= GSp4.

1.1.7. Algebraic geometry.
• For a closed subscheme X of a scheme Y , we denote by NX/Y the normal sheaf.
• If X is a scheme, Xred ⊂ X denotes the maximal reduced subscheme.

1.1.8. Miscellaneous.
• For a squarefree integer D ≥ 1, we denote by div(D) its set of prime factors, and let σ(D) :=
#div(D).
• Suppose V is an F -vector space for a nonarchimedean local field F with ring of integers OF . For

two OF -lattices Λ ⊂ Λ′ of V , the notation Λ ⊂n Λ′ means that Λ′/Λ has OF -length n.
• For any group G, we let ZG ⊂ G denote the center.
• For a prime p, let Z̆p be the Witt vectors of Fp.

1.2. Central simple algebras and involutions.

1.2.1. Let M be a central simple algebra over a field F of characteristic zero. Throughout this paper an
involution on M will be understood to mean an involution of the first kind, i.e. fixing F . Such involutions
fall into two categories: main type or nebentype (also called symplectic and orthogonal type [51]). For
example, the transpose involution on M = M2(F ) is of nebentype; the standard involution on a quaternion
algebra is of main type. For later use, we now recall some basic facts.

Proposition 1.2.2. Let (M1, ∗1) and (M2, ∗2) be two central simple algebras equipped with involutions.
The induced involution ∗1 ⊗ ∗2 on M is of nebentype if and only if ∗1 and ∗2 are of the same type.

Proof. This is [51, Proposition 2.23]. □
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1.2.3. Suppose F = R or Q, and recall that an element µ ∈ M is called totally positive if it has strictly
positive eigenvalues as an endomorphism of M .

Proposition 1.2.4. Let M = Mn(R) or Mn(H), and suppose M is equipped with a positive involution ∗,
i.e. such that tr(a∗a) > 0 for all 0 ̸= a ∈M . Then the positive involutions on M are those of the form

a 7→ µa∗µ−1,

where µ∗ = µ and either µ or −µ is totally positive. In particular, all positive involutions on M have the
same type.

Proof. This is [115, Proposition 8.4.7 and Lemma 8.4.12]. □

1.2.5. The tensor product of two quaternion algebras is called a biquaternion algebra (BQA). Involutions of
nebentype on rational BQAs are particularly simple:

Lemma 1.2.6. LetM be a BQA over Q, and let ∗1, ∗2 be two involutions ofM of main type. If eitherM⊗R
is split, or ∗1, ∗2 are both positive, then there exists an element g ∈M× such that

Int(g) ◦ ∗1 = ∗2 ◦ Int(g).
In particular, conjugation by g defines an isomorphism (M, ∗1) ≃ (M, ∗2).

Here, Int(g) is the automorphism a 7→ gag−1 of M .

Proof. By the Skolem-Noether theorem, there exists h ∈M× such that Int(h) ◦ ∗1 = ∗2. The condition on
g in the lemma is equivalent to h = λg∗1g, for some λ ∈ Q×. By [51, Theorem 16.19], there exists such a g
if and only if the Pfaffian norm of h (with respect to ∗1) belongs to (Q×)2Nrd(M×). IfM ⊗R is split, then
Nrd(M×) = Q×, so we are done. If M ⊗R is not split, then Nrd(M×) = Q×

>0, and it suffices to show that
the equation h = λg∗1g has a solution over R. Assuming without loss of generality that ∗1 is the standard
involution on M ⊗ R ≃M2(H), this can be checked directly using Proposition 1.2.4. □

1.2.7. Let F be a nonarchimedean local field with ring of integers OF , and let B be the unique nonsplit
quaternion algebra overOF . We denote byOB the unique maximalOF -order inB, with uniformizer π ∈ OB
and natural valuation ordπ.

Proposition 1.2.8. Suppose g ∈ GLn(B) satisfies

gMn(OB)g
−1 =Mn(OB).

Then, up to rescaling by an element of F×, we have either g ∈ GLn(OB) or g ∈ πGLn(OB).

Proof. Suppose g is given by the matrix (gij) and g−1 is given by the matrix (hkl). Let αjk be the matrix
with a 1 in the jk position and 0s elsewhere; since gαjkg−1 ∈Mn(OB), we see that

(1.3) gijhkl ∈ OB, for all i, j, k, l.

Without loss of generality, by rescaling g, we may assume gij ∈ OB for all i, j but ordπ(gij) ≤ 1 for some
i, j. If hij ∈ OB for all i, j, then g ∈ GLn(OB), so suppose without loss of generality that ordπ(hkl) < 0
for some k, l. It follows from (1.3) that ordπ(gij) ≥ 1 for all i, j, with equality holding for some i, j, and
ordπ(hkl) ≥ −1 for all k, l; in particular, g ∈ πGLn(OB). □

Motivated by Proposition 1.2.8, we make the following definition.

Definition 1.2.9. An involution ∗ of Mn(B) stabilizing Mn(OB) is called of unit type if it is of the form
α∗ = gαtg−1 for some g ∈ GLn(OB), and of non-unit type if it is of the form α∗ = gαtg−1 for some
g ∈ πGLn(OB).
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Similarly, if B is a quaternion algebra over Q and p is a prime such that B ⊗Qp is not split, let OB ⊂ B
be the unique maximal Z(p)-order. Then an involution ∗ of Mn(B) stabilizing Mn(OB)is called of unit or
non-unit type according to whether the induced involution on Mn(B)⊗Qp is of unit or non-unit type.

Remark 1.2.10. By Proposition 1.2.8, an involution ∗ ofMn(B) stabilizingMn(OB) induces an involution
on Mn(OB/π), which acts trivially on the center of Mn(OB/π) if and only if ∗ is of non-unit type.

1.2.11. The same proof as Proposition 1.2.8 also shows:

Proposition 1.2.12. LetF be a nonarchimedean local field with ring of integersOF . If g ∈ GLn(F ) satisfies

gMn(OF )g
−1 =Mn(OF ),

then we have g ∈ F×GLn(OF ).

1.3. PEL data.

1.3.1. Recall the notion of a PEL datum D = (B, ∗, V, ψ) from [77, Chapter 8], and set C = EndB(V ).
Then C is equipped with an involution c 7→ c′, the adjoint with respect to ψ, and the Q-groupGD associated
to D is defined by

GD(R) =
{
(g, λ) ∈ (C ⊗R)× ×R× : gg′ = λ

}
.

To D, there is associated the reflex field E = ED, and, for any compact open subgroup K ⊂ GD(Af ), a
moduli functor MK over E. Let us briefly recall the definition of MK , for which more details can be found
in [52, p. 390]. For a connected scheme S → SpecE, MK(S) is the set of isomorphism classes of tuples
(A, ι, λ, η) where:

• A/S is an abelian scheme up to isogeny;
• ι : B ↪→ End0(A/S) is an embedding satisfying the Kottwitz determinant condition derived from
D;
• λ : A→ A∨ is a quasi-polarization such that ι(b∗)∨ ◦ λ = λ ◦ ι(b) for all b ∈ B;
• η is a K-level structure for A, i.e., for any geometric point s of S, a π1(S, s)-stable K-orbit of

isomorphisms
η : H1,ét(As,Af )

∼−→ V ⊗Q Af
respecting the actions of B and the symplectic pairings on both sides up to a scalar.

If K is neat, then MK is represented by a smooth quasi-projective scheme over E.

1.3.2. Let p be a prime. A self-dual p-integral refinement D ofD is the additional data of a ∗-stable maximal
Z(p)-order OB ⊂ B and a self-dual OB-stable Z(p)-lattice Λ ⊂ V . (This is a special case of the notion in
[93, §6].) For a compact open subgroupKp ⊂ GD(Apf ), the corresponding moduli problemMKp is defined
as follows. For a connected scheme S → SpecOE ⊗ Z(p),MKp(S) is the set of isomorphism classes of
tuples (A, ι, λ, ηp) where:

• A/S is an abelian scheme up to prime-to-p isogeny;
• ι : OB ↪→ End(A/S)⊗ Z(p) is an embedding satisfying the Kottwitz condition;
• λ : A→ A∨ is a prime-to-p quasi-polarization such that ι(b∗)∨ ◦ λ = λ ◦ ι(b) for all b ∈ OB;
• ηp is a Kp-level structure, i.e., for any geometric point s of S, a π1(S, s)-stable Kp-orbit of isomor-

phisms
η : H1,ét(As,Apf )

∼−→ V ⊗Q Apf
respecting the actions of B and the symplectic pairings on both sides up to a scalar.

If Kp is neat, thenMKp is represented by a quasi-projective scheme over OE ⊗ Z(p). Its generic fiber is
MKpKp , where Kp = StabGD(Qp)(Λ).
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Lemma 1.3.3. Let S be a scheme and B a simple Q-algebra with involution ∗ of the first kind. Suppose
given an abelian scheme A/S with an embedding of Q-algebras

ι : B ↪→ End0(A/S),

and a quasi-polarization λ : A→ A∨ such that

ι(b∗)∨ ◦ λ = λ ◦ ι(b), ∀b ∈ B.

Then for any totally positive g ∈ B× with g∗ = g, λ ◦ g defines a quasi-polarization of A.

Proof. It suffices to prove the lemma when S = Spec k with k an algebraically closed field. In this case, by
the discussion in [78, Chapter 21, Application III], it suffices to show that g has strictly positive eigenvalues
on End0(A). But this follows from the positivity of the eigenvalues onB, because End0(A) is a semisimple
Q-algebra containing B, and any such is a product of copies of B as a B-module. □

The following corollary is immediate.

Corollary 1.3.4. LetD = (B, ∗, V, ψ) be a PEL datum, whereB is a simpleQ-algebra and ∗ is an involution
of the first kind. Suppose given a totally positive g ∈ B× such that g∗ = g, and let Dg = (B, ∗g, V, ψg),
where ∗g := g ◦ ∗ ◦ g−1 and

ψg(x, y) := ψ(x, g−1y), ∀x, y ∈ V.

Then GD = GDg , and, for all K ⊂ GD(Af ), there is a canonical isomorphism

MD,K
∼−→MDg ,K

defined by
(A, ι, λ, η) 7→ (A, ι, λ ◦ g, η).

If D = (OB, ∗,Λ, ψ) is a self-dual p-integral refinement of D and g lies in O×
B , then Dg = (OB, ∗g,Λ, ψg)

is a self-dual p-integral refinement of Dg and the above isomorphism extends to an isomorphism of integral
models

MD ,Kp
∼−→MDg ,Kp

for all compact open Kp ⊂ GD(Apf ).

□
We also deduce:

Corollary 1.3.5. LetB be an indefinite quaternion algebra over Q, withOB ⊂ B a maximal Z(p)-order, and
fix an integer n ≥ 1. Let ∗ be a positive involution onMn(OB), of non-unit type ifB⊗Qp is ramified. Then
there exists an abelian scheme A over Spec Z̆p of dimension 2n with supersingular reduction, a prime-to-p
quasi-polarizon λ : A→ A∨, and an embedding ι :Mn(OB) ↪→ End(A)⊗ Z(p), such that

ι(b∗)∨ ◦ λ = λ ◦ ι(b), ∀b ∈Mn(OB).

Proof. Using Lemma 1.3.3 along with Propositions 1.2.8 and 1.2.12, we reduce to the case that α∗ = α†t for
all α ∈Mn(OB), where † is a positive involution onOB , of non-unit type ifB ramifies at p. Thus it suffices
to prove the corollary when n = 1, in which case it is well-known from the classical theory of Shimura
curves; see the discussions in [12, Chapter III]. □

1.4. PEL data for GSpin3,2 groups.
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1.4.1. In this article, we will consider PEL data that arise in the following way. Let D ≥ 1 be squarefree
with σ(D) even, and let q be a prime, possibly with q|D. Suppose fixed a maximal Z(q)-order OD ⊂ BD,
with a nebentype involution ∗, and an embedding Z̆q ↪→ C.

Definition 1.4.2. (1) An (OD, ∗)-triple is a triple (A0, ι0, λ0), where:
(a) A0 is an abelian scheme over Spec Z̆q of rank 4 with supersingular reduction;
(b) ι0 is an embedding OD ↪→ End(A0)⊗ Z(q);
(c) λ0 : A0 → A∨

0 is a prime-to-q polarization, such that
ι0(α

∗)∨ ◦ λ0 = λ0 ◦ ι0(α), ∀α ∈ OD.
(2) Given an (OD, ∗)-triple as above, we set H := H1(A0(C),Q), with its canonical symplectic form

ψ. Let Λ ⊂ H be the lattice H1(A0(C),Z(q)). The PEL datum associated to (A0, ι0, λ0) is defined
by

D = (BD, ∗, H, ψ),
with self-dual q-integral refinement

D = (OD, ∗,Λ, ψ).

1.4.3. Let D · q := Dq/ gcd(D, q). Given an (OD, ∗)-triple (A0, ι0, λ0):
• H is a BD-module, and End(H,BD) is isomorphic to M2(BD). The adjoint involution † on
End(H,BD) is of main type (by Proposition 1.2.2, because the adjoint involution on End(H) =
BD ⊗ End(H,BD) is of main type).
• Set A0 := (A0)Fq , with its induced OD-action ι0 and polarization λ0. Then End0(A0, ι0) is iso-

morphic to M2(BD·q), and its Rosati involution † is positive, hence of main type by Proposition
1.2.4.

Definition 1.4.4.
(1) A q-adic uniformization datum (A0, ι0, λ0, iD, iD·q) for (OD, ∗) is an (OD, ∗)-triple (A0, ι0, λ0) as

above, along with a choice of isomorphisms of algebras with involution:

iD : (End(H,BD), †)
∼−→ (M2(BD), ∗D),

iD·q :
(
End0(A0, ι0), †

) ∼−→ (M2(BD·q), ∗D·q).

(2) A q-adic uniformization datum (∗, A0, ι0, λ0, iD, iD·q) for VD is a choice of positive nebentype invo-
lution ∗ on OD – of unit type if q|D – and a uniformization datum (A0, ι0, λ0, iD, iD·q) for (OD, ∗).

Recall here that VD was defined in (1.2).

Remark 1.4.5. (1) Given any (OD, ∗)-triple (A0, ι0, λ0), the choices in Definition 1.4.4(1) exist by
Lemma 1.2.6.

(2) Given a q-adic uniformization datum (∗, A0, ι0, λ0, iD, iD·q) for VD, we also obtain isomorphisms

End(H,BD)
†=1,tr=0 ∼−→ VD, End

0(A0, ι0)
†=1,tr=0 ∼−→ VD·q.

The former determines an isomorphism

GD
∼−→ GSpin(VD).

Moreover, the action of End(A0, ι0) on

H1,ét(A0,Aqf ) ∼= H1(A0(C),Aqf )

induces an isomorphismVD·q⊗QAqf ∼= VD⊗QAqf . In turn, this induces an isomorphismGSpin(VD)(Aqf ) ∼=
GSpin(VD·q)(Aqf ).
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1.5. Local conditions and Selmer groups.

1.5.1. In this subsection, O is the ring of integers of a finite extension E/Qp, and ϖ ∈ O is a uniformizer.

Notation 1.5.2.
(1) SupposeM is a finite freeO-module with an action ofGQℓ , where ℓmay be equal to p. We consider

the Bloch-Kato local conditions

H1
f (Qℓ,M) := ker

(
H1(Qℓ,M)→ H1(Qℓ,M ⊗Qp)

H1
f (Qℓ,M ⊗Qp)

)
.

(2) Globally, if M is a finite free O-module with GQ-action, let

H1
f (Q,M) := ker

(
H1(Q,M)→

∏
ℓ

H1(Qℓ,M)

H1
f (Qℓ,M)

)
.

(3) Suppose ℓ ̸= p. For an unramified, finitely generated O-module M (either finite or infinite) with
GQℓ-action, we let

H1
f (Qℓ,M) := H1

unr(Qℓ,M).

Remark 1.5.3. Notations 1.5.2(1,3) are consistent because, when M is free over O and unramified as a
GQℓ-module, the map H1(Iℓ,M)→ H1(Iℓ,M ⊗Qp) is injective.

1.5.4. Fix integers a ≤ 0 ≤ b. Recall that a finite Zp[GQp ]-module M is said to be torsion crystalline with
Hodge-Tate weights in [a, b] if there exists a crystalline Qp[GQp ]-module V with Hodge Tate weights in [a, b],
and two GQp-stable lattices T1 ⊂ T2 ⊂ V , such that M = T2/T1. A finitely generated Zp[GQp ]-module M
is torsion crystalline with Hodge-Tate weights in [a, b] if M/pn is so for all n ≥ 1.

If M is torsion crystalline with Hodge-Tate weights in [a, b], let

H1
f,tors(Qp,M) ⊂ H1(Qp,M)

be the subspace of cohomology classes such that the corresponding extension

0→M → ∗ → Zp → 0

is torsion crystalline with Hodge-Tate weights in [a, b]. If M is an O[GQp ]-module, then H1
f,tors(Qp,M) is

an O-submodule of H1(Qp,M).

Proposition 1.5.5. A finite free O[GQp ]-module M is torsion crystalline with Hodge-Tate weights in [a, b]
if and only if M ⊗ Qp is crystalline with Hodge-Tate weights in [a, b]. In particular, if M is a finite free
O[GQp ]-module, then H1

f (Qp,M) = H1
f,tors(Qp,M).

Proof. This is [64, §7.3].5 □

Notation 1.5.6. We will from now on writeH1
f (Qp,M) in place ofH1

f,tors(Qp,M) for any finitely generated
O-module M with GQp-action; by Proposition 1.5.5, this is consistent with Notation 1.5.2(1).

1.6. Duality.

5In fact, for the main results it suffices to assume b−a < p−1, in which case Proposition 1.5.5 is due to Breuil [14, Proposition
6].
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1.6.1. Let ℓ be a prime, possibly equal to p. If M is a finite free O-module with GQℓ-action, let M∗ =
HomO(M,O(1)). Similarly, ifM is a locally compactO-module withGQℓ-action, letM∨ = HomO(M,E/O(1))
be the Cartier dual. We have the local Tate pairings

(1.4) ⟨·, ·⟩ℓ : H1(Qℓ,M)×H1(Qℓ,M
∨)→ H2(Qℓ, E/O(1)) = E/O

and

(1.5) ⟨·, ·⟩ℓ : H1(Qℓ,M)×H1(Qℓ,M
∗)→ H2(Qℓ, O(1)) = O.

The former is perfect, and the latter is perfect modulo torsion. We recall the following standard fact.

Lemma 1.6.2. Suppose M is a finite free O-module with GQℓ-action. Then the subspaces H1
f (Qℓ,M) and

H1
f (Qℓ,M

∗) pair to zero under the local Tate pairing (1.5).

Proof. When O = Zp, the result follows from [9, Proposition 3.8].6 To reduce to this case, note that M∗ is
canonically isomorphic to M ′ := HomZp(M,Zp), and we have a commutative diagram:

H1
f (Qℓ,M)×H1

f (Qℓ,M
∗) O

H1
f (Qℓ,M)×H1

f (Qℓ,M
′) Zp.

∼

⟨·,·⟩p

tr

⟨·,·⟩p=0

Since H1
f (Qℓ,M

∗) ⊂ H1(Qℓ,M
∗) is O-stable and the trace pairing O × O → Zp is nondegenerate, the

lemma follows. □

Lemma 1.6.3. Fix integers a ≤ 0 ≤ b, and let M be a finite free O-module with [GQp ]-action which is
torsion crystalline with Hodge-Tate weights in [a, b]. Then:

(1) We have lim←−H
1
f (Qp,M/ϖn) = H1

f (Qp,M).
(2) For all n ≥ 1, there exists m ≥ n such that

im
(
H1
f (Qp,M/ϖm)→ H1

f (Qp,M/ϖn)
)
= im

(
H1
f (Qp,M)→ H1

f (Qp,M/ϖn)
)
.

(3) For all n ≥ 1, there exists m ≥ n such that the local Tate pairing

⟨·, ·⟩ : H1(Qp,M/ϖn)×H1(Qp,M
∗/ϖn)→ O/ϖn

vanishes when restricted to

im
(
H1
f (Qp,M/ϖm)→ H1

f (Qp,M/ϖn)
)
× im

(
H1
f (Qp,M

∗/ϖm)→ H1
f (Qp,M

∗/ϖn)
)
.

Remark 1.6.4. When 2(b− a) ≤ p− 2 and O = Zp, we may takem = n in the final part by [84, Corollary
6.1].

Proof. The first part is clear from Proposition 1.5.5, and it follows that

∩m≥n im
(
H1
f (Qp,M/ϖm)→ H1

f (Qp,M/ϖn)
)
= im

(
H1
f (Qp,M)→ H1

f (Qp,M/ϖn
)
.

Since H1
f (Qp,M/ϖn) is a finite O-module, it is clear that (2) holds.

For (3), takem sufficiently large to satisfy (2) for bothM andM∗. The assertion then follows from Lemma
1.6.2 and the commutativity of the diagram:

6Although loc. cit. assumes M ⊗ Qp is de Rham when ℓ = p, this is needed to show that H1
f (Qℓ,M) and H1

f (Qℓ,M∗) are
exact annihilators; the proof shows that they annihilate each other in general.
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H1(Qp,M)×H1(Qp,M
∗) O

H1(Qp,M/ϖn)×H1(Qp,M
∗/ϖn) O/ϖn.

□

2. Automorphic representations, Hecke algebras, and Shimura varieties

2.1. Hecke algebras and Galois representations. Let G be a split, connected, reductive algebraic group
over Z[S−1

0 ] for a finite set of primes S0, with Borel subgroup B = TU ⊂ G and Weyl group WG. For
simplicity, we assume that the derived subgroup of G is simply connected.

Definition 2.1.1.
(1) For a prime ℓ ̸∈ S0 and a ring R, let TG,ℓ,R denote the spherical Hecke algebra of compactly sup-

ported, R-valued, G(Zℓ)-biinvariant functions on G(Qℓ). For a finite set S ⊃ S0 and a ring R,

TSG,R :=
′⊗

ℓ̸∈S
TG,ℓ,R.

(2) Let P =MN ⊂ G be a parabolic subgroup. For all ℓ ̸∈ S0, we define a natural map

SGM : TG,ℓ,R → TM,ℓ,R

by

SGM (f)(m) =

∫
N(Qℓ)

f(mn)dn,

where the Haar measure on N(Qℓ) gives volume 1 to N(Zℓ).

When R = Z, we drop it from the notation.

Proposition 2.1.2. We have a commutative diagram of functors

(2.1)
R[M(Qℓ)]−Mod TM,ℓ,R −Mod

R[G(Qℓ)]−Mod TG,ℓ,R −Mod,

ΓM(Zℓ)

♮−Ind (SGM )∗

ΓG(Zℓ)

where ♮− Ind denotes the unnormalized parabolic induction.

Proof. This follows from combining Lemmas 2.4, 2.7, and 2.9 of [82]. □

Notation 2.1.3. Let T̂ ⊂ Ĝ be the dual torus to T . We write X• and X• for the character and cocharacter
groups of any split algebraic torus.

Definition 2.1.4. Suppose now that R is a Z[ℓ1/2, ℓ−1/2]-algebra and recall the Satake transform

R[X•(T̂ )]WG
∼−→ TG,ℓ,R

λ 7→ [cλ].
(2.2)

(1) If m ⊂ TG,ℓ,R is a maximal ideal with residue field k, the Satake parameter for m is the unique
element

SatG,ℓ(m) ∈ T̂ (k)/WG
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such that, for any λ ∈ R[X•(T̂ )]WG , λ(SatG,ℓ(m)) = [cλ] (mod m). A maximal ideal m ⊂ TSG,R
defines a maximal ideal of each TG,ℓ,R with ℓ ̸∈ S; we denote by SatG,ℓ(m) the corresponding
element of T̂ (k)/WG for each ℓ ̸∈ S.

(2) Let ρG ∈ X•(T̂ ) = X•(T ) be the half-sum of positive roots. A normalization of the Satake trans-
form for G (cf. [41, §8]) is a choice of element ωG ∈ X•(ZĜ) such that

ωG ≡ ρG (mod 2X•(T̂ )).

2.1.5. For the rest of this subsection, we assume that R is a Zp2-algebra, with a fixed choice of square root
ℓ1/2 ∈ Zp2 for any ℓ ̸= p.

Definition 2.1.6. Let S ⊃ S0 be a finite set of primes.
(1) Given a maximal ideal m ⊂ TSG,R with residue field k, a semisimple Galois representation

ρm : GQ → Ĝ(k)

is said to be associated to m (with respect to a normalization ωG of the Satake transform) if for all
but finitely many ℓ ̸∈ S, ρm|GQℓ

is unramified and

ρm(Frobℓ−1)ss ∼ ωG(ℓ−1/2) · SatG,ℓ(m);

here ∼ denotes Ĝ(k)-conjugacy. If this holds for all ℓ ̸∈ S ∪ {p}, then ρm is said to be strongly
associated with m.

(2) If there exists a Galois representation (strongly) associated to m, then m is said to be (strongly) of
Galois type.

Note that whether m is (strongly) of Galois type is independent of the choice of normalization; the corre-
sponding representations ρm differ by the composite of χcyc

p and an algebraic cocharacter of Z
Ĝ

.

Example 2.1.7. Suppose π is an automorphic representation of GSp4(A), unramified outside S, and fix an
isomorphism ι : Qp

∼−→ C. This determines a distinguished square root ℓ1/2 ∈ Qp for all ℓ. Moreover, the
Hecke action on ι−1πS defines a maximal ideal mπ ⊂ TS

GSp4,Qp
. If π is relevant in the sense of Definition

2.2.5 below, then the representation ρπ,ι of Theorem 2.2.10 is strongly associated to mπ with respect to the
normalization given by the scalar subgroup Gm ↪→ GSp4.

Definition 2.1.8. Let S ⊃ S0 be a finite set of primes. A maximal ideal m ⊂ TSG,R with residue field k is
said to be Eisenstein if there exists an associated ρm (with respect to any normalization) which factors as

ρm : GQ → M̂(k) ↪→ Ĝ(k)

for some standard parabolic subgroup P =MN ⊊ G.

Proposition 2.1.9. Let S ⊃ S0 be a finite set of primes. Suppose for some proper parabolic subgroup
P = MN ⊊ G, mM ⊂ TSM,R is a maximal ideal of Galois type. Then m = (SGM )∗mM ⊂ TSG,R is
Eisenstein.

Proof. Fix normalizations ωM and ωG of the Satake transform for M and G, respectively. Also let dP ∈
X•(ZM̂ ) be the dual of the character

det(ad(−)|N) :M → Gm.

By the well-known compatibility of the Satake transform with normalized parabolic induction, combined
with Proposition 2.1.2, SatG,ℓ(m) ∈ T̂ (k)/WG is represented by any representative of SatM,ℓ(mM ) ·
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dP (ℓ
1/2) ∈ T̂ (k)/WM . It follows that

ρm := ρmM ⊗ (χcyc
p )α : GQ → M̂(k) ↪→ Ĝ(k)

is associated to m, where

α :=
ωG − ωM − dP

2
∈ X•(ZM̂ ).

Hence m is Eisenstein.
□

2.1.10. The case ofG = GSp4. WhenG = GSp4, the Hecke algebra TG,ℓ,R can be identified with the poly-
nomial algebra R[Tℓ,1, Tℓ,2, ⟨ℓ⟩], where the generators correspond to the following double coset operators:

Tℓ,1 = 1

GSp4(Zℓ)


ℓ

1
ℓ−1

1

GSp4(Zℓ)

 ,

Tℓ,2 = 1

GSp4(Zℓ)


ℓ

ℓ
1

1

GSp4(Zℓ)

 ,

⟨ℓ⟩ = 1

GSp4(Zℓ)


ℓ

ℓ
ℓ

ℓ

GSp4(Zℓ)

 .

The Satake parameter of a maximal idealm ⊂ TGSp4,ℓ,R with residue field k can be identified with the data
of an element ν ∈ k – the similitude factor of SatGSp4,ℓ(m) – together with the multi-set {α, β, ν/α, ν/β} of
elements of k – the eigenvalues of SatGSp4,ℓ(m) in the standard four-dimensional representation of ĜSp4 =
GSp4. We will abusively write the Satake parameter as {α, β, ν/α, ν/β}; in general, ν is not always deter-
mined by this unordered set.

The relation to Hecke eigenvalues is given explicitly in this case by

Tℓ,1 = ℓ2 (αβ/ν + α/β + β/α+ ν/αβ) + (ℓ2 − 1) (mod m)

Tℓ,2 = ℓ3/2 (α+ β + ν/α+ ν/β) (mod m)

⟨ℓ⟩ = ν (mod m).

(2.3)

When it is clear from context that G = GSp4, the subscript G in Hecke algebras and Satake parameters
may be omitted from the notation.

2.2. Automorphic forms and Galois representations. Let F be a totally real field. If we fix a prime p and
an isomorphism ι : Qp

∼−→ C, then to each archimedean place v|∞ of F , we can associate an embedding
ι∗v : F ↪→ Qp.

Theorem 2.2.1. Suppose π is a unitary, cuspidal automorphic representation of GL2(AF ) associated to a
Hilbert modular form of weight (2kv)v|∞, where v runs over archimedean places of F and kv ≥ 1 for all v.
Then for every isomorphism ι : Qp

∼−→ C, with p a prime, there exists a Galois representation

ρπ,ι : GF → GL2(Qp)

with the following properties.
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(1) ρπ,ι|GFv is potentially semistable for all v|p, and for all nonarchimedean primes v of F :

ιWD(ρπ,ι|GFv )
F−ss ≃ rec(πv ⊗ | · |

1
2 ).

Moreover this Weil-Deligne representation is pure of weight −1.
(2) For each place v|∞ ofF , the Hodge-Tate weights of ρπ,ι with respect to the embedding ι∗v : F ↪→ Qp

are 1− kv and kv.
(3) The similitude character of ρπ,ι is ι−1 rec(ωπ)χp,cyc, where ωπ is the central character.

Here rec is the usual local Langlands correspondence forGLn, normalized to coincide with the reciprocity
map of local class field theory when n = 1.

Proof. Note that the purity in (1) follows immediately from the claimed identity of Weil-Deligne represen-
tations and the Ramanujan conjecture for π [8].

The existence of ρπ,ι with the property (1) for all v ∤ p was proved by Carayol [19] under the assumption
that either [F : Q] is odd, or πv is square-integrable for some finite prime v of F . In general, ρπ,ι was
constructed by Taylor [107], and the proof of (1) for v ∤ p follows the argument of [127, Theorem 2.1.3].
Finally, the property (1) for v|p, along with (2), were established in general by Skinner [103] (except that our
normalizations of Hodge-Tate weights and reciprocity maps are inverted from loc. cit.). The property (3) is
an immediate corollary of (1). □

Definition 2.2.2. An automorphic representation π of GL2(AF ) has (strong) coefficient field E0 ⊂ C if E0

is a number field and, for all primes p and isomorphisms ι : Qp
∼−→ C, ρπ,ι is defined over the p-adic closure

of ι−1(E0). In this case, it depends only on the prime p of E0 induced by C, and we obtain a well-defined
ρπ,p : GF → GL2(E0,p) such that ρπ,ι is the extension of scalars of ρπ,p.

Remark 2.2.3. The argument of [23, Proposition 3.2.5] shows that strong coeffient fields exist in the situation
of Theorem 2.2.1.

Notation 2.2.4. Let π be as in Theorem 2.2.1, and let E0 be a strong coefficient field of π. Fix a prime p of
E0 with residue field k(p).

(1) Write Vπ,p for the underlying E0,p[GF ]-module of ρπ,p.
(2) Let Tπ,p ⊂ Vπ,p be aGF -stableOE0,p-lattice. Then the k(p)[GF ]-module T π,p depends only on Vπ,p

up to semisimplification. We write

ρπ,p : GF → GL2(k(p))

for the corresponding semisimple Galois representation.
(3) When p is clear from context, it may be dropped from all subscripts in the above notations.

We now turn to automorphic representations of GSp4.

Definition 2.2.5. An automorphic representation π of GSp4(A) will be called relevant if:
• π is cuspidal and not CAP, and has unitary central character.
• π∞ belongs to the discrete series L-packet of weight (3, 3).

2.2.6. If π is an automorphic representation of GSp4(A), then for all ℓ such that πℓ is unramified, recall that
we write the Satake parameter of πℓ as a multiset of four complex numbers of the form

{
α, β, να−1, νβ−1

}
.

If π has central character ωπ, then ν = ωπ(⟨ℓ⟩) = rec(ωπ)(Frob
−1
ℓ ).

Definition 2.2.7. A cuspidal, non-CAP automorphic representation π of GSp4(A) is endoscopic associated
to an unordered pair (π1, π2) of cuspidal automorphic representations of GL2(A) with the same central
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character if the following holds: for all but finitely many primes ℓ, if πi,ℓ are both unramified with Satake
parameters {αi, ν/αi}, then πℓ is unramified with Satake parameter {α1, α2, ν/α1, ν/α2}.

2.2.8. In this case, π1 and π2 are necessarily distinct by [126, Lemma 5.2], and the central character of π is
the common central character of the πi. In the literature, the property in Definition 2.2.7 is often called being
weakly endoscopic, and being endoscopic requires a stronger compatibility condition of local Langlands
parameters at all finite places; however, the distinction is unimportant, cf. the results of [126, §5].

Lemma 2.2.9. Suppose π is an endoscopic automorphic representation of GSp4(A), associated to a pair
(π1, π2) of automorphic representations of GL2(A). Then π is relevant if and only if π1 and π2 are unitary
with discrete series archimedean components of weights 2 and 4 in some order.

Proof. Recall π is cuspidal and not CAP by definition. Also, π clearly has unitary central character if and
only if π1 and π2 are unitary, so it suffices to consider the archimedean weights.

Consider the representation π1,∞ ⊠ π2,∞ of GSO2,2(R) = (GL2(R) × GL2(R))/R×; by [126, Lemma
5.6], π∞ belongs to the local L-packet attached to π1,∞ ⊠ π2,∞ via the known Langlands parametrization
for real groups and the map of dual groups

LGSO2,2 = (GL2×Gm GL2)(C) ↪→ GSp4(C) = LGSp4,R .

We conclude that π∞ belongs to the desired discrete series L-packet if and only if π1,∞ and π2,∞ are discrete
series of weights 2 and 4 in some order.

□

Theorem 2.2.10. Let π be a relevant automorphic representation of GSp4(A), and fix a prime p along with
an isomorphism ι : Qp

∼−→ C. Then there exists a semisimple Galois representation

ρπ,ι : GQ → GSp4(Qp)

with the following properties.
(1) ρπ,ι|GQp is potentially semistable, and for all primes ℓ,

ιWD(ρπ,ι|GQℓ
)F−ss ≃ recGT(πℓ ⊗ | · |

1
2 ).

Moreover this Weil-Deligne representation is pure of weight −1.
(2) The Hodge-Tate weights of ρπ,ι|GQp are {−1, 0, 1, 2}.
(3) The similitude character of ρπ,ι is ι−1 rec(ωπ)χp,cyc, where ωπ is the central character.

Here recGT is the Gan-Takeda local Langlands correspondence of [36], which associates to an irreducible
admissible representation of GSp4(Qℓ) a GSp4(C)-valued Weil-Deligne representation.

Proof. Suppose first that π is endoscopic associated to a pair (π1, π2) of automorphic representations of
GL2(A). By Lemma 2.2.9 and Theorem 2.2.1, we can take

ρπ,ι := ρπ1,ι ⊕ ρπ2,ι
under the natural embedding GL2×Gm GL2 → GSp4; this satisfies (1) by Theorem 2.2.1(1) combined with
[126, Corollary 5.1, Theorem 5.2(3)] and the construction of recGT in [36]. Then (2) and (3) are satisfied by
Theorem 2.2.1(2, 3).

Now suppose π is not endoscopic. By [96, Proposition 10.1] combined with [125, Theorem 1], we may
assume without loss of generality that π is globally generic. Under the extra hypothesis that πv is Steinberg
for some v ̸= p, and omitting the case ℓ = p of (1), the theorem then follows from the main result of [105],
except that we have twisted the ρπ,ι of loc. cit. by (χcyc

p )2. The extra hypothesis in [105] is needed only to
appeal to the results of Taylor-Yoshida [109], and has since been removed by work of Caraiani [17]. Similarly,
the proof in [105] of (1) for ℓ ̸= p extends to the case ℓ = p with the additional input of [18]. □
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Notation 2.2.11. In the setting of Theorem 2.2.10, we write Vπ,ι for the underlying four-dimensional Galois
module of ρπ,ι.

Lemma 2.2.12. In the situation of Theorem 2.2.10, suppose p > 3. Then Vπ,ι is reducible if and only if π is
endoscopic.

Proof. This is [123, Theorem 3.1]. □

Definition 2.2.13. A relevant automorphic representation π of GSp4(A) has (strong) coefficient field E0 ⊂
C if E0 is a number field and, for all primes p and isomorphisms ι : Qp

∼−→ C, ρπ,ι is defined over the
p-adic closure of ι−1(E0). In this case, it depends only on the prime p of E0 induced by ι, and we obtain a
well-defined ρπ,p : GF → GSp4(E0,p) such that ρπ,ι is the extension of scalars of ρπ,p.

Lemma 2.2.14. If π is a relevant automorphic representation of GSp4(A), then a strong coefficient fieldE0

exists for π.

Proof. If π is endoscopic, this is clear from Remark 2.2.3, so assume otherwise.
Let r : GSp4 ↪→ GL4 be the natural embedding, and let ι−1(E0) be the p-adic closure for any ι : Qp

∼−→ C.
By the argument of [23, Proposition 3.2.5], there exists a number field E0 such that, for all ι : Qp

∼−→ C,
r ◦ ρπ,ι is defined over ι−1(E0) and ρπ,ι(g) has distinct eigenvalues in ι−1(E0)

×
for some g ∈ GQ.

It suffices to check ρπ,ι is defined over ι−1(E0) whenever p > 3. For this, let G be the absolute Galois
group of ι−1(E0). For all σ ∈ G, we have

ρσπ,ι = h(σ)ρπ,ιh(σ)
−1

for some h(σ) ∈ GL4(Qp). Using the absolute irreducibility from Lemma 2.2.12 and Schur’s lemma, we
conclude h(σ) ∈ GSp4(Qp), and σ 7→ h(σ) defines a cocycle h ∈ H1(G,PGSp4(Qp)). The class of h
determines an inner form H of GSp4 over ι−1(E0) such that ρπ,ι can be conjugated to lie in H(ι−1(E0)).
However, since ρπ,ι(g) has distinct eigenvalues in ι−1(E0) for some g ∈ GQ, H must be split, and this
completes the proof. □

2.2.15. Analogously to Notation 2.2.4, we make the following notations.

Notation 2.2.16. Let π be as in Theorem 2.2.10, and let E0 be a strong coefficient field of π. Fix a prime p
of E0 with residue field k(p).

(1) Write Vπ,p for the four-dimensional underlying E0,p[GQ]-module of ρπ,p.
(2) Let Tπ,p ⊂ Vπ,p be any GQ-stable Op-lattice; we define T π,p := (Tπ,p/ϖp)

ss, which depends only
on Vπ,p. We also write

ρπ,p : GF → GL4(k(p))

for the corresponding semisimple Galois representation.
(3) When p is clear from context, it may be dropped from all subscripts in the above notations.

Lemma 2.2.17. Suppose π is a relevant automorphic representation of GSp4(A). Then there exists a base
change BC(π) to an automorphic representation of GL4(A), such that for each place v,

rec(BC(π)v) = r ◦ recGT(πv),

where
r : LGSp4 = GSp4(C) ↪→ GL4(C) = LGL4

is the natural embedding of dual groups. Moreover BC(π) is cuspidal if and only if π is non-endoscopic.
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Proof. If π is endoscopic associated to (π1, π2), then there exists a non-cuspidal base change, which is the
isobaric sum π1 ⊞ π2; the compatibility with local Langlands parameters is by the same reasoning as the
endoscopic case of Theorem 2.2.10.

In the non-endoscopic case, the lemma follows from [96, Proposition 10.1] and its proof; note that the
endoscopic transfer to GL4×GL1 used in loc. cit. is compatible with the Gan-Takeda local Langlands
paremeters by the main result of [21]. □

Lemma 2.2.18. Suppose π is a relevant automorphic representation of GSp4(A). If BC(π) is a symmetric
cube lift of a non-CM automorphic representation π0 of GL2(A), then π0 has discrete series archimedean
component of weight 2.

Proof. This follows from matching archimedean L-parameters using [49, Theorem B] and Lemma 2.2.17.
□

Lemma 2.2.19. Suppose π is a relevant automorphic representation of GSp4(A). If BC(π) is the automor-
phic induction of a non-CM automorphic representation π0 of GL2(AK) withK real quadratic, then π0 has
discrete series archimedean components of weights 2 and 4, in some order. Moreover the central characters
ωπ0 of π0 and ωπ of π satisfy

ωπ ◦NmK/Q = ωπ0 .

Proof. The assertion on archimedean components follows from Lemma 2.2.17 and the compatibility of au-
tomorphic induction with local Langlands parameters [3, Chapter 3, Theorem 5.1]. To check the relation of
central characters, fix some prime p along with an isomorphism ι : Qp

∼−→ C. Let πtw0 denote theGal(K/Q)-
twist. Then we have

Vπ,ι|GK = ρπ0,ι ⊕ ρπtw
0 ,ι.

Using the identities

Vπ,ι = V ∨
π,ι ⊗ ι−1 rec(ωπ)⊗ χp,cyc, ρπ0,ι = ρ∨π0,ι ⊗ ι

−1 rec(ωπ0)⊗ χp,cyc,

and likewise for πtw0 , it follows that

ρπ0,ι ⊗ ι−1 (rec(ωπ)|GK/ rec(ωπ0))⊕ ρπtw
0 ,ι ⊗ ι−1

(
rec(ωπ)|GK/ rec(ωπtw

0
)
)
∼= ρπ0,ι ⊕ ρπtw

0 ,ι.

Since ρπ0,ι and ρπtw
0 ,ι are absolutely irreducible by Theorem C.3.2, and have different Hodge-Tate weights

by Theorem 2.2.1(2), this implies rec(ωπ)|GK = rec(ωπ0), i.e. ωπ ◦NmK/Q = ωπ0 . □

In the next lemma, if K is a quadratic field, we write BCK/Q for the base change of an automorphic
representation of GLn(A) to GLn(AK), which exists by [3].

Lemma 2.2.20. Suppose π is a relevant, non-endoscopic automorphic representation ofGSp4(A). IfBC(π)
is the automorphic induction of an automorphic representation π0 of GL2(AK) withK imaginary quadratic
and π0 is not itself an automorphic induction, then π0 is of the form BCK/Q(σ)⊗ χ, where σ is the unitary
automorphic representation of GL2(A) corresponding to a non-CM classical modular form of weight k = 2
or 3, and χ is a Hecke character of K.

Proof. By hypothesis, BCK/Q ◦BC(π) is an isobaric sum π0 ⊞ πtw0 , where tw denotes theGal(K/Q)-twist.
Considering archimedean L-parameters and using Lemma 2.2.17 combined with [3, Chapter 3, Theorem

5.1], we see that the local L-parameter of π0 at the unique archimedean place of K is of the form

(2.4) z 7→

(
(z/z)ϵ1

1
2

(z/z)ϵ2
3
2

)
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for ϵ1, ϵ2 ∈ {±1}. Let ωπ : A× → C× and ωπ0 be the central characters of π and π0, respectively; then
because BC(π) ∼= BC(π)∨ ⊗ ωπ, we have

π∨0 ⊞ (πtw0 )∨ ∼= π0 ⊗ ωπ ◦NmK/Q⊞πtw0 ⊗ ωπ ◦NmK/Q
∼= π0 ⊗ ω−1

π0 ⊞ πtw0 ⊗ ω−tw
π0 .

The archimedean L-parameter (2.4) shows that π∨0 ̸∼= π0 ⊗ ωπ ◦NmK/Q, and hence

(2.5) π∨0
∼= πtw0 ⊗ ωπ ◦NmK/Q ∼= π0 ⊗ ω−1

π0 .

On the other hand, computing the central character of BC(π), we have:

(2.6) ω2
π = ωπ0 |A× .

In particular, (ωπ◦NmK/Q)/ωπ0 is trivial when restricted toA×, hence of the formχ/χtw for an automorphic
character χ of A×

K . Then (π0 ⊗ χ−1) is isomorphic to its Gal(K/Q)-twist by (2.5), hence arises as the base
change of a cuspidal automorphic representation σ of GL2(A) by [3, Chapter 3, Theorem 4.2]. Without loss
of generality, we may assume σ is unitary; considering the archimedean local L-parameter of σ and again
using [3, Chapter 3, Theorem 5.1], the archimedean component of σ is discrete series of weight 2 or 3. We
have π0 = BCK/Q(σ)⊗ χ by construction. □

2.3. Shimura varieties and Shimura sets.

2.3.1. Let V be a quadratic space over Q, and recall the algebraic group GSpin(V ) from (1.1.5).

2.3.2. Indefinite case. Suppose V ⊗ R has signature (n, 2). If V − ⊂ VR is a negative definite 2-plane, one
obtains a map

C+(V −) ≃ C→ C+(VR),

which induces a Shimura datum
h : ResC/RGm → GSpin(V )R.

For a neat compact open subgroupK ⊂ GSpin(V )(Af ), the resulting Shimura variety ShK(V ) is a smooth
quasi-projective variety over Q.

2.3.3. Definite case. If V is a positive definite quadratic space over Q, then GSpin(V )(R) is compact. For
a compact open subgroup K ⊂ GSpin(V )(Af ), let ShK(V ) denote the finite double coset space

ShK(V ) := GSpin(V )(Q)\GSpin(V )(Af )/K.

2.3.4. Hecke algebras. Suppose V = VD is one of the quadratic spaces from (1.1.6), and let O be a coeffi-
cient ring. IfK =

∏
ℓKℓ ⊂ GSpin(V )(Af ) is a neat compact open subgroup and S is a finite set of primes

of Q containing all those such that Kℓ is not hyperspecial, then TSO = TSGSp4,O
acts on H∗

ét(ShK(V )Q, O);
the cohomology is interpreted asO[ShK(V )] in the definite case. We denote by TSK,VD,O the quotient of TSO
defined by this action, and may drop the subscript O when it is clear from context.

2.4. Automorphic representations of GSpin5 groups.

2.4.1. Recall the five-dimensional quadratic spaces VD from (1.1.6).

Definition 2.4.2. An automorphic representation π ofGSpin(VD)(A) is Eisenstein if there exists a parabolic
subgroup P ⊂ GSp4, with Levi factor L, and an automorphic representation σ of L(A) such that π is nearly
equivalent to a constituent of IndGSp4(A)

P (A) σ.

The following generalizes Definitions 2.2.5 and 2.2.7.

Definition 2.4.3. For a squarefree integer D ≥ 1, an automorphic representation π of GSpin(VD)(A) will
be called relevant if:
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(1) π is not Eisenstein (in particular is cuspidal), and has unitary central character.
(2) π∞ is trivial if σ(D) is odd (in which case GSpin(VD)(R) is a compact group); or belongs to the

discrete seriesL-packet of weight (3, 3) if σ(D) is even (in which caseGSpin(VD)(R) = GSp4(R)).
A non-Eisenstein automorphic representation π of GSpin(VD)(A) is called endoscopic associated to a pair
(π1, π2) of automorphic representations of GL2(A) if the condition in Definition 2.2.7 is satisfied for all but
finitely many ℓ ∤ D.

Lemma 2.4.4. Fix a squarefree D ≥ 1 such that σ(D) is even, and suppose π is an automorphic represen-
tation of GSpin(VD)(A) that is not Eisenstein. Then for any neat compact open subgroup K =

∏
Kℓ of

GSpin(VD)(Af ):
(1) The natural map induces an isomorphism

H i
c(ShK(VD),C)[πf ]

∼−→ H i(ShK(VD),C)[πf ].

(2) We have

H i(ShK(VD),C)[πf ] =
⊕
π′
∞

m(πf ⊗ π′∞) · πKf ⊗H i(gsp4, U(2);π′∞) ̸= 0,

where U(2) ⊂ GSp4(R) is the maximal compact subgroup, π′∞ runs over cohomological repre-
sentations of GSp4(R), and m(πf ⊗ π′∞) is the multiplicity in the discrete (equivalently cuspidal)
automorphic spectrum of GSpin(VD)(A).

(3) If π is relevant and H i(ShK(VD),C)[πf ] ̸= 0, then i = 3.

Proof. The first part is well-known, cf. [43, Chapter 9]. Then (2) is immediate from Matsushima’s formula
and the diagram in [108, p. 293]. We now show (3). Without loss of generality, we may assume that πKf ̸= 0;
in particular, because π is relevant, (2) implies that

(2.7) H3(ShK(VD),C)[πf ] ̸= 0.

Now letS be a finite set of places ofQ such thatKℓ is hyperspecial for ℓ ̸∈ S, and fix a prime p ̸∈ S∪{2, 3}
along with an isomorphism ι : Qp

∼−→ C. It suffices to show

(2.8) H i
ét(ShK(VD)Q,Qp)[πf ] ̸= 0 =⇒ i = 3.

For this, we argue as in [108], with the additional input of the Fontaine-Mazur conjecture for GL2. Set W i

to be the πS-isotypic component7 ofH i
ét(ShK(VD)Q,Qp) with respect to the natural action of TSQp ; thenW i

is a GQ-module. We have the following facts:
(1) By Margulis’ superrigidity theorem [73, Chapter IX, Corollary 7.15(iii)], W 1 = 0, and clearly

W 0 =W 6 = 0 because πf is not one-dimensional.
(2) For each ℓ ̸∈ S∪{p}, Frobℓ satisfies the Eichler-Shimura relation onH∗(ShK(VD)Q,Qp) by [122];

in particular, if πℓ has Satake parameters
{
α, β, να−1, νβ−1

}
, then

(2.9) (Frob−1
ℓ −ℓ

3/2α)(Frob−1
ℓ −ℓ

3/2β)(Frob−1
ℓ −ℓ

3/2να−1)(Frob−1
ℓ −ℓ

3/2νβ−1) = 0 on each W i.

(3) By Poincaré duality and part (1) of the theorem there are perfect pairings

W i ×W 6−i → rec(ωπ)(−3)

for all i, where ωπ is the central character of π, cf. [108, p. 297].
(4) Again by (1) of the theorem, for all ℓ ̸∈ S ∪ {p}, the eigenvalues of Frobℓ on W i are Weil numbers

of weight i.

7Defined using ι. We elide ι from the discussion to ease the burden of notation.
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Now suppose W i ̸= 0 for some i ̸= 3. By (1), i ̸= 0, 1, and then by (3) we conclude that W 2 ̸= 0. If
ℓ ̸∈ S ∪ {p} is a prime such that Frobℓ has n distinct eigenvalues on W 2, it has n distinct eigenvalues on
W 4 as well by (3), and at least one eigenvalue on W 3 by (2.7). In particular, by (4) and the fact that Frobℓ
has at most 4 total eigenvalues by (2), we conclude that n = 1 and Frobℓ also has at most two eigenvalues on
W 3. Now the same argument as [108, Proposition 3] shows that there is a two-dimensional representation
R : GQ → GL2(Qp) – possibly reducible – with distinct Hodge-Tate weights such that (W 3)ss = R⊕e for
some e ≥ 1, and a character χ : GQ → Q×

p such that (W 2)ss = χ⊕d and (W 4)ss = (rec(ωπ)χ
−3
p,cycχ

−1)⊕d

for some d ≥ 1. Note that ωπ is even because the central character of π∞ is trivial, so R is odd by (3)
above. Hence by [86, Theorem 1.0.4], R is automorphic. Comparing with (2), we see that there exists
an automorphic character ω of A× and an automorphic representation σ of GL2(A) such that π is nearly
equivalent to a constituent of the representation

Ind
GSp4(A)
P (A) σ ⊠ ω,

where P ⊂ GSp4 is the Siegel parabolic subgroup with Levi factor GL2⊠GL1. Hence π is Eisenstein,
which contradicts the assumption that π is relevant and completes the proof. □

We will require some information about Jacquet-Langlands transfers of relevant automorphic representa-
tions between the various GSpin(VD)(A).

Definition 2.4.5. For a tempered irreducible admissible representation πℓ of GSp4(Qℓ), we say πℓ is trans-
ferrable if it does not belong to the types I, IIIa, VIa, VIb, VII, VIIIa, VIIIb, or IXa in the notation of [95].

In particular, if πℓ is unramified, it is not transferrable.

Theorem 2.4.6. Let D ≥ 1 be squarefree. Then:
(1) For each relevant, non-endoscopic automorphic representationΠ = ⊗′Πv ofGSpin(VD)(A),ΠDf :=

⊗′
ℓ∤DΠℓ can be completed to a relevant automorphic representation of GSp4(A).

(2) Conversely, supposeπ = ⊗′πv is a relevant, non-endoscopic automorphic representation ofGSp4(A).
Then πDf := ⊗′

ℓ∤Dπℓ can be completed to a relevant automorphic representationΠ ofGSpin(VD)(A)
if and only if πℓ is transferrable for all primes ℓ|D.

(3) Let π = ⊗′πℓ be a relevant, non-endoscopic automorphic representation ofGSp4(A), and assume πℓ
is transferrable for all ℓ|D. Then any relevant automorphic representation Π of GSpin(VD)(A) with
ΠDf
∼= πDf has automorphic multiplicity one. The set of all such Π is a Cartesian product of local L-

packets for v|D∞, where the nonarchimedean L-packets are determined only by the corresponding
local factors of π. The archimedeanL-packet is the discrete series packet of weight (3, 3)when σ(D)
is even and the trivial representation when σ(D) is odd.

Proof. When σ(D) is odd, so that GSpin(VD)(R) is compact, this is [96, Theorem 11.4]. To prove these
assertions when σ(D) is even, we follow the sketch indicated in the discussion following loc. cit.

The following fact will be used repeatedly:

If π∞ is an irreducible admissible representation of GSp4(R) with H3(gsp4, U(2);π∞) ̸= 0,
then π∞ lies in the discrete series L-packet of weight (3, 3).

(2.10)

This fact follows from the calculations in [108, p. 293].
To prove (1), suppose first that Π = ⊗′Πv is a relevant automorphic representation of GSpin(VD)(A).

By [96, Corollary 7.4] combined with Lemma 2.4.4(3), we conclude that ΠDf can be completed to a coho-
mological automorphic representation π of GSp4(A). Moreover πf necessarily contributes to cohomology
in degree 3 by [96, Proposition 8.2], and in particular π is relevant by (2.10) combined with Lemma 2.4.4(2),
so this proves (1).
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To prove (2) and (3), we need some preparation. Fix a relevant automorphic representation π = ⊗′πv of
GSp4(A). For each prime ℓ|D such that πℓ is transferrable, there is a localL-packet of irreducible admissible
representations of GSpin(VD)(Qℓ) determined by the character relations of Lemma 11.1 of op. cit. Let
AD =

∏
ℓ|D Qℓ; by an irreducible admissible representation of GSpin(VD)(AD) we mean a direct product

of irreducible admissible representations of GSpin(VD)(Qℓ) for ℓ|D.
Ifπℓ is transferrable for all ℓ|D, letS be the set of irreducible admissible representations ofGSpin(VD)(AD)

obtained by taking the Cartesian product of the local L-packets. If πℓ is not transferrable for some ℓ|D, then
let S be the empty set.

The comparison of cohomological trace formulas from the proof of [96, Theorem 11.4] shows the follow-
ing identity: for all irreducible admissible representations ΠD of GSpin(VD)(AD), we have

(2.11)
1

2

∑
π∞

m(πD ⊗ΠD ⊗ π∞)χ(π∞) =

{
2, ΠD ∈ S,
0, ΠD ̸∈ S.

Here the notation is as follows:
• The sum over π∞ runs over cohomological representations of GSp4(R), and χ(π∞) is the negative

Euler characteristic
∑

(−1)i+1 dimH i(gsp4, U(2);π∞).
• πD is the representation ⊗′

ℓ∤Dπℓ of GSpin(VD)(AD).
• m(πD ⊗ ΠD ⊗ π∞) is the multiplicity in the discrete (equivalently cuspidal, since π is relevant)

automorphic spectrum of GSpin(VD)(A).
We can further manipulate the left-hand side of (2.11). Let πW∞ and πH∞ be the generic and holomorphic

members, respectively, of the discrete series L-packet of weight (3, 3). We then claim that

(2.12)
1

2

∑
π∞

m(πD ⊗ΠD ⊗ π∞)χ(π∞) = m(πD ⊗ΠD ⊗ πW∞ ) +m(πD ⊗ΠD ⊗ πH∞).

To prove (2.12), suppose first that the right-hand side is positive. Then any cohomological π∞ with Π =
πDf ⊗ ΠD ⊗ π∞ automorphic can have Lie algebra cohomology only in degree 3 by Lemma 2.4.4(2, 3). In
particular, if m(πD ⊗ΠD ⊗ π∞)χ(π∞) ̸= 0 then π∞ is either πW∞ or πH∞ by (2.10), so – combined with the
fact that χ(πW∞ ) = χ(πH∞) = 2 by [108, p. 293] – we have shown (2.12) when the right-hand side is positive.
On the other hand, suppose the right-hand side of (2.12) vanishes; then each summand on the left-hand side
of (2.12) is non-positive by (2.10) because Lie algebra cohomology vanishes for GSp4(R) outside degrees
0, 2, 3, 4, and 6. But the left-hand side of (2.12) is also non-negative by (2.11), so we conclude that it is zero,
hence (2.12) again holds.

In particular, by (2.12) and (2.11) together, we have

(2.13) m(πD ⊗ΠD ⊗ πW∞ ) +m(πD ⊗ΠD ⊗ πH∞) =

{
2, ΠD ∈ S,
0, ΠD ̸∈ S.

From (2.13), it is clear thatπD can be completed to a relevant automorphic representation ofGSpin(VD)(A)
if and only if S is nonempty, i.e. if and only if πℓ is transferrable for all ℓ|D; this shows (2).

We also see from (2.13) that (3) is equivalent to the assertion that m(πD ⊗ΠD ⊗ πW∞ ) = m(πD ⊗ΠD ⊗
πH∞) = 1 for all ΠD ∈ S. Suppose for contradiction that m(πD ⊗ ΠD ⊗ πW∞ ) and m(πD ⊗ ΠD ⊗ πH∞) are
0 and 2, in some order. Let K =

∏
Kℓ ⊂ GSpin(VD) be a neat compact open subgroup such that ΠKf ̸= 0,

and let p > 3 be a prime such thatKp is hyperspecial. Fix as well an isomorphism ι : Qp
∼−→ C. Then by the

discussion in [108, p. 296], H3
ét(ShK(VD)Q,Qp)[Π

K
f ] is nonzero and has exactly two distinct Hodge-Tate

weights as a representation of GQp .
On the other hand, by (2) from the proof of Lemma 2.4.4 combined with the irreducibility of Vπ,ι (Lemma

2.2.12), up to semisimplification H3
ét(ShK(VD)Q,Qp)[Π

K
f ] is a sum of copies of Vπ,ι, which is a contradic-

tion because Vπ,ι has distinct Hodge-Tate weights by Theorem 2.2.10(2). This completes the proof of (3). □
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Remark 2.4.7. One can similarly prove Theorem 2.4.6 in all regular weights, by considering cohomology
of Siegel threefolds with coefficients in more general local systems; we omit the details for concision.

2.5. Relevant endoscopic automorphic representations.

2.5.1. Relevant endoscopic automorphic representations of GSpin(VD)(A) can be constructed as follows.
Fix unitary cuspidal automorphic representations π1 and π2 of GL2(A) with the same central character, and
whose archimedean components are discrete series of weights 4 and 2, in some order. Let D1 and D2 be
squarefree positive integers, such that πi admits a Jacquet-Langlands transfer πDii to B×

Di
(A) for i = 1, 2

(notation as in (1.1.6)).
Define D1 ∗D2 := D1D2/ gcd(D1, D2)

2, which is a squarefree positive integer. Then as in [21, §3.3],
there is a global theta lift,

(2.14) Θ(πD1
1 ⊠ πD2

2 ) = Θ(πD2
2 ⊠ πD1

1 ),

which is either zero or a cuspidal automorphic representation of GSpin(VD1∗D2)(A).

Theorem 2.5.2. With notation as above, relabel π1 and π2 if necessary so that π1 has weight 2 and π2 has
weight 4.

(1) The theta lift Θ(πD1
1 ⊠ πD2

2 ) is nonzero if and only if either σ(D2) or σ(D1 ∗ D2) is even. When
nonzero, Θ(πD1

1 ⊠πD2
2 ) is always relevant and endoscopic associated to the pair (π1, π2), and these

representations are all distinct.
(2) Conversely, each relevant endoscopic automorphic representation of GSpin(VD)(A) arises in this

way, and appears with automorphic multiplicity one in the discrete (equivalently cuspidal) spectrum.

Proof. This follows from the results of [21, §3], combined with the discussion of the local archimedean theta
lift in §2.4 of op. cit.. □

Corollary 2.5.3. For any relevant automorphic representation Π of GSpin(VD)(A), there exists a relevant
automorphic representation π of GSp4(A) such that:

(1) For each prime ℓ ∤ D, Πℓ ∼= πℓ.
(2) For each prime ℓ|D, πℓ is transferrable, and Πℓ lies in the corresponding local packet of represen-

tations of GSpin(VD)(Qℓ) from Theorem 2.4.6(3).

Proof. If Π is not endoscopic, this follows from Theorem 2.4.6. If Π is endoscopic, (1) is immediate from
Theorem 2.5.2. For (2), it follows because the Langlands correspondences of [36, 37] are constructed to
be compatible with theta lifting, and the correspondence of local representations in [96, Table 3] respects
Langlands parameters by Lemma 11.1 of op. cit. □

Remark 2.5.4. By Corollary 2.5.3, we can associate to each relevant automorphic representation Π of
GSpin(VD)(A) a compatible system of Galois representations ρΠ,ι as in Theorem 2.2.10.

2.6. Local representations with paramodular fixed vectors.

Notation 2.6.1. For all primes q (whether or not q|D), the paramodular subgroup of GSpin(VD)(Qq) is a
maximal compact subgroup described in [104, p. 918]. To avoid confusion, we denote this subgroup byKPa

q

when q ∤ D and by Kram
q when q|D.

Lemma 2.6.2. Let π be a relevant automorphic representation of GSpin(VD)(A), and suppose q ∤ D is a
prime such that πq has a KPa

q -fixed vector. Then:
(1) πq is either spherical or of type IIa in the notation of [95].
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(2) π is the unique completion of πqf ⊗ π∞ to an automorphic representation of GSpin(VD)(A).
(3) If πq is of type IIa, then for any ι : Qp

∼−→ C with q ̸= p, the action of IQq on Vπ,ι is unipo-
tent with monodromy of rank one. Moreover, the corresponding local packet of representations of
GSpin(VDq)(Qq) in Theorem 2.4.6(3) is a single representation with a unique Kram

q -fixed vector.

Proof. By Corollary 2.5.3, πDf = ⊗ℓ∤Dπℓ can be completed to a relevant automorphic representation of
GSp4(A). In particular, πq is tempered (by Theorem 2.2.10(1)), so (1) follows from [95, Tables A.1, A.13].

If πqf ⊗ π
′
q ⊗ π∞ is automorphic for some π′q, then πDqf ⊗ π

′
q can be completed to an automorphic repre-

sentation of GSp4(A) by the same reasoning as for πDf . Hence by Theorem 2.2.10(1), π′q and πq belong to
the same Gan-Takeda local L-packet. But the L-packets of type I and IIa are singletons, so this shows (2).

Finally, suppose πq is the type IIa representation denoted χStGL(2)⋊σ in loc. cit. Because πq has a
KPa
q -fixed vector, χ and σ are unramified characters of Q×

q . This implies the assertions on ρπ,ι|IQq in (3) by
Theorem 2.2.10(1) and the explicit local Langlands paremeters found in [95, Table A.7]. The final claim in
(3) follows from [96, Table 3] combined with [104, Theorem B]. □

2.7. Generic maximal ideals and cohomology of GSpin5 Shimura varieties.

2.7.1. For this subsection, fix a coefficient field E ⊂ Qp with E a finite extension of Qp, and let O ⊂ E be
the ring of integers with uniformizer ϖ. Also fix an isomorphism ι : Qp

∼−→ C, a squarefree D ≥ 1, a neat
compact open subgroup K =

∏
ℓKℓ ⊂ GSpin(VD)(Af ), and a set S of places of Q containing all ℓ such

that Kℓ is not hyperspecial.

Lemma 2.7.2. Suppose m ⊂ TSO is non-Eisenstein and σ(D) is even. Then for all i, the natural maps induce
isomorphisms:

H i
c(ShK(VD), O)m

∼−→ H i(ShK(VD), O)m,

H i
c(ShK(VD),Fp)m

∼−→ H i(ShK(VD),Fp)m.
(2.15)

Proof. We show the second isomorphism; the first follows formally. Let P = MN ⊂ GSpin(VD) be a
parabolic subgroup. Then we may fix an identification GSpin(VD)(AS) ≃ GSp4(AS) such that P (AS) =
P1(AS) for a parabolic subgroup P1 =M1N1 ⊂ GSp4.

The Levi factor M is abstractly isomorphic to either B×
D × GL1 or GL3

1 (the latter occurring only if
D = 1). To any compact open subgroup KM ⊂ M(Af ) we can associate a locally symmetric space
SKM (M) = M(Q)\M(A)/KM · K∞, where K∞ ⊂ M(R) is the product of the center and a maximal
compact subgroup. In particular, each connected component of SKM (M) is either a Shimura curve or an
isolated point.

Using the Borel-Serre compactification of ShK(VD) and the argument of [82, §4], it suffices to show
the following: for any parabolic subgroup P = MN ⊂ GSpin(VD) as above and any compact open
subgroup KM =

∏
ℓKM,ℓ ⊂ M(Af ) with KM,ℓ hyperspecial for ℓ ̸∈ S, the support of the TS

GSp4,Fp
-

module (S
GSp4
M )∗H i(SKM (M),Fp) is Eisenstein for all i. But this follows from Proposition 2.1.9 because,

as M = B×
D ×GL1 or GL3

1, every maximal ideal of TS
M,Fp

in the support of H i(SKM (M),Fp) is clearly of
Galois type. □

Definition 2.7.3.
(1) A maximal idealm ⊂ Tℓ,O is called generic if p ∤ 2ℓ(ℓ4−1), and the Satake parameter {α, β, ν/α, ν/β}

of m is multiplicity-free with no two elements having ratio ℓ.
(2) A maximal ideal m ⊂ TSO is called generic if there exist infinitely many ℓ ̸∈ S such that the induced

maximal ideal of Tℓ,O is generic. For any quotient T of TSO, a maximal ideal m ⊂ T is called generic
if its pullback to TSO is so.
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(3) A Galois representation ρ : GQ → GSp4(Fp), unramified outside a finite set S, is called generic if
there exists a prime ℓ ̸∈ S with p ∤ 2ℓ(ℓ4 − 1), such that ρ(Frobℓ) has distinct eigenvalues, no two
having ratio ℓ.

Remark 2.7.4. If m ⊂ TSO has an associated Galois representation ρm, clearly m is generic if and only if ρm
is so.

Theorem 2.7.5. Suppose m ⊂ TSO is a generic maximal ideal and σ(D) is even. Then:
(1) For all i < 3, we have

H i(ShK(VD),Fp)m = H6−i
c (ShK(VD),Fp)m = 0.

(2) If m is also non-Eisenstein, then

H i
c(ShK(VD), O)m = H i(ShK(VD), O)m

is ϖ-torsion-free for all i, and vanishes unless i = 3.

Proof. Part (1) is immediate from [42, Theorem 1.16] and our definition of genericity. Using Lemma 2.7.2,
(2) is a standard consequence of (1). □

Lemma 2.7.6. Suppose m ⊂ TSK,VD,O is non-Eisenstein and generic, and suppose π is an automorphic rep-
resentation of GSpin(VD)(A) such that πKf ̸= 0, and the action of TSO on ι−1πKf factors through TSK,VD,O,m.
Then π is not Eisenstein (in the sense of Definition 2.4.2).

With a bit more care, the genericity assumption can be dropped; we leave the details to the reader.

Proof. Suppose first thatD = 1, so π is an automorphic representation of GSp4(A), and let mπ ⊂ TS
GSp4,Qp

be the maximal ideal determined by the Hecke action on ι−1πS . Then by hypothesis, mπ is in the support
of the Hecke module H3(ShK(V1),Qp)m. By Lemma 2.7.2 combined with the diagram in [108, p. 293],
we conclude that πS can be completed to an automorphic representation π′ of GSp4(A) that appears in
the discrete spectrum. Suppose for contradiction that π is Eisenstein; then π′ is either CAP or a residual
representation. In either case, it follows that the Satake parameter of πℓ contains a pair of the form {α, αℓ}
for all ℓ ̸∈ S: when π′ is CAP, this uses [88, Theorems 2.5, 2.6] and [106, Theorem C], and when π′ is
residual it uses well-known results on the irreducibility of principal series representations for GSp4. But
these Satake parameters are inconsistent with the genericity of m, so π cannot be Eisenstein, as desired.

We now handle the case of generalD; the argument is a mild refinement of the trace formula method used
in [96]. We abbreviate GD := GSpin(VD) and fix a minimal parabolic subgroup P0 ⊂ GD (which will be
all of GD if σ(D) is odd). Let fD ∈ C∞

c (GD(Af ),C) be a test function with regular support, and define
(2.16)

T (fD) =
∑

P0⊂P=MN⊂GD

(−1)rank(M)−rank(GD)
∑

w∈WP

(−1)ℓ(w) tr

(
f
P
D · χGP , lim−→

KM

H∗(SKM (M), Vw·ρGD−ρM )

)
.

Here WP is the set of minimal-length coset representatives for the Weyl group of GD modulo that of M ,
tr is the supertrace, fP and χGDP are defined as in [126, §2.6], SKM (M) is the symmetric space from the
proof of Lemma 2.7.2, ρGD and ρM are the half-sums of positive roots, and Vw·ρGD−ρM is the complex local
system on SKM (M) of weight w · ρGD − ρM . Although w · ρGD − ρM might not be integral, we interpret
Vw·ρGD−ρM as the twist of Vw·ρGD−ρGD by the real character δ1/2P of M(R), i.e.

(2.17) H∗(SKM (M), Vw·ρGD−ρM ) = δ
−1/2
P ⊗H∗(SKM (M), Vw·ρGD−ρGD )

as Hecke modules.
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For test functions f1 ∈ C∞
c (G1(Af ),C) with regular support, we define T (f1) analogously to (2.16). If

fD and f1 ∈ C∞
c (G1(Af ),C) are matching functions in the sense of [96, §5], then it follows from combining

[126, Lemma 2.10] with [96, Theorem 5.3] that
(2.18) T (fD) = T (f1)cD

for a nonzero constant cD depending only on D.
Shrinking KS if necessary, we can fix a KS-biinvariant test function fD,S ∈ C∞

c (GD(AS)) with regular
support such that
(2.19) tr

(
fD,S , H

∗(ShK(VD),C)[πS ])
)
̸= 0;

when σ(D) is even, we use Theorem 2.7.5(2) to ensure that contributions from π in different degrees do
not cancel.Let f1,S ∈ C∞

c (G1(AS)) be a matching function, and let K1,S ⊂ G1(AS) be a compact open
subgroup such that f1,S is K1,S-biinvariant. We also fix an isomorphism GD(ASf ) ≃ G1(ASf ), and let
K1 = KSK1,S ⊂ G1(Af ), which is a compact open subgroup. Let

Π(D) =
⊕

P0⊂P=MN⊂GD

⊕
w∈WP

Ind
GD(Af )
P (Af )

lim−→
KM

H∗(SKM (M), Vw·ρGD−ρM ),

and letPD be the set of irreducibleGD(Af )-constituents occurring inΠ(D)with aK-fixed vector. Likewise,
we define Π(1) and P1, where now we consider constituents with K1-fixed vectors, and set P = PD ⊔ P1.

Then P contains finitely many near equivalence classes, cf. [126, p. 45]. We can therefore fix a finite set
T of primes of Q, disjoint from S, so that two representations σ, τ ∈ P are nearly equivalent if and only if
σT ∼= τT . Now fix a KT =

∏
ℓ∈T Kℓ-biinvariant test function fT ∈ C∞

c (GD(AT ),C) = C∞
c (G1(AT ),C),

such that for all τ ∈ P , tr(fT |τT ) = 0 unless τT ∼= πT , and tr(fT |πT ) = 1.
Also fix an auxiliary prime v0 ̸∈ S ∪ T , and for a large constant C > 0 to be chosen later, let fv0,C ∈

TGSp4,v0,C be a test function satisfying the conclusion of [96, Lemma 3.9] for the representation πv0 ; in
particular, tr(fv0,C |πv0) = 1.

We consider the global test function

fD = fD,SfT fv0,Cf
S∪T∪{v0} ∈ C∞

c (GD(Af )),

where fS∪T∪{v0} is the indicator function of KS∪T∪{v0}. The matching function is

f1 = f1,SfT fv0,Cf
S∪T∪{v0} ∈ C∞

c (G1(Af )).

Claim. For all P0 ⊂ P =MN ⊊ G1 and all w ∈WP , we have

tr

(
f
P
1 · χGP , δ

−1/2
P lim−→

KM

H∗(SKM (M), Vw·ρG1
−ρG1

)

)
= 0,

and likewise for all P0 ⊂ P =MN ⊊ GD.

Proof of claim. To ease notation, we prove the claim for G1; the proof for GD is identical. Let τ be an
irreducible constituent of lim−→H∗(SKM (M), Vw·ρG1

−ρG1
). It suffices to show that

tr
(
f
P
1 · χ

G1
P , τ ⊗ δ−1/2

P

)
= 0.

Now by the argument of [96, Proposition 3.10], if C is chosen sufficiently large, then

tr
(
f
P
1 · χGP , τ ⊗ δ

−1/2
P

)
= tr

(
f1,SfT fS∪T∪{v0}

P
· fPv0 , τ ⊗ δ

−1/2
P

)
for an auxiliary spherical test function fPv0 on M(Qv0). In particular, because fP is invariant under K1 ∩
M(Af ), we may assume without loss of generality that τ contains a fixed vector forK1∩M(Af ). Moreover
it suffices to show

tr
(
f
P
T , τT ⊗ δ

−1/2
P

)
= 0.
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By [96, Proposition 3.5(2)], the latter trace coincides with

(2.20) tr
(
fT , ♮− Ind

G1(AT )
M(AT ) τ

)
.

We will show (2.20) vanishes. Indeed, since each constituent of ♮ − Ind
G1(Af )
M(Af )

τ lies in P1, if (2.20) is

nonzero then π is nearly equivalent to a constituent of ♮−IndG1(Af )
M(Af )

τ by the choice of fT . Now, the maximal
ideal mτ ⊂ TS

M,Qp
defined by the Hecke action on ι−1τ is of Galois type because τ is cohomological and

M = GL3
1 orGL2×GL1. Hence by Propositions 2.1.2 and 2.1.9, the maximal idealmπ ⊂ TS

GSp4,Qp
defined

by ι−1π is Eisenstein, which one can easily check contradicts the hypothesis that m is non-Eisenstein. □

In particular, the claim combined with (2.19) and the choice of fT shows that T (fD) ̸= 0, so T (f1) ̸= 0
by (2.18). Using the claim again, we see that

tr (f1, H
∗(ShK1(V1),C)) ̸= 0.

By Franke’s theorem [32] and our choice of fT , we conclude there exists an automorphic representation π′
of GSp4(A) which is nearly equivalent to π and unramified outside S, such that the Hecke eigensystem of
π′S appears in H∗(ShK1(V1),C). Expand S to a larger set S′ such that πS′ ∼= π′S

′ . Then the maximal ideal
mS′ ⊂ TS′

GSp4,O
formed by restricting m descends to TS′

K1,V1,O
. By the caseD = 1 of the lemma for mS′ and

π′, π′ is not Eisenstein, hence π is not either. □

Corollary 2.7.7. Suppose σ(D) is even, and m ⊂ TSK,VD,O is a generic, non-Eisenstein maximal ideal. Also
fix an isomorphism ι : Qp

∼−→ C. Then

H3
ét(ShK(VD)Q,Qp)m =

⊕
πf

ι−1πKf ⊗ ρπf ,

where:
• πf runs over the finite parts of relevant automorphic representations π of GSpin(VD)(Af ) such that

the TSO-action on πKf factors through TSK,VD,O,m.
• If π is not endoscopic, then ρπf = ρπ,ι(−2), cf. Remark 2.5.4.
• If π is endoscopic associated to a pair π1, π2 of automorphic representations ofGL2(A)with discrete

series archimedean components of weights 2 and 4, respectively, we can write π = Θ(πD1
1 ⊠ πD2

2 )
by Theorem 2.5.2. Then

ρπf =

{
ρπ1,ι(−2), σ(D1) even,
ρπ2,ι(−2), σ(D1) odd.

Proof. It follows from Lemmas 2.7.6 and 2.4.4(2) that

H3
ét(ShK(VD)Q,Qp)m ∼=

⊕
πf

ι−1πKf ⊗ ρπf

as Hecke modules, where πf runs over the finite parts of non-Eisenstein automorphic representations of
GSpin(VD)(Af ) with Hecke action factoring through TSK,VD,O,m, and ρπf is some Galois representation
with

dim ρπf =
∑
π′
∞

m(πf ⊗ π′∞) dimH3(gsp4, U(2);π′∞).

In particular, by (2.10), the only πf with ρπf ̸= 0 are the finite parts of relevant automorphic representations
π.

We first consider the non-endoscopic case. As in [108, p. 296], we see from Theorem 2.4.6(3) that ρπf is
four-dimensional with Hodge-Tate weights {0,−1,−2,−3} if π is not endoscopic. Since for all but finitely
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many ℓ ̸∈ S, Frobℓ satisfies the Eichler-Shimura relation (2.9) on ρπf , we conclude that ρπf = ρπ,ι(−2). It
remains to consider the endoscopic case, when π = Θ(πD1

1 ⊠ πD2
2 ). Then π is the unique completion of πf

to an automorphic representation of GSpin(VD)(A) by Theorem 2.5.2. Moreover, by the local archimedean
theta lift described in [44, Proposition 4.3.1], π∞ is the generic or holomorphic member of the discrete series
L-packet in the case that σ(D1) is even or odd, respectively. Hence we conclude as above that ρπf is two-
dimensional, with Hodge-Tate weights {−1,−2} or {0,−3} when σ(D1) is even or odd, respectively. Since
we still have the Eichler-Shimura relation (2.9), it follows that ρπf is either ρπ1,ι(−2) or ρπ2,ι(−2) depending
on the Hodge-Tate weights, and the corollary follows. □

Corollary 2.7.8. Let m ⊂ TSK,VD,O be a generic and non-Eisenstein maximal ideal, and let T be the set
of relevant automorphic representations π of GSpin(VD)(A) such that πKf ̸= 0 and the Hecke action on
ι−1πKf factors through TSK,VD,O,m. Then we have a natural embedding of TSK,VD,O,m-algebras

TSK,VD,O,m ↪→
⊕
π∈T

Qp(π),

where Qp(π) is Qp with Hecke action through the eigenvalues on ι−1πKf .

Proof. If σ(D) is odd, this is immediate from Lemma 2.7.6. If σ(D) is even, it follows from Theorem
2.7.5(2) combined with Corollary 2.7.7. □

3. Special cycles and theta lifts

3.1. Special cycles.

3.1.1. In this subsection, we explain the construction of special cyclesZ(T, φ), due to Kudla in the indefinite
case [54].

Construction 3.1.2. Let V be a quadratic space over Q of signature (m, 2) or (m, 0).
(1) If V0 ⊂ V is a positive definite subspace, then for any g ∈ GSpin(V0)(Af )\GSpin(V )(Af )/K, we

obtain a canonical finite morphism

(3.1) ShK0,g(V
⊥
0 )

·g−→ ShK(V ),

with K0,g := gKg−1 ∩GSpin(V ⊥
0 )(Af ).

(i) If V has signature (m, 2) and dimV0 = n, then we write

Z(g, V0, V )K ∈ CHn(ShK(V ))

for the pushforward of the fundamental class on ShK0,g(V
⊥
0 ) under (3.1).

(ii) If V has signature (m, 0), then we write

Z(g, V0, V )K ∈ Z [ShK(V )]

for the pushforward of the constant function 1 on ShK0,g(V
⊥
0 ) under (3.1).

(2) For any T ∈ Symn(Q)≥0, let

ΩT,V = {(x1, . . . , xn) ∈ V n : xi · xj = Tij ∀ 1 ≤ i, j ≤ n} ,
viewed as an affine algebraic variety over Q.

(3) Now suppose given a neat compact open subgroup K ⊂ GSpin(V )(Af ), along with a test function

φ ∈ S(V n ⊗ Af , R)K

for some n ≤ m and some ring R. (The action of K is the natural one, factoring through the map
to SO(V )(Af ).) For any T ∈ Symn(Q)≥0, if ΩT,V (Q) = ∅, then the special cycle Z(T, φ)K , in
CHn(ShK(V ), R) := CHn(ShK(V ))⊗Z R or R [ShK(V )], is defined to vanish. Otherwise:
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(i) If V is positive definite, then fix a base point (x1, . . . , xn) ∈ ΩT,V (Q), and let

V0 = SpanQ {x1, . . . , xn} ⊂ V.

Then we define

(3.2) Z(T, φ)K =
∑

g∈GSpin(V ⊥
0 )(Af )\GSpin(V )(Af )/K

φ(g−1x1, . . . , g
−1xn)Z(g, V0, V )K ∈ R[ShK(V )].

(ii) If V has signature (m, 2) and T is positive definite, we define

Z(T, φ)K ∈ CHn(ShK(V ), R)

by the same formula (3.2). If T is not positive definite (and still ΩT,V (Q) ̸= 0), we define
Z(T, φ)K ∈ CHn(ShK(V ), R) by the recipe in [54, p. 61]; the details will not be needed.

Remark 3.1.3. By transitivity of the GSpin(V )(Q)-action on ΩT,V (Q), Z(T, φ)K is independent of the
choice of base point for ΩT,V (Q).

Proposition 3.1.4. For neat compact open subgroups K ′ ⊂ K ⊂ GSpin(V )(Af ), if prK,K′ : ShK′(V )→
ShK(V ) is the natural map, then pr∗K,K′ Z(T, φ)K = Z(T, φ)K′ .

Proof. This is [54, Proposition 5.10] in the indefinite case; the definite case is proved in the same way. □

Notation 3.1.5. For any compact open subgroupK ⊂ GSpin(V )(Af ), and any ringR, we defineSCnK(V,R)
to be theR-span of the special cyclesZ(T, φ)K for T ∈ Symn(Q)≥0 andφ ∈ S(V n⊗Af , R). WhenR = Z
it may be dropped from the notation.

Remark 3.1.6. Note that SCnK(V,Z) contains all of the special cycles z = Z(g, V0, V )K from (3.1.1) with
dimV0 = n. Indeed, choose a basis {e1, . . . , en} for V0, and set Tij := ei · ej . Then one can choose
φ ∈ S(V ⊗ Af ,Z)K such that φ|ΩT,V (Af ) is the indicator function of K · g−1(e1, . . . , en), and it follows
that Z(T, φ)K = Z(g, V0, V )K .

3.1.7. We will later need the following proposition to understand the double coset space appearing in (3.2).

Proposition 3.1.8. Suppose Kℓ ⊂ SO(V )(Qℓ) is the stabilizer of a self-dual lattice L ⊂ V ⊗ Qℓ, and
V = V0 ⊕ V1 be an orthogonal decomposition of V . Then the natural map

SO(V0)(Qℓ)\ SO(V )(Qℓ)/Kℓ → {lattices L1 ⊂ V1 ⊗Qℓ}
g 7→ g · L ∩ V1

is injective. If dim(V1) < dim(V0), then its image consists of all L1 on which the pairing is Zℓ-valued.

Proof. This follows from (the proof of) [26, Propositions 3.1.5, 3.1.6]. □

3.2. Symplectic and metaplectic groups. In this section, we set up basic notions for symplectic and meta-
plectic groups, mostly following the exposition of [34].

Notation 3.2.1. (1) For an integer n ≥ 1, we define the standard symplectic lattice W2n with basis
e1, . . . , en, e

∗
1, . . . , e

∗
n and pairing determined by

(3.3) ⟨ei, ej⟩ = 0, ⟨e∗i , e∗j ⟩ = 0, ⟨ei, e∗j ⟩ = δij .

The symplectic group Sp2n as defined in (1.1.4) is the isometry group of W2n.
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(2) The Siegel parabolic subgroup P = MN ⊂ Sp2n is the stabilizer of SpanZ {e1, . . . , en} ⊂ W2n.
We identifyN with Symn, the space of n×n symmetric matrices, andM with GLn via the embed-
ding

g 7→
(
g 0
0 g−t

)
∈ Sp2n, g ∈ GLn .

(3) If k is a local field of characteristic zero, the metaplectic group Mp2n(k) is defined as the unique
non-split central extension of Sp2n(k) by µ2:

0→ µ2 → Mp2n(k)
g 7→g−−−→ Sp2n(k)→ 0.

The double cover Mp2n(k) → Sp2n(k) splits uniquely over N(k), with P = MN the Siegel
parabolic as above. The preimage P̃ (k) of P (k) therefore has a Levi decomposition

P̃ (k) = M̃(k)N(k)

with M̃(k) a nonsplit double cover of M(k).
(4) If k is non-archimedean with ring of integers O and the residue characteristic of O is odd, let

Mp2n(O) ⊂ Mp2n(k) be the unique lifting of Sp2n(O) [35, §6].
(5) Let U(n) ↪→ Sp2n(R) be the embedding defined by

A+ iB 7→
(
A B
−B A

)
.

We fix the Cartan decomposition

sp2n,C = u(n)C ⊕ p+ ⊕ p−,

such that p+ is isomorphic to the symmetric square of the defining representation of U(n).
(6) Let Ũ(n) ⊂ Mp2n(R) be the preimage of U(n). If j1/2(g, z) is the half-integral weight automorphy

factor of [101, p. 25], then we let det1/2 : Ũ(n) → C× be the restriction of j1/2(g, i), which is a
square root of the determinant character. We set detk := (det1/2)2k for all k ∈ 1

2Z.
(7) Globally, let

Mp2n(A) =
′∏
v

Mp2n(Qv)

be the restricted product with respect to the subgroups Mp2n(Zv) ⊂ Mp2n(Qv) for v ̸= 2,∞. The
inclusion Sp2n(Q) ↪→ Sp2n(A) lifts naturally to

Sp2n(Q) ↪→ Mp2n(A),

by which we will view Sp2n(Q) as a subgroup of Mp2n(A).

Definition 3.2.2. For k ∈ 1
2Z, define the spaceM2n

k of adelic Siegel modular forms of degree 2n and weight
k, consisting of smooth functions

f : Sp2n(Q)\Mp2n(A)→ C
such that:

(1) f(gz) = detk(z)f(g) for any z ∈ Ũ(n) ⊂ Mp2n(R).
(2) X · f(g) = 0 for any X ∈ p− ⊂ sp2n,R.

Remark 3.2.3. Note that M2n
k is naturally an Mp2n(Af )-module.

Notation 3.2.4.
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(1) Let ψ be the additive character of Q\A which is unramified at all finite places and satisfies

ψ(x∞) = e2πix∞

for x∞ ∈ R ⊂ A.
(2) For T ∈ Symn(Q), define

ψT := ψ ◦
(
1

2
tr(T−)

)
,

a unitary character of N(Q)\N(A) (where N is the unipotent radical of the Siegel parabolic).

From basic Fourier analysis, one deduces the following proposition.

Proposition 3.2.5. Let f ∈M2n
k . Then we have an identity of functions on N(A) ⊂ Mp2n(A):

f =
∑

T∈Symn(Q)

aT (f)q
T
A ,

where qTA := e− tr(T ) · ψT and

aT (f) :=
etr(T )

Vol([N ])

∫
[N ]

f(n)ψ−1
T (n)dn.

Definition 3.2.6. For any subring R ⊂ C, define

M2n
k,R =

{
f ∈M2n

k : aT (f) ∈ R for all T ∈ Symn(Q)
}
.

3.3. Weil representation.

3.3.1. Let k be a local field, and let V be a quadratic space over k of odd dimension and trivial discriminant.
Also fix an even integer 2n ≥ 2. For any nontrivial additive character ψ of k, the Weil representation ωψ
of SO(V )(k) × Mp2n(k) is realized on the complex Schwartz space S(V n,C), and is determined by the
following formulas.

(3.4)


ωψ(g, 1)φ(x) = φ(g−1x), g ∈ SO(V )(k).

ωψ(1, u)φ(x) = ψ(12u(x) · x)φ(x), u ∈ N(k) ∼= Symn(k).

ωψ(1,m)φ(x) = χψ(m)|det(m)|
dimV

2 φ(mtx), m ∈ M̃(k).

ωψ(1, w)φ(x) = γw
∫
V n φ(y)ψ(x · y)dy.

Here, the notation is as follows:
◦ P =MN is the Siegel parabolic.
◦ χψ is a µ8-valued genuine character of M̃(k) described in [34, p. 1661].
◦ w ∈ Mp2n(k) is a certain Weyl element such that wPw−1 = P op.
◦ γw is a certain eighth root of unity.
◦ The pairing on V n in the second and fourth equations is

(x1, . . . , xn) · (y1, . . . , yn) =
∑

xi · yi.

◦ dx in the fourth equation is a self-dual Haar measure.

3.3.2. If k is non-archimedean of residue characteristic ℓ andR ⊂ C is a Z
[
1
ℓ

]
-algebra containing all eighth

and ℓth power roots of unity, then the same formulas give a well-defined action of SO(V )(k)×Mp2n(k) on
the space S(V n, R) of R-valued Schwartz functions.
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3.3.3. Globally, if V is a quadratic space over Q, we have Weil representations S(V n⊗Qv,C) for all places
v, defined using the localizations of the fixed global additive character ψ of Q\A. Similarly, we have the
Weil representations S(V n ⊗ A,C), S(V n ⊗ Af ,C), etc., defined as restricted tensor products.

3.4. Classical theta lifting.

Notation 3.4.1. For a Schwartz functionφ ∈ S(V n⊗A,C) and a cuspidal automorphic formα on SO(V )(A),
we write θφ(α) for the automorphic form on Mp2n(A) defined by

(3.5) θφ(α)(h) =

∫
[SO(V )]

α(g)
∑
x∈V n

ωψ(g, h)φ(x)dg.

The normalization depends on a choice of Haar measure.

3.4.2. Suppose V is positive definite and let K ⊂ GSpin(V )(Af ) be a neat compact open subgroup. For
α : ShK(V )→ C, define an automorphic form α on GSpin(V )(A), which descends to SO(V )(A), by

α(gfg∞) =
1

Vol(Ẑ×)

∫
Ẑ×
α(gfz)dz, ∀g = gfg∞ ∈ GSpin(V )(A).

Lemma 3.4.3. Let φ∞ ∈ S(V n ⊗ R,C) be the Gaussian
φ∞(x) = e−x·x.

Then for α : ShK(V )→ C and
φf ∈ S(V n ⊗ Af ,C)K ,

θφf⊗φ∞(α) lies in M2n
dim(V )

2

and

aT
(
θφf⊗φ∞(α)

)
= CK · α (Z(T, φf )K) ,

where the constant is
CK =

Vol (SO(V )(R) · Im (K → SO(V )(Af )))
[K · Ẑ× : K]

.

Proof. In the Fock model of the
(
sp2n dim(V ), Ũ(n dim(V ))

)
-module associated to S(V n⊗R,C), φ∞ has

degree zero, hence is annihilated by p− ⊂ sp2n; cf. [46, (2.2)]. By comparing degrees with [1, Proposition
2.1(2)], we also conclude that Ũ(n) acts on θφf⊗φ∞(α) by det

dim(V )
2 , which proves θφf⊗φ∞(α) ∈M2n

dim(V )
2

.
It remains to compute the Fourier coefficients. We calculate:

aT (θφf⊗φ∞(α)) =
etrT

Vol([N ])

∫
[N ]

ψ−1
T (u)

∫
[SO(V )]

α(g)
∑

x∈V n(Q)

ωψ(g, u)φf ⊗ φ∞(x)dgdu

=
etrT

Vol([N ])

∫
[SO(V )]

α(g)
∑

x∈V n(Q)

∫
[N ]

ψ−1
T (u)ψ

(
1

2
u(x) · x

)
ωψ(g, 1)φf ⊗ φ∞(x)dgdu

=

∫
[SO(V )]

α(g)
∑

x∈ΩT,V (Q)

ωψ(g, 1)φf (x)dg.

Fix a base point x = (x1, . . . , xm) ∈ ΩT,V (Q) and let V0 = SpanQ {x1, . . . , xm}. Then, since ΩT,V (Q) is
a single SO(V )(Q)-orbit, we may rewrite the final equation as

aT (θφf⊗φ∞(α)) =

∫
SO(V ⊥

0 )(A)\SO(V )(A)
φf (g

−1x)

∫
[SO(V ⊥

0 )]
α(hg)dhdg.

This coincides with the claimed formula by definition of α(Z(T, φf )K). □
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3.4.4. As a special case, suppose V = Q is the one-dimensional space with quadratic form a 7→ a2. Then
SO(V ) is the trivial group and we take the unit Haar measure on SO(V )(A) = {id}. For each prime ℓ, let

φℓ ∈ S(V n ⊗Qℓ,Z)
be the indicator function of the lattice

Znℓ ⊂ Qn
ℓ = V n ⊗Qℓ,

and let φf = ⊗ℓφℓ. Let 1 be the unit automorphic form on SO(V )(A). We write
(3.6) θ 1

2
:= θφf⊗φ∞(1).

Lemma 3.4.5. Let ℓ be an odd prime, and suppose R ⊂ C is a Z
[
1
ℓ

]
-algebra containing all eighth and ℓth

power roots of unity. Then for any g ∈ Mp2n(Qℓ), g · θ 1
2

lies in M2n
1
2
,R

, and the constant term a0(g · θ 1
2
) of

its Fourier expansion lies in R×.

Proof. By the obvious equivariance of the theta lift, we have
g · θ 1

2
= θωψ(1,g)φf⊗φ∞(1).

Since
S(V n ⊗Qℓ, R) ⊂ S(V n,C)

is Mp2n(Qℓ)-stable, Lemma 3.4.3 shows
g · θ 1

2
∈M2n

1
2
,R
.

Also, θ 1
2

is Mp2n(Zℓ)-invariant by construction.
By the Iwasawa decomposition

Sp2n(Qℓ) = P (Qℓ) · Sp2n(Zℓ),

it suffices to show a0(g · θ 1
2
) ∈ R× for g ∈ P̃ (Qℓ). Now, by Lemma 3.4.3 again,

a0(g · θ 1
2
) = ωψ(1, g) · φf (0),

and it follows from the explicit formulas in (3.3.1) that
ωψ(1, g) · φf (0) ∈ R×

for all g ∈ P̃ (Qℓ); this proves the lemma. □

Proposition 3.4.6. Let R ⊂ C be a Z
[
1
ℓ

]
-algebra containing all eighth and ℓth power roots of unity. Then

for all k ∈ 1
2Z,

M2n
k,R ⊂M2n

k

is stable under the action of Mp2n(Qℓ).

Proof. If k ∈ Z is integral, this is a consequence of the q-expansion principle for classical Siegel modular
forms [30, Chapter 5, Proposition 1.8]. In general, for any f ∈ M2n

k,R and f ′ ∈ M2n
k′,R, the product ff ′ ∈

M2n
k+k′,R has formal q-expansion:

(3.7) (ff ′)|N(A) =
∑

T∈Symn(Q)

∑
S∈Symn(Q)

aT (f)aS(f
′)qS+TA .

(This expression make sense because aT (f) and aS(f ′) are each supported on positive semi-definite matrices
with bounded denominators in their entries, see [101, Proposition 1.1].)

We apply this to f ∈M2n
k,R, with k ∈ 1

2 + Z, and f ′ = θ 1
2
. Since k + 1

2 ∈ Z, we have

g(fθ 1
2
) = g(f)g(θ 1

2
) ∈M2n

k+ 1
2
,R



40 NAOMI SWEETING

for any g ∈ Mp2n(Qℓ).
Now, by Lemma 3.4.5 above, the q-expansion of g(θ 1

2
) has an inverse power series∑

T∈Symn(Q)

bT q
T
A

with bT ∈ R. Hence, by the uniqueness of q-expansions, the Fourier coefficients of g(f) lie inR as well. □

3.5. Formal theta lifts.

3.5.1. Suppose V has signature (m, 0) or (m, 2) for some m ≥ 1, and let

K =
∏

Kℓ ⊂ GSpin(V )(Af )

be a neat compact open subgroup. For any subring R ⊂ C, we define TestK(V,R) to be

HomZ(Z[ShK(V )], R) = HomR(R[ShK(V )], R)

in the positive definite case, or

HomZ(CH
∗(ShK(V )), R) = HomR(CH

∗(ShK(V ), R), R)

in the indefinite case.

3.5.2. Now fix 1 ≤ n ≤ m. For any K-invariant Schwartz function φ ∈ S(V n ⊗ Af , R) and any α ∈
TestK(V,R), we define the formal theta lift

Θ(α,φ)K :=
∑

T∈Symn(Q)≥0

α (Z(T, φ)K) qTA .

The subscript K will be omitted when there is no risk of confusion.

3.5.3. Let ℓ be a prime such that Kℓ has pro-order invertible in R, and let

TestKℓ(V,R) := lim−→
K′
ℓ

TestKℓK′
ℓ
(V ),

where the transition maps are induced by pushforward. Note that TestKℓ(V,R) has a natural action of
GSpin(V )(Qℓ), dual to the one described in [129, p. 41]. For α ∈ TestKℓ(V ) and a Kℓ-invariant Schwartz
function φ ∈ S(V n ⊗ Af , R), we define the renormalized formal theta lift

(3.8) ΘKℓ(α,φ) :=
Θ(α,φ)KℓK′

ℓ

[Kℓ : K
′
ℓ]

,

for any K ′
ℓ ⊂ Kℓ fixing both α and φ. Because the cycles Z(T, φ)KℓK′

ℓ
are compatible under pullback,

ΘKℓ(α,φ) does not depend on the choice of K ′
ℓ.

Proposition 3.5.4. Suppose R is a Z[1/ℓ]-algebra containing all eighth and ℓth power roots of unity, and
the pro-order of Kℓ is invertible in R. Then ΘKℓ defines a GSpin(V )(Qℓ)×Mp2n(Qℓ)-equivariant map

TestKℓ(V,R)⊗ S(V n ⊗ Af , R)K
ℓ →M2n

dim(V )
2

,R
.

Proof. Note that both modularity and equivariance can be checked after extending scalars, so without loss
of generality suppose R = C. In the definite case, the proposition is a formal consequence of Lemma 3.4.3
above. In the indefinite case, the modularity of the formal theta lift is [15, Theorem 6.2] and the equivariance
is [54, Corollary 5.11] combined with [129, Corollary 2.12]. □
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4. Construction of Galois cohomology classes and special periods

Before beginning this section, we establish the notation that will be in force for most of the rest of the
paper.

Notation 4.0.1.
(1) Fix a relevant automorphic representation π of GSp4 with trivial central character. Fix as well a

strong coefficient field E0 for π (Definition 2.2.13). If π is endoscopic associated to a pair (π1, π2)
of automorphic representations of GL2(A), then we also assume without loss of generality that E0

is a strong coefficient field for π1 and π2.8
(2) We fix a finite set S of finite primes, containing 2 and all ℓ such that πℓ is ramified.
(3) For all primes p of E0, let Op ⊂ E0,p be the ring of integers, and letϖp ∈ Op be a uniformizer, with

residue field kp = Op/ϖp. We drop the subscript p when there is no risk of confusion. For a finite
set of primes S′ ⊃ S, we write mS′

π,p ⊂ TS′
Op

for the maximal ideal defined by the Hecke eigenvalues
of π, and drop the decorations when they are clear from context.

(4) Notation 2.2.16 remains in force.

Remark 4.0.2. We assume 2 ∈ S so that 2 is not admissible under Definition 4.2.1 below, and to prove the
(convenient but not essential) Lemma 4.4.7.

4.1. Assumptions on p. We now define some assumptions on primes p of E0. Let p denote the residue
characteristic.

Assumption 4.1.1.
(1) p does not lie in S.
(2) There exists a rational prime ℓ ̸∈ S ∪ {p} such that ℓ4 ̸≡ 1 (mod p) and ρπ,p(Frobℓ) has distinct

eigenvalues, no two having ratio ℓ.
The final assumption depends on whether π is endoscopic.

(3) • If π is not endoscopic, then ρπ,p is absolutely irreducible.
• If π is endoscopic associated to a pair (π1, π2) of automorphic representations of GL2(A), then
ρπ1,p and ρπ2,p are both absolutely irreducible.

Remark 4.1.2. Assumption 4.1.1(2) implies that p > 5.

Notation 4.1.3. Under Assumption 4.1.1(3):
(1) Let Tπ,p be an Op[GQ]-module such that Tπ,p ⊗ Qp = Vπ,p; Assumption 4.1.1(3) implies that Tπ,p

is unique up to isomorphism.
(2) For all n ≥ 1, we write Tπ,p,n := Tπ,p/ϖ

n
p Tπ,p. Also let T π,p := Tπ,p,1.

(3) When p is clear from context, it may be dropped from the above notations.

Remark 4.1.4. Under Assumption 4.1.1(3), Tπ,p is isomorphic to its Op-dual; we use this to view ρπ,p as
valued in GSp4(Op), and ρπ,p as valued in GSp4(kp).

Lemma 4.1.5. Assumption 4.1.1 holds for all but finitely many primes p of E0.

Proof. That Assumption 4.1.1(3) holds for all but finitely many primes p follows from [123, Theorem 1.2(i)]
in the non-endoscopic case; in the endoscopic case, it follows from [94, Theorem 2.1]. It is also obvious that
Assumption 4.1.1(1) holds for cofinitely many p. We consider Assumption 4.1.1(2).

8In fact, it is not difficult to check that this last assumption is automatic. The main point is to use Hodge-Tate theory to verify
that, for all ι : Qp

∼−→ C, ρπ1,ι and ρπ2,ι cannot differ by a Galois twist.
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First fix an arbitrary p with residue characteristic p. The image of ρπ,p contains an element with distinct
eigenvalues by [99, Theorem 1] and Theorem 2.2.10(2). Hence by the Chebotarev density theorem, there
exists a prime ℓ ̸∈ S ∪ {p} such that Frobℓ has distinct eigenvalues on ρπ,p. The Satake parameter of πℓ is
therefore multiplicity-free and of the form

{
α, β, α−1, β−1

}
with |α| = |β| = 1. LetE1 = E0(α, β), which

is a finite extension because the Hecke eigenvalues of πℓ lie in E0. For all but finitely many primes p1 ∤ ℓ of
E1, we will have

α2 ̸≡ 1, ℓ, ℓ−1 (mod p1)

β2 ̸≡ 1, ℓ, ℓ−1 (mod p1)

αβ ̸≡ 1, ℓ, ℓ−1 (mod p1)

α/β ̸≡ 1, ℓ, ℓ−1 (mod p1),

ℓ4 ̸≡ 1, (mod p1).

For such a p1, let p′ = p1|E0 and let p′ be the residue characteristic of p′. Then we have ℓ4 ̸≡ 1 (mod p′)
and the eigenvalues of Frobℓ on ρπ,p′ are distinct and not of ratio ℓ, i.e. Assumption 4.1.1(2) holds for p′. □

Lemma 4.1.6. Assume p satisfies Assumption 4.1.1(3). Then:
(1) H1(Q, Tπ) is ϖ-torsion-free.
(2) Suppose given c ∈ H1(Q, Tπ) and a ≥ 1 such that c ̸∈ ϖaH1(Q, Tπ). Then for all n ≥ 1, the

image cn ∈ H1(Q, Tπ,n) satisfies
ordϖcn > n− a.

Proof. The assumption implies that H0(Q, T π) = 0. The long exact sequence in Galois cohomology asso-
ciated to

0→ Tπ
ϖ−→ Tπ → T π → 0

therefore gives (1). For (2), a similar argument to (1) shows that the map H1(Q, Tπ,a)
ϖn−a−−−→ H1(Q, Tπ,n)

is injective, so the kernel of
ϖn−a : H1(Q, Tπ,n)→ H1(Q, Tπ,n)

coincides with the kernel of H1(Q, Tπ,n) → H1(Q, Tπ,a). Hence it suffices to show that ca ̸= 0, which is
clear from the assumption c ̸∈ ϖaH1(Q, Tπ) and the long exact sequence in Galois cohomology associated
to

0→ Tπ
ϖa−−→ Tπ → Tπ,a → 0.

□

Lemma 4.1.7. Suppose p satisfies Assumption 4.1.1. Then mπ,p ⊂ TSO is non-Eisenstein and generic.

Proof. Recall from Remark 4.1.4 that ρπ is valued inGSp4(k). Thenmπ,p is clearly of Galois type associated
to ρπ. The genericity of mπ,p (Definition 2.7.3) therefore follows from Assumption 4.1.1(2). From Assump-
tion 4.1.1(3), it follows that T π,p⊗Fp contains no Galois-stable line. So if mπ,p were Eisenstein, ρπ,p would
have to factor through a Siegel parabolic subgroup. In particular, then T π,p⊗Fp = ρ0⊕ ρ0⊗ det ρ−1

0 ⊗ωp,
where ρ0 : GQ → GL2(Fp) is some irreducible representation, and ωp is the mod-p cyclotomic character.
This is clearly impossible by Assumption 4.1.1(3) and Lemma 4.1.8 below. □

Lemma 4.1.8. Let p|p be a prime of E0 such that p > 5 and πp is unramified. If π is endoscopic associated
to (π1, π2), then ρπ1 and ρπ2 are not isomorphic.

Proof. Recall that ρπ1 and ρπ2 have Hodge-Tate weights {−1, 2} and {0, 1} up to reording, by Lemma 2.2.9
and Theorem 2.2.1(2). The lemma then follows from Fontaine-Laffaille theory [31, Théorème 6.1]. □
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4.2. Admissible primes. In this section, p|p is a prime of E0.

Definition 4.2.1.
(1) We say a prime q ̸∈ S ∪ {p} is admissible for ρπ = ρπ,p if q4 ̸≡ 1 (mod p) and the generalized

eigenvalues of ρπ(Frobq) are of the form {q, α, 1, q/α}, with α ̸= ±q,±1, q2, q−1.
(2) If q is admissible, define n(q) ≥ 1 to be the greatest integer such that det(Frobq −q|Vπ) ≡ 0

(mod ϖn(q)).
(3) We say q is n-admissible if it is admissible and n(q) ≥ n.
(4) If Q ≥ 1 is squarefree, we say Q is admissible (resp. n-admissible) if all primes q|Q are so.
(5) Analogously, an element g ∈ GQ is called admissible for ρπ if νg := χp,cyc(g) satisfies ν4g ̸≡ 1

(mod p), and g acts on Vπ with generalized eigenvalues {νg, 1, α, νg/α} for some

α ̸≡ ±νg,±1, ν2g , ν−1
g (mod ϖ).

Lemma 4.2.2. Suppose p satisfies Assumption 4.1.1(3). Then a prime q is n-admissible for ρπ = ρπ,p if and
only if there exists a GQq -stable decomposition

Tπ,n =M0,n ⊕M1,n

such that:

(1) M0,n and M1,n are each free of rank two over O/ϖn, and Frobq |M0,n =

(
q

1

)
in some basis.

(2) Frob2q −1, Frob2q −q2, Frobq −q2, and Frobq −q−1 all act invertibly on M1,n.

Proof. Immediate from Definition 4.2.1. □

Lemma 4.2.3. Let p be a prime of E0. The following are equivalent:
(1) There exist admissible primes for ρπ.
(2) For all n, there exist n-admissible primes for ρπ.
(3) There exists an admissible element g ∈ GQ for ρπ.

Proof. Clearly (2) implies (1), and (3) implies (2) by the Chebotarev density theorem. The proof that (1)
implies (2) follows the same argument of [69, Lemma 2.7.1], and (2) implies (3) by compactness. □

4.2.4. Now suppose π is endoscopic associated to a pair (π1, π2) of automorphic representations of GL2(A).

Definition 4.2.5.
(1) A prime q ̸∈ S∪{p} is called BD-admissible for ρπi = ρπi,p, with i = 1 or 2, if q2 ̸≡ 1 (mod p)

and the generalized eigenvalues of ρπi(Frobq) are {1, q}.
(2) If q is BD-admissible for ρπi , definen(q) ≥ 1 to be the greatest integer such that det(Frobq −q|Vπi) =≡

0 (mod ϖn(q)).
(3) We say q is n-BD-admissible if it is BD-admissible and n(q) ≥ 1.
(4) If Q ≥ 1 is squarefree, we say Q is BD-admissible (resp n-BD-admissible) for ρπi if all q|Q are so.
(5) Likewise, an element g ∈ GQ is called BD-admissible for ρπi if χp,cyc(g)2 ̸≡ 1 (mod p) and g acts

on Vπi with eigenvalues χp,cyc(g) and 1.

Remark 4.2.6.
(1) Definition 4.2.5 is adapted from [7, p. 18], but there it is allowed that the eigenvalues of Frobq on

ρπi are −1 and −q.
(2) If q is n-admissible for ρπ, then it is n-BD-admissible for exactly one of ρπ1 and ρπ2 ; and if g ∈ GQ

is admissible for ρπ, then it is BD-admissible for exactly one of ρπ1 and ρπ2 . In particular, if Q ≥ 1
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is admissible for ρπ, there is a unique factorizationQ = Q1 ·Q2 withQ1, Q2 ≥ 1, such that all q|Qi
are BD-admissible for ρπi .

4.2.7. For any prime q ̸∈ S ∪ {p}, recall that H1
f (Qq, Tπ,n) = H1

unr(Qq, Tπ,n), and set H1
/f (Qq, Tπ,n) =

H1(Qq, Tπ,n)/H
1
f (Qq, Tπ,n).

Proposition 4.2.8. Suppose q is n-admissible. ThenH1
f (Qq, Tπ,n) andH1

/f (Qq, Tπ,n) are each free of rank
one over O/ϖn, and local Poitou-Tate duality induces a perfect pairing

H1
f (Qq, Tπ,n)×H1

/f (Qq, Tπ,n)→ O/ϖn.

Proof. First note that the induced pairing is perfect becauseH1
f (Qq, Tπ,n) is self-annihilating under the Tate

pairing, and one can check lgOH
1(Qq, Tπ,n) = 2 lgOH

1
f (Qq, Tπ,n) using the local Euler characteristic

formula and local duality. So it suffices to prove that

H1
f (Qq, Tπ,n) = Tπ,n/(Frobq −1)Tπ,n

is free of rank one over O/ϖn. Indeed, this is immediate from Lemma 4.2.2. □

Notation 4.2.9. If q is n-admissible and S′ ⊃ S is a finite set with q ̸∈ S′, then by Proposition 4.2.8 we
have the localization and residue maps:

locq : H
1(QS′

/Q, Tπ,n)→ H1
f (Qq, Tπ,n) ≃ O/ϖn

∂q : H
1(Q, Tπ,n)→ H1

/f (Qq, Tπ,n) ≃ O/ϖn

4.3. Level structures and test vectors. Fix a prime p of E0 of residue characteristic p.

Definition 4.3.1. For any squarefreeD ≥ 1, anS-level structure forGSpin(VD) is a compact open subgroup
K =

∏
Kℓ ⊂ GSpin(VD)(Af ) such that:

(1) K is neat in the sense of [89, §0.1].
(2) For all ℓ ̸∈ S ∪ div(D), Kℓ is hyperspecial.

An S-tidy level structure is an S-level structure satisfying:
(3) If KZ ⊂ A×

f is the intersection of K with the center of GSpin(VD)(Af ), then the finite group
Q×\A×

f /KZ has order coprime to p.

The reason for the final condition of Definition 4.3.1 is the following convenient lemma:

Lemma 4.3.2. Suppose K is an S-tidy level structure for GSpin(VD). Then for all finite sets S′ ⊃ S and
all ℓ ̸∈ S ∪ div(D), we have

⟨ℓ⟩ = 1 on H∗(ShK(VD), O)
mS

′
π,p
.

Proof. By Definition 4.3.1(3), after replacing O by a finite extension we can write

H∗(ShK(VD), O) =
⊕
χ

H∗(ShK(VD), O)χ,

where χ runs over O-valued characters of the finite group Q×\A×
f /KZ and

⟨ℓ⟩ = χ(ℓ) on H∗(ShK(VD), O)χ.

The characters χ are distinct modulo ϖ, and the lemma follows because π has trivial central character. □
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Definition 4.3.3. Let D ≥ 1 be squarefree, let K be an S-level structure for GSpin(VD), and let R = O or
O/ϖn, viewed as a TSO-module via the Hecke eigenvalues of π. We define TestK(VD, π,R) as follows.

(1) If σ(D) is even and p satisfies Assumption 4.1.1, then

TestK(VD, π,R) = HomTS∪div(D)
O [GQ]

(
H3

ét(ShK(VD)Q, O(2)), Tπ ⊗O R
)
.

(2) If σ(D) is odd, then
TestK(VD, π,R) = HomTS∪div(D)

O

(O [ShK(VD)] , R) .

Remark 4.3.4. The definition of TestK(VD, π,R) depends only on K, and not on S; one can check this
using Theorem 2.4.6(3), and Corollary 2.7.8 when σ(D) is even.

4.4. Constructions. Fix a prime p of E0 of residue characteristic p.

Construction 4.4.1. Let D ≥ 1 be squarefree, and let Q ≥ 1 be admissible and coprime to D, such that
σ(DQ) is odd. For any S-level structure K for GSpin(VDQ):

(1) We define
λDn (Q;K) ⊂ O/ϖn

to be the submodule spanned by the elements α(z), where:
◦ α lies in TestK(VDQ, π,O/ϖ

n).
◦ z lies in SC2

K(VDQ, O) (Notation 3.1.5).
(2) If φ ∈ S(V 2

DQ ⊗ Af , O)K is a test function, then we define

λDn (Q,φ;K) ⊂ λDn (Q;K)

to be the submodule spanned by elements α(Z(T, φ)K), where:
◦ α lies in TestK(VDQ, π,O/ϖ

n).
◦ T lies in Sym2(Q)≥0, and Z(T, φ)K was defined in Construction 3.1.2.

(3) If Q = 1, then we define λD(1;K) ⊂ O and λD(1, φ;K) ⊂ λD(1;K) analogously, where now α
ranges over TestK(VD, π,O).

(4) We write λDn (Q) ⊂ O/ϖn for the submodule spanned by λDn (Q;K) as K varies, and likewise
λD(1).

In all of the above constructions, we include a subscript p only when it is necessary for clarity.

4.4.2. Let D ≥ 1 be squarefree with σ(D) even, and suppose p satisfies Assumption 4.1.1. Let m :=

m
S∪div(D)
π,p ⊂ TS∪div(D)

O . It follows from Lemma 4.1.7 and Theorem 2.7.5(2) that the étale realization map

CH2(ShK(VD), O)m → H4(ShK(VD)Q, O(2))
GQ
m

is trivial. We therefore obtain a well-defined Abel-Jacobi map
∂AJ,m : CH2(ShK(VD), O)m → H1(Q, H3

ét(ShK(VD)Q, O(2))m).

For any α ∈ TestK(VD, π,R) with R = O or O/ϖn, we obtain an induced map

(4.1) CH2(ShK(VD), O)m
∂AJ,m−−−→ H1(Q, H3

ét(ShK(VD)Q, O(2))m)
α∗−→ H1(Q, Tπ ⊗O R).

Construction 4.4.3. Let D ≥ 1 be squarefree, and let Q ≥ 1 be admissible and coprime to D, such that
σ(DQ) is even. Suppose p satisfies Assumption 4.1.1, and let K be an S-level structure for GSpin(VDQ).

(1) We define
κDn (Q;K) ⊂ H1(Q, Tπ,n)

to be the submodule spanned by α∗ ◦ ∂AJ,m(z), where:
◦ α lies in TestK(VDQ, π,O/ϖ

n).
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◦ z lies in SC2
K(VDQ, O) (Notation 3.1.5).

(2) For any φ ∈ S(V 2
DQ ⊗ Af , O)K , we define

κDn (Q,φ;K) ⊂ κDn (Q;K)

to be the submodule spanned by elements α∗ ◦ ∂AJ,m(Z(T, φ)K), where:
◦ α lies in TestK(VDQ, π,O/ϖ

n).
◦ T lies in Sym2(Q)≥0, and Z(T, φ)K was defined in Construction 3.1.2.

(3) If Q = 1, then we define κD(1;K) ⊂ H1(Q, Tπ) and κD(1, φ;K) ⊂ κD(1;K) analogously, with
now α ∈ TestK(VD, π,O).

(4) We write κDn (Q) ⊂ H1(Q, Tπ,n) for the submodule spanned by κDn (Q;K) asK varies, and likewise
κD(1).

In all of the above constructions, we include a subscript p only when it is necessary for clarity.

Remark 4.4.4. The only reason to distinguish betweenD andQ in Constructions 4.4.1 and 4.4.3 is to define
λD(1) and κD(1) when σ(D) is odd and even, respectively; moreover, one can check using Corollary 2.5.3
that λD(1) or κD(1) is trivial unless πℓ is transferrable for all ℓ|D.

Now we prove some basic properties of Constructions 4.4.1 and 4.4.3.

Proposition 4.4.5. Suppose L(1/2, π, spin) ̸= 0. If D > 1 is squarefree with σ(D) odd and πDf can be
completed to an automorphic representation of GSpin(VD)(A), then for any prime p of E0, λD(1)p ̸= 0.
Moreover, for all but finitely many p, we have

λD(1)p ̸≡ 0 (mod ϖp).

Proof. Let Π be any automorphic representation of GSpin(VD)(A) with ΠDf ≃ πDf . Because π has trivial
central character, Π descends to an automorphic representation of SO(VD)(A). By [39, Theorem 1.1], the
global theta lift of Π to Mp4(A) is nonzero; i.e., the map

S(V 2
D ⊗ A,C)⊗Π→ Fun(Sp4(Q)\Mp4(A),C)

φ⊗ α 7→ θφ(α)
(4.2)

is not identically zero (Notation 3.4.1). Also, the image of (4.2) lies in the space of cusp forms by the global
tower property of the theta lift [91]: otherwise, Πwould occur in the restriction to SO(VD)(A) of the theta lift
of an automorphic representation ofMp2(A), which is ruled out by the Shimura-Waldspurger correspondence
and the relevance of π. In particular, by the local-global compatibility of the theta correspondence (see the
proof of [91, Theorem I.2.2]), if φ = ⊗φv ∈ S(V 2

D ⊗ A,C) and α = ⊗αv ∈ Π are factorizable, then

(4.3) θφ(α) ̸= 0 ⇐⇒ ⟨ρv(φv), αv⟩ ≠ 0 ∀v,

where by definition
ρv : S(V 2

D ⊗Qv,C)→ (Πv)
∨ ⊠Θv(Πv)

is the maximal (Πv)∨-isotypic quotient of the Weil representation of SO(VD)(Qv)×Mp4(Qv) on S(V 2
D ⊗

Qv,C).
When v =∞, then α∞ ∈ Π∞ is unique up to scalar, and we take φ∞ ∈ S(V 2

D⊗R,C) to be the Gaussian
from Lemma 3.4.3. Then α∞ and φ∞ satisfy the local condition in (4.3) by the theory of joint harmonics
[1, Proposition 2.1(2), §5]. In particular, (4.3) implies that we can fix an S-level structure K and data

α ∈ Homset(ShK(VD), OE0) ∩Π ⊂ C∞
c (GSpin(VD)(A),C), φf ∈ S(V 2

D ⊗ Af , OE0)
K

such that
θφf⊗φ∞(α) ̸= 0.



BLOCH-KATO FOR SOME FOUR-DIMENSIONAL SYMPLECTIC GALOIS REPRESENTATIONS 47

By Lemma 3.4.3, this means that
0 ̸= α(Z(T, φf )K) ∈ OE0

for some T ∈ Sym2(Q)≥0. Now we note that α has the Hecke eigenvalues of π away from S by construction.
In particular, for all primes p of E0, α lies in TestK(VD, π,Op), and

0 ̸= α(Z(T, φf )K) ∈ λD(1, φf )p ⊂ λD(1)p.
Since α(Z(T, φf )K) ̸≡ 0 (mod p) for all but finitely many p, this completes the proof. □

Proposition 4.4.6. Suppose D ≥ 1 is squarefree and p satisfies Assumption 4.1.1.
(1) For all admissible Q coprime to D with σ(DQ) even and all ℓ ̸∈ S ∪ div(DQ), we have

Resℓ κ
D
n (Q) ⊂ H1

f (Qℓ, Tπ,n).

(2) If σ(D) is even, then we have
κD(1) ⊂ H1

f (Q, Tπ).

Proof. Write Q = 1 in case (2). We claim that, for all S-level structures K and all z ∈ CH2(ShK(VDQ)),

(4.4) ∂AJ,m(z) ∈ H1
f (Q, H3

ét(ShK(VDQ)Q, O(2))m).

Note here that H3
ét(ShK(VDQ)Q, O(2))m is p-torsion-free by Lemma 4.1.7 and Theorem 2.7.5(2), so the

Bloch-Kato Selmer group is defined as in Notation 1.5.2(1). Observe as well that (4.4) implies the proposi-
tion: indeed, it clearly implies (2) by the functoriality of the Bloch-Kato local conditions; and it also implies
(1) by Remark 1.5.3 and Proposition 1.5.5.

Now note that, for all primes ℓ, H3
ét(ShK(VDQ)Q, E0,p(2))m is pure of weight one as a GQℓ-module by

Corollary 2.7.7 combined with Theorem 2.2.10(1); hence

H1
(
Qℓ, H

3
ét(ShK(VDQ)Q, E0,p(2))m

)
= 0

for all ℓ ̸= p and

H1
g

(
Qp, H

3
ét(ShK(VDQ)Q, E0,p(2))m

)
= H1

f

(
Qp, H

3
ét(ShK(VDQ)Q, E0,p(2))m

)
.

Thus (4.4) follows from [81, Theorem 5.9] combined with the proof of [79, Theorem 3.1(ii)]. □

Lemma 4.4.7. Let D ≥ 1 be squarefree, and let Q ≥ 1 be admissible and coprime to D. Then:
(1) If σ(DQ) is even and p satisfies Assumption 4.1.1, then κDn (Q) is generated by κDn (Q;K) as K

ranges over S-tidy level structures for GSpin(VDQ).
(2) If σ(DQ) is odd and p > 5, then λDn (Q) is generated by λDn (Q;K) as K ranges over S-tidy level

structures for GSpin(VDQ).

Proof. We prove the first statement, as the two are similar. Let K be an S-level structure for GSpin(VDQ),
and note thatK2 = Kℓ=2 has pro-order prime to p.9 After fixing a sufficiently small compact open subgroup
K ′

2 ⊂ K2, we can ensure that K ′ := K ′
2 ·
∏
ℓ̸=2(KℓZ×

ℓ ) is neat; it is then clearly S-tidy as well. Let
prK,K′∩K : ShK′∩K(VDQ) → ShK(VDQ) and prK′,K′∩K : ShK′∩K(VDQ) → ShK′(VDQ) be the natural
maps. For R = O or O/ϖn and αK ∈ TestK(VDQ, π,R), we set

αK′ :=
αK ◦ prK,K′∩K,∗ ◦ pr∗K′,K′∩K

[K : K ′ ∩K]
∈ TestK′(VDQ, π,R).

9To see this, one first observes thatK2 stabilizes some latticeL ⊂ VDQ⊗Q2 such that 2L ⊂ L∨ ⊂ L, whereL∨ is theZ2-linear
dual. One obtains a natural map f : K2 → SO(L∨/2L) × SO(L/L∨), where L∨/2L and L/L∨ are naturally nondegenerate
symmetric spaces over F2 of dimension at most 5. Since p > 5 by Remark 4.1.2, the image of f then has order prime to p, and the
kernel of f is clearly pro-2.
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If φ ∈ S(V 2
DQ ⊗ Af , O) is fixed by K, it is also fixed by K ′, and we have αK′,∗ ◦ ∂AJ,m(Z(T, φ)K′) =

αK,∗ ◦ ∂AJ,m(Z(T, φ)K) by Proposition 3.1.4; the lemma follows. □

Finally, we introduce some notation that will be used in the endoscopic case.

Notation 4.4.8. Suppose π is endoscopic associated to a pair (π1, π2). Then for any squarefree D ≥ 1
with σ(D) even, any S-level structure K for GSpin(VD), any φ ∈ S(V 2

D ⊗ Af , O)K , and j = 1 or 2, we
define κD(1, φ;K)(j) ⊂ H1

f (Q, Tπj ) as the image of κD(1) under the natural projection H1
f (Q, Tπ) →

H1
f (Q, Tπj ). We similarly write κD(1;K)(j) and κD(1)(j). It is easy to check that

κD(1, φ;K) = κD(1, φ;K)(1) ⊕ κD(1, φ;K)(2),

etc. As usual, a subscript p is included when necessary for clarity.

5. Nonvanishing criteria for changing test functions

5.1. Setup and notation.

5.1.1. Fix a prime q, and let k = C or Fp, for an odd prime p ̸= q. In the latter case we also assume fixed an
isomorphism ι : Qp

∼−→ C, and assume throughout this section that
(5.1) q − 1 ̸= 0 in k.

We denote by | · |1/2 : Q×
q → k× the unramified character such that |q|1/2 = q−1/2 ∈ k×, using the

isomorphism ι when k = Fp.

5.1.2. Let Vm be the split quadratic space of dimension 2m+1 overQq, with basis v0, v1, . . . , vm, v∗1, . . . , v∗m
and pairing given by:

vi · v∗j = δij , v∗i · v∗j = 0, vi · vj = δi0δj0.

Then L := SpanZq {v0, v1, . . . , vm, v
∗
1, . . . , v

∗
m} is a self-dual lattice L ⊂ Vm. Abbreviate

(5.2) Gm = SO(Vm)(Qq), G′
n = Mp2n(Qq).

For any parabolic subgroup P ⊂ Gm (resp. P ′ ⊂ G′
n), we write RP (resp. RP ′) for the normalized Jacquet

module functor with respect to P (resp. P ′).

5.1.3. Fix an integer n ≥ 1, and consider the Weil representation on S(V n,C) with respect to the localiza-
tion, also written ψ, of our fixed global additive character of Q (Notation 3.2.4). If k = Fp, we have fixed
an isomorphism ι : Qp

∼−→ C, and it follows from the discussion in (3.3.2) that S(V n, Z̆p) ⊂ S(V n,Qp)

is stable under Gm × G′
n; reducing modulo p, we obtain the Weil representation on S(V n,Fp). Whether

k = C or Fp, we abbreviate Ωm,n = S(V n, k).

5.1.4. If π is an irreducible, admissible k-linear representation of Gm, define Θm,n(π) to be the k[G′
n]-

module such that
Ωm,n ↠ π ⊠Θm,n(π)

is the maximal π-isotypic quotient of Ωm,n. Similarly, if π′ is an irreducible, admissible, genuine k-linear
representation of G′

n, define Θn,m(π
′) to be the k[Gm]-module such that

Ωm,n ↠ Θn,m(π
′)⊠ π′

is the maximal π′-isotypic quotient of Ωm,n.

5.1.5. Let

(5.3) G̃L1(Qq)
g 7→g−−−→ Q×

q

be the double cover described in [34, p. 1661], with canonical genuine character χψ : G̃L1(Qq)→ µ8 ⊂ k×.
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5.2. The structure of the Weil representation. Consider the Schwartz spaces S(Qq, k) and S(Q×
q , k),

viewed as representations of Q×
q ×Q×

q via

(g1, g2) · φ(x) = φ(g−1
1 xg2).

Lemma 5.2.1. Fix a character χ : Q×
q → k×.

(1) The maximal quotient of S(Q×
q , k) on which the first factor of Q×

q acts by χ is realized by the map

S(Q×
q , k)→ χ⊠ χ−1

φ 7→
∫
Q×
q

φ(t)χ(t)d×t.

(2) Assume χ is nontrivial. Then the map in (1) extends uniquely to a map fχ : S(Qq, k) → χ ⊠ χ−1

via
φ 7→ 1

1− χ(g0)

∫
Q×
q

(
φ(t)− φ(g−1

0 t)
)
χ(t)d×t,

where g0 ∈ Q×
q is any element such that χ(g0) ̸= 1.

(3) For integers a ≤ b, let Sa,b ⊂ S(qaZq, k) be the subspace of Schwartz functions that are invariant
under multiplication by Z×

q and translation by qbZq. Then for distinct, nontrivial, and unramified
characters χ1, . . . , χm : Q×

q → k× with m ≤ b− a+ 1, fχ1 , . . . , fχm are linearly independent as
functions on Sa,b.

Proof. Part (1) is elementary. For (2), we have the exact sequence

0→ S(Q×
q , k)→ S(Qq, k)

φ7→φ(0)−−−−−→ k → 0,

which is equivariant for the trivial Q×
q ×Q×

q -action on k. Since

HomQ×
q ×Q×

q
(k, χ⊠ χ−1) = 0,

there is at most one extension of the map in (1) to S(Qq, k), and the formula given in (2) exhibits it.
For (3), let xi = χi(q). A direct calculation shows that, for φ ∈ Sa,b,

fχi(φ) =
1

1− xi
vol(Z×

q )

(
φ(qa)(xai − xa+1

i ) + φ(qa+1)(xa+1
i − xa+2

i )

+ . . .+ φ(qb−1)(xb−1
i − xbi) + φ(qb)xbi

)
.

So it suffices to show that the matrix
xa1 − x

a+1
1 · · · xb−1

1 − xb1 xb1
xa2 − x

a+1
2 · · · xb−1

2 − xb2 xb2
... . . . ...

...
xam − xa+1

m · · · xb−1
m − xbm xbm


is nondegenerate, and this follows from the Vandermonde determinant formula.

□

5.2.2. Assuming that m ≥ 1, let
P =MN ⊂ Gm

be the parabolic subgroup stabilizing the isotropic line ⟨v1⟩. Then M is isomorphic to Q×
q × Gm−1; we

normalize the isomorphism such that

(5.4) (α, g) · v1 = αv1, for (α, g) ∈M.



50 NAOMI SWEETING

Similarly, let P ′ =M ′N ′ ⊂ G′
n be the preimage of the stabilizer of e1 ∈W2n (Notation 3.2.1(1)); then M ′

is isomorphic to G̃L1(Qq)×µ2 G′
n−1. We normalize the isomorphism so that

(5.5) (α, g) · e1 = αe1, for (α, g) ∈M ′.

Lemma 5.2.3.
(1) The normalized Jacquet module RP (Ωm,n) fits into an exact sequence

0→ Ind
M×G′

n
M×P ′ χψ · S(Q×

q , k)⊠ Ωm−1,n−1 → RP (Ωm,n)→ | · |
2n−2m+1

2 Ωm−1,n → 0,

where | · | is the canonical character of M , and χψ · S(Q×
q , k) is a GL1(Qq) × G̃L1(Qq)-module

with action defined by (g, h) · φ(t) = χψ(h)φ(g
−1th).

(2) Similarly, the normalized Jacquet module RP ′(Ωm,n) fits into a canonical exact sequence

0→ IndGm×M ′

P×M ′ χψ · S(Q×
q , k)⊠ Ωm−1,n−1 → RP ′(Ωm,n)→ χψ| · |

2m−2n+1
2 ⊠ Ωm,n−1 → 0.

Proof. When k = C, this is [53, Theorem 2.8]; see also [34, Proposition 7.3] for our more convenient
normalizations. When k = Fp, the proof in [53] applies without change because p ̸= q. □

Corollary 5.2.4.
(1) Let πm−1 be an irreducible admissible representation of Gm−1, and let χ0 : Q×

q → k× be a char-
acter with χ0 ̸= | · |

2n−2m+1
2 . Then for all admissible k[G′

n]-modulesM,

HomGm×G′
n

(
Ωm,n,

(
IndGmP χ0 ⊠ πm−1

)
⊠M

)
= HomG′

n

(
Ind

G′
n

P ′ χψ · χ−1
0 ⊠Θm−1,n−1(πm−1),M

)
.

In particular, if

πm := IndGmP χ0 ⊠ πm−1

is irreducible, then

Θm,n(πm) = Ind
G′
n

P ′ χψ · χ−1
0 ⊠Θm−1,n−1(πm−1).

(2) Similarly, let π′n−1 be an irreducible admissible genuine representation ofG′
n−1 andχ0 ̸= |·|

2m−2n+1
2

a character of Q×
q . Then for all k[Gm]-modulesM,

HomGm×G′
n

(
Ωm,n,M⊠

(
Ind

G′
n

P ′ χψ · χ0 ⊠ π′n−1

))
= HomGm

(
IndGmP χ−1

0 ⊠Θm−1,n−1(π
′
n−1),M

)
.

In particular, if

π′n := Ind
G′
n

P ′ χψχ0 ⊠ π′n−1

is irreducible, then

Θn,m(π
′
n) = IndGmP χ−1

0 ⊠Θn−1,m−1(π
′
n−1).

Proof. This is immediate from Lemma 5.2.3 and Lemma 5.2.1(1). □

5.3. Principal series over k for orthogonal and metaplectic groups. Some of the arguments in this sub-
section were inspired by the work of Zorn [130]. The results are new only if k = Fp.
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5.3.1. Continuing the notation of (5.1.2), we now assume m = n.

Notation 5.3.2.
(1) Let B ⊂ Gn be the stabilizer of the maximal isotropic flag

(5.6) 0 ⊂ ⟨v1⟩ ⊂ ⟨v1, v2⟩ ⊂ · · · ⊂ ⟨v1, . . . , vn⟩

and let B′ ⊂ G′
n be the preimage of the stabilizer of the maximal isotropic flag

0 ⊂ ⟨e1⟩ ⊂ ⟨e1, e2⟩ ⊂ · · · ⊂ ⟨e1, . . . , en⟩.

(2) The Levi factor T of B is identified with (Q×
q )

n via its action on the associated graded of (5.6), and
similarly the Levi factor T ′ of B′ is identified with

G̃L1(Qq)×µ2 · · · ×µ2 G̃L1(Qq)︸ ︷︷ ︸
n times

.

(3) For any character
χ : (Q×

q )
n → k×,

we define (normalized) principal series representations

I(χ) = IndGnB χ, I ′(χ) = Ind
G′
n

B′ χψ · χ.

(4) We write W = Sn⋊ (Z/2Z)n for the Weyl group of T in Gn, which is also the Weyl group of T ′ in
G′
n.

Lemma 5.3.3. The semi-simplified normalized Jacquet modules are

RB(I(χ))
ss = ⊕w∈Wχw, RB′(I ′(χ))ss = ⊕w∈Wχwχψ.

Proof. Over Qp, this follows from the well-known result for C; see [130, Lemma 4.8]. Since p ̸= q, the
p-modular case follows by the proof of [113, Lemme 34]. □

Lemma 5.3.4.
(1) Any nontrivial quotient I(χ) ↠ π extends to a nontrivial intertwining operator

I(χ) ↠ π → I(χw)

for some w ∈W .
(2) Similarly, any nontrivial quotient I ′(χ) ↠ π′ extends to a nontrivial intertwining operator

I ′(χ) ↠ π′ → I ′(χw)

for some w ∈W .

Proof. Let B ⊂ Gn and B′ ⊂ G′
n be the opposite Borel subgroups to B, B′. Recall the “second Frobenius

reciprocity”

(5.7) Hom(I(χ), π) = Hom(χ,RB(π)), Hom(I ′(χ), π′) = Hom(χψχ,RB′(π′)).

In the orthogonal case, this is [114, II.3.8(2)]. Although the result there is only stated for reductive groups,
the proof can be adapted verbatim to the metaplectic case. (The key technical points are the existence of
arbitrarily small compact open subgroups admitting an Iwahori factorization, and the conditions in Lemma
I.8.13 of op. cit. All of the fundamental results on Hecke algebras in Chapter I of op. cit. apply to general
locally profinite groups.)

Returning to the proof of the lemma, note that

RB(π) ̸= 0 ⇐⇒ RB(π) ̸= 0
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and likewise in the metaplectic case. Hence it follows from (5.7) that any quotient I(χ) ↠ π extends to a
nontrivial map

I(χ)→ π → I(ρ)

for some character ρ of (Q×
q )

n; by Lemma 5.3.3, ρ is a Weyl conjugate of χ, so (1) holds. The argument for
(2) is identical. □

Lemma 5.3.5. Suppose n = 1 and χ2 ̸= | · |±1. Then I(χ) and I ′(χ) are both irreducible and Θ1,1(I(χ)) =
I ′(χ).

Proof. First of all, I(χ) is irreducible by [113, Théorème 3]. Then

Θ1,1(I(χ)) = I ′(χ−1)

by Corollary 5.2.4(1). Since the intertwining map I(χ) → I(χ−1) is an isomorphism by irreducibility, we
have

I ′(χ−1) ∼= Θ1,1(I(χ)) ∼= Θ1,1(I(χ
−1)) ∼= I ′(χ).

If χ2 ̸= 1, this shows I ′(χ) is irreducible by Lemma 5.3.3 and Lemma 5.3.4. If χ2 = 1, we instead use
Corollary 5.2.4(1,2) to obtain

dimHomG′
1
(I ′(χ), I ′(χ)) = dimHomG1×G′

1
(Ω1,1, I(χ)⊠ I ′(χ))

= dimHomG1(I(χ), I(χ))

= 1

since I(χ) = I(χ−1) is irreducible. This shows that the intertwining operator I ′(χ) → I ′(χ) is unique, so
the lemma follows from Lemma 5.3.4. □

Lemma 5.3.6. Let χ = χ1 ⊠ · · · ⊠ χn be a character such that χ2
i = 1 for some 1 ≤ i ≤ n. Then for any

submodule π ⊂ I(χ), we have
χ⊕2 ⊂ RB(π)ss.

Similarly, for any submodule π′ ⊂ I ′(χ), we have

χψχ
⊕2 ⊂ RB′(π′)ss.

Proof. The orthogonal and metaplectic cases are identical, so we just prove the result for π′ ⊂ I ′(χ). Let
Qi = LiUi ⊂ G′

n be the rank one standard parabolic subgroup corresponding to the ith long root of T ′.
Then

Li ∼= G̃L1(Qq)×µ2 · · · ×µ2 G̃L1(Qq)︸ ︷︷ ︸
i−1 times

×µ2G′
1 ×µ2 G̃L1(Qq)×µ2 · · · ×µ2 G̃L1(Qq)︸ ︷︷ ︸

n−i times

.

Let
ρ = χψ · (χ1 ⊠ · · ·⊠ χi−1) , σ = χψ · (χi+1 ⊠ · · ·⊠ χn) .

Since π′ admits a nonzero map to I ′(χ), χ is a quotient of RB′(π′) = RB′∩LiRQi(π
′), so we have a

nontrivial intertwining operator

RQi(π
′)→ IndLiB′∩Li χψχ = ρ⊠ I ′(χi)⊠ σ.

This is surjective since I ′(χi) is irreducible by Lemma 5.3.5 above. (By (5.1), we have χ2
i = 1 ̸= | · |±1.)

By the exactness of the Jacquet functor, we conclude

RB′(π′)ss ↠ RB′∩Li(ρ⊠ I ′(χi)⊠ σ)ss = χψχ
⊕2.

□
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Lemma 5.3.7. Suppose χ = χ1 ⊠ · · ·χn : (Q×
q )

n → k× is a character such that χi are all distinct and
χ2
i = 1 for at most one 1 ≤ i ≤ n. Then

dimHom(I(χ), I(χw)) = dimHom(I ′(χ), I ′(χw)) = 1

for all w ∈W .

Proof. If the Weyl conjugates of χ are all distinct, this is automatic from Lemma 5.3.3; so assume without
loss of generality that χ2

i = 1 for exactly one 1 ≤ i ≤ n. Then the stabilizer of χ in W has order exactly
two. The argument is the same for I(χ) and I ′(χ), so we consider I(χ) in order to minimize notation.

Claim. Any nontrivial map f : I(χ)→ I(χ) is an isomorphism.

Proof of claim. Indeed, if f has nontrivial kernel, then RB(ker f)ss contains χ⊕2 by Lemma 5.3.6. But χ
appears with multiplicity exactly two in RB(I(χ))ss by Lemma 5.3.3, so then RB(Im f)ss does not contain
χ, which is impossible since we are assuming that f is nontrivial. Hence f is injective, so

RB(f) : RB(I(χ))→ RB(I(χ))

is injective. Since RB(I(χ)) has finite length, RB(f) is also surjective. But then coker f has trivial Jacquet
module, which means coker f = 0 by Lemma 5.3.4. So f is also surjective. □

Now by the claim, End(I(χ)) is a division algebra over k, and also a k-vector space of dimension
dimHom(I(χ), I(χ)) ≤ 2.

Since k is algebraically closed, we conclude
(5.8) dimHom(I(χ), I(χ)) = 1.

Next observe that there are no non-split extensions of distinct characters of T over k. In particular, we
may decompose

RB(I(χ)) =
⊕
χw

RB(I(χ))χw ,

where χw runs over the (distinct) Weyl conjugates of χ, and (5.8) implies that RB(I(χ))χ is a non-split
extension of χ by χ. The same argument applies to show RB(I(χ

w))χw is a non-split extension of χw by
χw for all w ∈W . Now for any nonzero intertwining map

f : I(χ)→ I(χw),

RB(Im f)ss contains (χw)⊕2 by Lemma 5.3.6. Hence the induced map
RB(f) : RB(I(χ))χw → RB(I(χ

w))χw

is surjective, in particular an isomorphism since both sides have dimension two over k. SinceRB(I(χw))χw
is non-split, so is RB(I(χ))χw . Hence

dimHom(I(χ), I(χw)) = dimHom(RB(I(χ)), χ
w) = 1

for all w ∈W . □

5.3.8. To state the next lemma, we use the following explicit generators for the Weyl group W :
(i) The inversion s sending a character χ = χ1 ⊠ · · ·⊠ χn to χs = χ−1

1 ⊠ · · ·⊠ χn.
(ii) For 1 ≤ i < n, the transposition wi sending a character χ = χ1 ⊠ · · · ⊠ χn to χwi = χ1 ⊠ · · · ⊠

χi−1 ⊠ χi+1 ⊠ χi ⊠ χi+2 ⊠ · · ·⊠ χn.

Lemma 5.3.9. Let χ = χ1 ⊠ · · ·⊠ χn : (Q×
q )

n → k× be a character.
(1) Suppose χ2

1 ̸= | · |±1. Then
I(χ) ∼= I(χs) and I ′(χ) ∼= I ′(χs).
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(2) Suppose χi/χi+1 ̸= | · |±1 for some 1 ≤ i < n. Then
I(χ) ∼= I(χwi) and I ′(χ) ∼= I ′(χwi).

Proof. Once again, the orthogonal and metaplectic cases are identical. We give the proof in the orthogonal
case. For (1), let P =MN ⊂ Gn be the rank one standard parabolic subgroup such that the Weyl group of
M is generated by s. Then

M ∼= G1 × (Qq)
n−1.

Also write ρ = χ2 ⊠ · · ·⊠ χn : (Q×
q )

n−1 → k×. Then

(5.9) I(χ) = IndGnP IndMB∩M χ = IndGnP I(χ1)⊠ ρ

and similarly
(5.10) I(χs) = IndGnP I(χ−1

1 )⊠ ρ.

By Lemma 5.3.5, I(χ1) is irreducible, with an intertwining isomorphism to I(χ−1
1 ). By (5.9) and (5.10),

this induces an isomorphism I(χ) ∼= I(χs). The proof of (2) is similar: let Qi = LiUi ⊂ Gn be the rank
one standard parabolic with Weyl group generated by wi. Then

Li ∼=
(
Q×
q

)i−1 ×GL2(Qq)×
(
Q×
q

)n−i−1
.

By [113, Théorème 3] applied to the GL2(Qq)-factor of Li, we conclude

IndLiB∩Li χ
∼= IndB∩Li χ

wi .

(In the metaplectic case, Li has a G̃L2(Qq) factor, to which we may still apply the results of loc. cit. with a
twist by χψ.) Then as above we obtain an isomorphism

I(χ) = IndGnQi Ind
Li
B∩Li χ

∼= IndGnQi Ind
Li
B∩Li χ

wi = I(χwi).

□

Definition 5.3.10. Let χ = χ1 ⊠ · · ·⊠ χn : (Q×
q )

n → k× be a character.
(1) We say χ is generic if χiχj ̸∈

{
| · |±1,1

}
for all 1 ≤ i, j ≤ n and χi/χj ̸∈

{
| · |±1,1

}
for all

1 ≤ i < j ≤ n.
(2) We say χ is almost generic if χiχj , χi/χj ̸∈

{
| · |±1,1

}
for all 1 ≤ i < j ≤ n, χ2

i ̸= | · |±1 for all
1 ≤ i ≤ n, and χ2

i = 1 for at most one 1 ≤ i ≤ n.

Corollary 5.3.11. Let χ : (Q×
q )

n → k× be generic or almost generic. Then:
(1) I(χ) ∼= I(χw) and I ′(χ) ∼= I ′(χw) for all w ∈W .
(2) I(χ) and I ′(χ) are both irreducible.
(3) Θ(I(χ)) = I ′(χ).

Proof. (1) follows from writing w as a product of generators and repeatedly applying Lemma 5.3.9. (2)
follows from (1) combined with Lemmas 5.3.4 and 5.3.7. Once we have (2), it follows from repeated appli-
cations of Corollary 5.2.4(1) that

Θ(I(χ)) = I ′(χ−1).

Then (3) follows from (1). □

Definition 5.3.12. Let χ = χ1 ⊠ · · ·⊠ χn : (Qq)
× → k× be a character.

(1) We say χ is level-raising generic if:
(i) For exactly one 1 ≤ i0 ≤ n, χi0 = | · |

1
2 .

(ii) For all 1 ≤ i < j ≤ n, χiχj , χi/χj ̸∈
{
| · |±1,1

}
.

(iii) For all i ̸= i0, χ
2
i ̸∈

{
| · |±1,1

}
.
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(2) We say χ is almost level-raising generic if it satisfies (i) and (ii) above, and moreover:
(iii’) For all i ̸= i0, χ2

i ̸= | · |±1; and χ2
i = 1 for at most i ̸= i0.

Notation 5.3.13. For χ almost level-raising generic, the set of Weyl conjugates W (χ) is naturally divided
into two subsets: those χw = χ′

1 ⊠ · · ·⊠χ′
n such that χ′

i = | · |
1
2 for some i; and those such that χ′

i = | · |−
1
2

for some i. We denote these subsets by W (χ)+ and W (χ)−, respectively.

Lemma 5.3.14. Fix δ = + or −. Then for any χw1 , χw2 ∈ W (χ)δ, we have I(χw1) ∼= I(χw2) and
I ′(χw1) ∼= I ′(χw2).

Proof. For any χw1 , χw2 ∈W (χ)δ, we may write w−1
1 w2 = s1 · · · sk where each si is one of the generators

in (5.3.8) and χw1s1···si ∈ W (χ)δ for all 1 ≤ i ≤ k. The lemma then follows from repeated applications of
Lemma 5.3.9. □

Construction 5.3.15. For any χ which is almost level-raising generic, there is a quotient J(χ) of I(χ)
defined as follows. Let Qi0 = Li0Ui0 ⊂ Gn be the standard rank one parabolic corresponding to the short
root indexed by i0. Then we have

(5.11) Li0
∼= (Q×

q )
i0−1 ×G1 × (Q×

q )
n−i0 ,

and by [113, Théorème 3], IndLi0T χ has a one-dimensional quotient

(5.12) Ji0(χ) := χ1 ⊠ · · ·⊠ χi0−1 ⊠ 1⊠ χi0+1 ⊠ · · ·⊠ χn,

where 1 denotes the trivial representation of G1. We let

(5.13) J(χ) = IndGnQi0
Ji0(χ).

To study the theta lift of J(χ), we first have the following calculation in the rank-one case.

Lemma 5.3.16. If 1 is the trivial representation of SO(V1)(Qq) = PGL2(Qq), then

Θ1,1(1) = I ′(| · |1/2),

with the corresponding quotient
S(V1, k)→ 1⊠Θ1,1(1)

induced by
φ 7→ (g 7→ ωψ(1, g)φ(0)) , g ∈ Mp2(Qq).

Proof. Using the injection 1 ↪→ I(| · |−1/2), we obtain by Corollary 5.2.4(1) an embedding

HomG′
1
(Θ1,1(1),M) = HomG1 ×G′

1(Ω1,1,1⊠M) ↪→ HomG1×G′
1
(Ω1,1, I(| · |−1/2)⊠M)

= HomG′
1
(I ′(| · |1/2,M)

functorial in k[G′
1]-modulesM. In particular, Θ1,1(1) is a quotient of I ′(| · |1/2). On the other hand, it is

clear that the map in the lemma defines a nontrivial homomorphism Θ1,1(1) → I ′(| · |1/2), so we have a
nontrivial composite

I ′(| · |1/2) ↠ Θ1,1(1)→ I ′(| · |1/2).
This must be an isomorphism by Lemma 5.3.7, and the lemma follows. □

Corollary 5.3.17. If χ is almost level-raising generic, then J(χ) is irreducible and Θn,n(J(χ)) = I ′(χ).
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Proof. First note that, by [113, p. 44], J(χ) is the image of a nonzero intertwining operator I(χ) → I(ρ),
where

ρ = χ1 ⊠ · · ·⊠ χi0−1 ⊠ χ−1
i0

⊠ χi0+1 ⊠ · · ·⊠ χn ∈W (χ)−.

If J(χ) ↠ π is a nonzero quotient, then we obtain, by Lemma 5.3.4, a nonzero intertwining operator

I(χ) ↠ J(χ) ↠ π → I(χw)

for some w ∈ W . However, Lemmas 5.3.7 and 5.3.14 show that this composite (since it is not an isomor-
phism) must coincide with the intertwining operator I(χ)→ I(ρ) whose image defines J(χ). In particular
J(χ) = π. So indeed J(χ) is irreducible. Then Θn,n(J(χ)) = I ′(ρ−1) by Lemma 5.3.16 and repeated
applications of Corollary 5.2.4(1). Since ρ−1 ∈ W (χ)+, we also have I ′(ρ−1) = I ′(χ) by Lemma 5.3.14,
and this completes the proof. □

5.4. Explicit theta lifting over k for principal series.

Notation 5.4.1. Given φ ∈ Ωn,n and t1, . . . , tn ∈ Qq, define
(5.14)
φ(t1, . . . , tn) =

∫
Q
n(n−1)

2
q

φ(t1v1, t2v2+a1v1, t3v3+a2v1+a3v2, . . . , tnvn+· · ·+an(n−1)
2

vn−1)da1 · · · dan(n−1)
2

,

with v1, . . . , vn as in (5.1.2) above.

A direct calculation shows that:

Lemma 5.4.2. The map φ 7→ φ defines a morphism of T × T ′-modules

RB×B′(Ωn,n)→
(
(| · |−

1
2 )⊠n ⊠ χψ · (| · |

1
2 )⊠n

)
⊗ S(Qn

q , k),

where T × T ′ acts on S(Qn
q , k) by

(5.15) (x1, . . . , xn)× (y1, . . . , yn)(f)(t1, . . . , tn) = f(x−1
1 t1y1, . . . , x

−1
n tnyn).

Definition 5.4.3. For any character χ = χ1⊠ · · ·⊠χn : (Q×
q )

n → k× with χi ̸= | · |−
1
2 for all i, we consider

the following condition on φ ∈ Ωn,n:

(Cχ) There exists g ∈ G′
n such that fχ(ωψ(1, g)φ) ̸= 0, where

fχ :
(
(| · |−

1
2 )⊠n ⊠ χψ · (| · |

1
2 )⊠n

)
⊗ S(Qn

q , k)→ χ⊠ χψ · χ−1

is the unique projection deduced from Lemma 5.2.1.

The map fχ also exists and is unique without the assumption χi ̸= | · |−
1
2 , so (Cχ) makes sense for all χ;

this is elementary but not needed in our applications.

5.4.4. Let K ⊂ Gn be the hyperspecial subgroup stabilizing the self-dual lattice L ⊂ Vn (5.1.2).

Lemma 5.4.5. Let χ : (Q×
q )

n → k× be almost generic and unramified, and suppose φ ∈ ΩKn,n satisfies
condition (Cχ). Also letM be any admissible k[G′

n]-module. Then, for any nonzero map

θ : Ωn,n → I(χ)⊠M

of k[Gn ×G′
n]-modules, we have

θ(φ) ̸= 0.
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Proof. Since I(χ) is irreducible, Corollary 5.3.11 implies that θ factors as

Ωn,n
θ0−→ I(χ)⊠Θn,n(I(χ)) ∼= I(χ)⊠ I ′(χ)

f−→ I(χ)⊠M
for some map of G′

n-modules
f : I ′(χ)→M.

Then since I ′(χ) is also irreducible, it suffices to show θ0(φ) ̸= 0. Now, by Lemma 5.4.2, the map

χ 7→
(
(h, g) 7→ fχ(ωψ(h, g)φ)

)
gives a (Gn ×G′

n)-intertwining map
Fχ : Ωn,n → I(χ)⊠ I ′(χ−1) ∼= I(χ)⊠ I ′(χ).

Since Fχ is not identically zero, Corollary 5.3.11 shows that θ0 coincides with Fχ up to a nonzero scalar; in
particular θ0(φ) ̸= 0 if and only if Fχ(φ) ̸= 0. Then because φ is K-spherical, Fχ(φ) ̸= 0 if and only if
there exists g ∈ G′

n with fχ(ωψ(1, g)φ) ̸= 0, which is condition (Cχ). □

Similarly, we have:

Lemma 5.4.6. Let χ : (Q×
q )

n → k× be almost level-raising generic and unramified, and suppose φ ∈ ΩKn,n
satisfies condition (Cχ). Then, for any nonzero map

θ : Ωn,n → J(χ)⊠M
of k[Gn ×G′

n]-modules, we have
θ(φ) ̸= 0.

Proof. Since J(χ) is irreducible by Corollary 5.3.17, the map θ factors as

Ωn,n ↠ J(χ)⊠Θn,n(J(χ)) ∼= J(χ)⊠ I ′(χ)
f−→ J(χ)⊠M

for some map of G′
n-modules

f : I ′(χ)→M.

By Lemma 5.3.4, we may assume without loss of generality that f : I ′(χ) → I ′(χw) is an intertwining
operator. Then by Lemmas 5.3.7 and 5.3.14, we see that it suffices to show φ has nonzero image under the
map

θ0 : Ωn,n → J(χ)⊠ I ′(χ)→ J(χ)⊠ I ′(χ−1).

By Lemma 5.4.2, the map
φ 7→

(
(h, g) 7→ fχ(ωψ(h, g)χ)

)
gives a (Gn ×G′

n)-intertwining map
Fχ : Ωn,n → I(χ)⊠ I ′(χ−1).

As in the proof of Lemma 5.4.5, since φ is K-invariant, condition (Cχ) is equivalent to Fχ(φ) ̸= 0. Now
project to obtain a composite

F ′
χ : Ωn,n

Fχ−−→ I(χ)⊠ I ′(χ−1)→ J(χ)⊠ I ′(χ−1).

Now we observe that anyK-spherical vector in I(χ) has nonzero image in J(χ); indeed, by the construction
of J(χ) it suffices to show this when n = 1, in which case it is clear from the explicit intertwining operator in
[113, p. 44] and the assumption q2−1 ̸= 0 in k. In particular, we have F ′

χ(φ) ̸= 0 if and only if Fχ(φ) ̸= 0.
On the other hand, F ′

χ must factor as

F ′
χ : Ωn,n → J(χ)⊠Θn,n(J(χ))→ J(χ)⊠ I ′(χ−1);

the map Θn,n(J(χ)) = I ′(χ)→ I ′(χ−1) is unique by Lemma 5.3.7, so F ′
χ coincides with θ0 up to a nonzero

scalar. Hence θ0(χ) ̸= 0 is equivalent to (Cχ). □
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5.4.7. We end this subsection with a convenient shortcut that we will use to check condition (Cχ) in the
characteristic zero, non-level-raising case.

Lemma 5.4.8. Suppose k = C and let χ : (Q×
q )

2 → k× be generic and unramified. Assume that φ ∈ ΩK2,2
satisfies:

(1) For all x, y ∈ V , we have φ(x, y) ∈ Q≥0.
(2) φ is supported on L× q−1L and invariant under translations by qL× q2L.
(3) There exist elements x, y ∈ V with y · v1 = 0 and φ(x, y) ̸= 0.

Then there exists χw ∈W (χ) such that φ satisfies condition (Cχw).

Proof. Let w0 be the Weyl element in (3.3.1); then

ωψ(1, w0)φ ∈
(
(| · |−

1
2 )⊠2 ⊠ χψ · (| · |

1
2 )⊠2

)
⊗ S(Q2

q , k)

is a unit multiple of the function

c(t1, t2) =

∫
V 2

∫
Qq
φ(x, y)ψ (t1x · v1 + t2y · v2 + ay · v1) dadxdy

= Vol
{
q−2Zq

}∫
V 2

φ(x, y)ψ (t1x · v1 + t2y · v2) · 1y·v1∈q2Zqdadxdy.

By condition (2) of the lemma, c is supported on q−1Zq×q−2Zq and invariant under translations byZq×qZq.
Note that the conditions of the lemma together imply that c(Zq, qZq) ̸= 0. From this, we will deduce that
fχw(c) ̸= 0 for some Weyl conjugate χw of χ, which will show the lemma.

Indeed, write χ = χ1 ⊠ χ2 and χw = χw1 ⊠ χw2 for w ∈W . Then

fχw(c) = f
|·|

1
2 χw1

(
f
|·|

1
2 χw2

c(t1, ·)
)

(where the functions on the right are defined in Lemma 5.2.1(2)). Now, because c(Zq, qZq) ̸= 0, c(1, ·) is
a nonzero element of the four-dimensional k-vector space S−2,1 from Lemma 5.2.1(3). Since χw2 | · |

1
2 takes

on four distinct nontrivial values as w ranges over W , we may therefore replace χ with a Weyl conjugate
such that d := f

|·|
1
2 χ2

c(t1, ·) is not identically zero. Since d lies in S−1,0 as a function of t1, Lemma 5.2.1(3)

again implies that either f
|·|

1
2 χ1

(d) or f
|·|

1
2 χ−1

1

(d) is nonzero. This concludes the proof because χ−1
1 ⊠ χ2 is

Weyl-conjugate to χ.
□

5.5. Applications to formal theta lifts.

5.5.1. For this subsection, fix the following data:
◦ A quadratic space V of trivial discriminant and dimension 2n+ 1 ≥ 3.
◦ A neat compact open subgroup K =

∏
Kℓ ⊂ GSpin(V )(A).

◦ An odd prime q such that Kq is hyperspecial.
◦ A subring R ⊂ C which is either C, or a finite flat extension of Z̆p (embedded into C by a choice

of isomorphism ι : Qp
∼−→ C). In the latter case we assume the pro-order of Kq is prime to p. Let

ϖR ∈ R generate the maximal ideal (so ϖR = 0 if R = C), and write k := R/ϖR.
◦ A character χ : (Q×

q )
n → k× that is either almost generic or almost level-raising generic (Definition

5.3.10 and Definition 5.3.12).
With these data, we make the following notation:

Notation 5.5.2.
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(1) Write Tq := TGSpin2n+1,q,R. Let mχ ⊂ Tq be the maximal ideal corresponding to χ; explicitly, mχ

is the annihilator of the unique spherical vector in I(χ).
(2) For any ring A, 1A denotes the trivial A[Kq]-module.

Lemma 5.5.3. We have
c-Ind

GSpin(V )(Qq)
Kq

1R ⊗Tq,mχ k
∼= I(χ)

as k-linear representations of GSpin(V )(Qq).

Proof. Write
πχ := c-Ind

GSpin(V )(Qq)
Kq

1R ⊗Tq ,mχ k.

Then we have a map f : πχ → I(χ), sending the generator of πχ to the unique spherical vector. The first
claim is that f is surjective. Indeed, if χ is almost generic, this is automatic by Corollary 5.3.11. If χ is
almost level-raising generic, then I(χ) has no Kq-spherical submodules: since taking the Kq-invariants is
exact, J(χ) is the unique Kq-spherical constituent, and it cannot be both a quotient and a submodule by
Lemma 5.3.7. So indeed f is surjective.

It remains to prove f is injective. Because πχ is generated byKq-spherical vectors, every GSpin(V )(Qq)-
stable subspace V ⊂ πχ satisfies RB(V ) ̸= 0; for instance, this follows from [114, Corollaire II.3.5] com-
bined with (I.3.15) of op. cit. Thus it suffices to show RB(f) is injective, or equivalently that

dimk RB(πχ) = dimk RB(I(χ)) = |W | = n! · 2n.

To compute the dimension of RB(πχ), note that RB(c-Ind
GSpin(V )(Qq)
Kq

1k) = k[X•(T̂ )] by the Iwasawa
decomposition forGSpin(V )(Qq), and the action ofTq⊗Rk is the natural one under the Satake isomorphism

Tq ⊗R k
∼−→ k[X•(T̂ )]W .

Since k[X•(T̂ )] is a finite flat k[X•(T̂ )]W -algebra of degree |W |, we have

dimRB(πχ) = dim
(
k[X•(T̂ )]⊗

k[X•(T̂ )]W ,mχ
k
)
= |W |,

as desired. □

Notation 5.5.4. For all φ ∈ S(V n ⊗Qq, R), let φ be its image in S(V n ⊗Qq, k).

(Despite the conflict with Notation 5.4.1, we hope that the meaning will always be clear from context.)

5.5.5. For the next proposition, recall the notation on formal theta lifts from §3.5.

Proposition 5.5.6. Let α ∈ TestK(V,R) be a test vector and n0 ≥ 1 an integer such that:
(1) Θ(α,φ) ̸≡ 0 (mod ϖn0

R ) for some φ = φq ⊗ φq ∈ S(V n ⊗ Af , R)K .
(2) For all h ∈ mχ ⊂ Tq and all φ′

q ∈ S(V n ⊗Qq, R)
Kq ,

Θ(h · α,φq ⊗ φ′
q) ≡ 0 (mod ϖn0

R ).

Then for any φ◦
q ∈ S(V n ⊗Qq, R)

Kq such that φ◦
q satisfies condition (Cχ),

Θ(α,φq ⊗ φ◦
q) ̸≡ 0 (mod ϖn0

R ).

Proof. For all f ∈ c-Ind
GSpin(V )(Qq)
Kq

1R, we can consider the convolution

f ∗ α ∈ TestKq(V,R)

(notation as in (3.5.3)). By Proposition 3.5.4, the map

(5.16) c-Ind
GSpin(V )(Qq)
Kq

1R ⊗ S(V n ⊗Qq, R)→Mn
n+ 1

2
,R



60 NAOMI SWEETING

defined by
(f, φ′

q) 7→ Θ(f ∗ α,φq ⊗ φ′
q)

is GSpin(V )(Qq)×Mp2n(Qq)-equivariant. By condition (2) of the proposition applied to h = ϖR ∈ mχ,
the image of (5.16) is contained in ϖn0−1

R Mn
n+ 1

2
,R

. Abbreviate

M :=
ϖn0−1
R Mn

n+ 1
2
,R

ϖn0
R M

n
n+ 1

2
,R

.

Reducing modulo ϖR, (5.16) induces a map

(5.17) c-Ind
GSpin(V )(Qq)
Kq

1k ⊗ S(V n ⊗Qq, k)→M

which remains a map ofGSpin(V )(Qq)×Mp2n(Qq)-modules by Proposition 3.4.6. Now note that condition
(2) of the proposition implies (5.17) factors through the quotient

c-Ind
GSpin(V )(Qq)
Kq

1k ↠ c-Ind
GSpin(V )(Qq)
Kq

1k ⊗Tq ,mχ k
∼= I(χ)

(Lemma 5.5.3). By duality [114, p. 96, Propriété (vi)], (5.17) is equivalent to a nonzero map

θ : S(V n ⊗Qq, k)→ I(χ−1)⊗M

and, for φ◦
q ∈ S(V n ⊗Qq, R)

Kq , we have

Θ(α,φq ⊗ φ◦
q) ̸≡ 0 (mod ϖn0

R ) ⇐⇒ θ(φ◦
q) ̸= 0.

If χ is almost generic, the proposition therefore follows from Corollary 5.3.11 and Lemma 5.4.5. So assume
instead that χ is almost level-raising generic.

Claim. LetM be any admissible k[Mp2n(Qq)]-module. Then every map of GSpin(V )(Qq)×Mp2n(Qq)-
modules

S(V n ⊗Qq, k)→ I(χ−1)⊠M
factors as

S(V n ⊗Qq, k)→ J(χ)⊠M→ I(χ−1)⊠M.

Given the claim, the proposition follows from Lemma 5.4.6, because J(χ) ↪→ I(χ−1) is injective (cf. the
proof of Corollary 5.3.17).

Let us now prove the claim. Since the statement is purely local in nature, we resume our local abbre-
viation Ωn,n = S(V n ⊗ Qq, k). The claim is also insensitive to replacing χ with any χw ∈ W (χ)+ (by
Lemma 5.3.14), so suppose without loss of generality that χ = | · |

1
2 ⊠ ρ for some almost generic charac-

ter ρ : (Q×
q )

n → k×. Apply Corollary 5.2.4(1) with χ0 = | · |−
1
2 and πm−1 = I(ρ) ∼= I(ρ−1). Since

Θn−1,n−1(I(ρ)) = I ′(ρ) by Corollary 5.3.11, we obtain an isomorphism

(5.18) Hom(Ωn,n, I(χ
−1)⊠M) = Hom(I ′(χ),M)

that is functorial inM. So it suffices to show the claim withM = I ′(χ). But in this case, (5.18) combined
with Lemma 5.3.7 shows that there is a unique non-zero map

(5.19) Ωn,n → I(χ−1)⊠ I ′(χ).

Since J(χ) injects into I(χ−1), we also have the map induced by the theta lift

Ωn,n → J(χ)⊠Θn,n(J(χ)) ∼= J(χ)⊠ I ′(χ)→ I(χ−1)⊠ I ′(χ);

this must coincide with (5.19) up to a nonzero scalar, which shows the claim. □

5.6. Main result on changing test functions.
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5.6.1. Let π, S, and E0 be as in Notation 4.0.1, and fix a prime p of E0, which we suppress from all the
notation in this subsection. Fix an isomorphism ι : Qp

∼−→ C inducing the prime p, and let R ⊂ Zp be the
ring of integers of the maximal unramified extension of O = Op.

We apply the results of §5.5 to study the behavior of λDn (Q,φ;K) and κDn (Q,φ;K) as φ changes locally
at a prime q ∤ Q.

Proposition 5.6.2. Suppose q is an admissible prime. Then there exists an unramified characterχ : (Q×
q )

2 →
F×
p such that χ is almost level-raising generic, and the corresponding maximal ideal mχ ⊂ Tq,R contains

the kernel of the Hecke action on the unique spherical vector of πq.

Proof. Because πq is unramified with trivial central character, we have πq = I(χ̃) for an unramified character
χ̃ : (Q×

q )
2 → C×, uniquely determined up to Weyl action. Write α = ι−1χ̃(q, 1), β = ι−1χ̃(1, q); then by

Theorem 2.2.10(1), ρπ(Frobq) has eigenvalues αq1/2, βq1/2, α−1q1/2, β−1q1/2, which lie in Z×
p ⊂ Q×

p . By
the admissibility of q, we may assume without loss of generality that

(5.20) αq1/2 ≡ q (mod p), βq1/2 ̸≡ ±q,±1, q2, q−1 (mod p).

We define the character χ to be the reduction modulo p of ι−1χ̃, and the conditions (5.20) exactly correspond
to χ being almost level-raising generic. □

Corollary 5.6.3. SupposeQq is admissible with ν(DQ) odd, and fix anS-level structureK forGSpin(VDQ).
Let φ◦

q ∈ S(V 2
DQ ⊗Qq, O)Kq be a test function whose image in S(V 2

DQ ⊗Qq,Fp) satisfies condition (Cχ),
where χ : (Q×

q )
2 → F×

p is the almost level-raising generic character of Proposition 5.6.2. Then for all n ≥ 1

and all φ = φq ⊗ φq ∈ S(V 2
DQ ⊗ Af , O)K , we have

λDn (Q,φ
q ⊗ φ◦

q ;K) ⊃ λDn (Q,φ;K).

Remark 5.6.4. The same corollary holds for κDn (Q,−) if ν(DQ) is even, but this version will not be used
for the main results.

Proof. Suppose λDn (Q,φ;K) = (ϖn0−1) for some 1 ≤ n0; without loss of generality we may assume
n0 ≤ n and that

λDn (Q,φ
q ⊗ φ′

q;K) ≡ 0 (mod ϖn0−1)

for all φ′
q ∈ S(V 2

DQ ⊗Qq, O)Kq .

Now choose a vector α ∈ TestK(VDQ, π,O/ϖ
n) such that α(Z(T, φ)K) generates λDn (Q,φ;K) for

some T ∈ Sym2(Q)≥0. Lift α arbitrarily to anO-valued test function α̃ ∈ TestK(VDQ, O). Recall R ⊂ Zp
is the ring of integers of the maximal unramified extension of O, and let fπ : Tq,R → R be the character
associated with the Hecke eigenvalues of πq, so that fπ(h) ∈ (ϖ) for all h ∈ mχ ⊂ Tq,R. Then for h ∈ mχ

and φ′
q ∈ S(V 2

DQ ⊗Qq, O)Kq , we have

Θ(h · α̃, φq ⊗ φ′
q) ≡ fπ(h)Θ(α̃, φq ⊗ φ′

q) ≡ 0 (mod ϖn0),

so we may apply Proposition 5.5.6 to conclude. (Note that because q4 ̸≡ 1 (mod p), p does not divide the
pro-order of Kq.)

□

We now give an analogue of Corollary 5.6.3 in characteristic zero, which requires Q = 1.

Proposition 5.6.5. Suppose q ̸∈ S is a prime such that ρπ(Frobq) has distinct eigenvalues. Letχ : (Q×
q )

2 →
C× be the unramified character, well-defined up to W -action, such that πq is a constituent of I(χ). Then χ
is generic.
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Proof. The proof is similar to Proposition 5.6.2, using that |α| = |β| = 1 because πq is tempered by Theorem
2.2.10(1). □

Corollary 5.6.6. Let D ≥ 1 be squarefree with ν(D) even, and suppose q ̸∈ S ∪ div(D) is a prime
such that ρπ(Frobq) has distinct eigenvalues. Fix an S-level structure K for GSpin(VD), and let φ◦

q ∈
S(V 2

D ⊗ Qq,Z)Kq be a test function whose image in S(V 2
D ⊗ Qq,C)Kq satisfies the hypotheses of Lemma

5.4.8, or more generally condition (Cχ), where χ : (Q×
q )

2 → C× is the generic character of Proposition
5.6.5. Then for all φ = φq ⊗ φq ∈ S(V 2

D ⊗ Af , O)K ,

κD(1, φ;K) ̸= 0 =⇒ κD(1, φq ⊗ φ◦
q ;K) ̸= 0.

Proof. The argument is similar to Corollary 5.6.3. First fix a vector α ∈ TestK(VD, π,O) with α∗ ◦
∂AJ,m(Z(T, φ)K) ̸= 0 for some T ∈ Sym2(Q)≥0. Because H1(Q, Tπ) is torsion-free by Lemma 4.1.6(1),
we may choose a linear functional β : H1(Q, Tπ) → Qp such that β(α∗ ◦ ∂AJ,m(Z(T, φ)K)) ̸=0. Let
α̃ ∈ TestK(VD,C) denote the composite map

CH2(ShK(VD))
∂AJ,m−−−→ H1(Q, H3

ét(ShK(VD)Q, O(2))m)
α∗−→ H1(Q, Tπ)

β−→ Qp
ι−→ C.

Then α̃ is Hecke-equivariant because α is so. Let φ′
q ∈ S(V 2

DQ ⊗ Qq,C)Kq be any vector. By the Hecke-
equivariance of α̃, we have Θ(h · α̃, φq ⊗ φ′

q) = 0 for all h ∈ mχ (Notation 5.5.2), with R = C, ϖR = 0.
We can now apply Proposition 5.5.6 to conclude. □

With essentially the same proof, we have the following in the endoscopic case:

Corollary 5.6.7. With the setup of Corollary 5.6.6, suppose π is endoscopic associated to a pair (π1, π2).
Then for all φ = φq ⊗ φq ∈ S(V 2

D ⊗ Af , O)K and j = 1 or 2, we have

κD(1, φ;K)(j) ̸= 0 =⇒ κD(1, φq ⊗ φ◦
q ;K)(j) ̸= 0.

6. The ramified GSpin5 Rapoport-Zink space

6.1. The moduli problem.

6.1.1. Fix a prime q > 2, and let Oq be the unique maximal order in the non-split quaternion algebra B
over Qq. Suppose given a q-divisible group X over Fq of dimension 4 and height 8, equipped with an action
ιX : Oq ↪→ End(X) and a principal polarization λX : X ∼−→ X∨ such that the Rosati involution ∗ of End(X)
induces a nebentype involution on Oq of unit type (Definition 1.2.9).

Definition 6.1.2. Let Nilp be the category of schemes over Z̆q on which q is locally nilpotent. Let N :
Nilp→ Set be the functor sending S ∈ Nilp to the set of isomorphism classes of tuples (X, ι, λ, ρ) where:

(i) X is a q-divisible group of dimension 4 and height 8 over S.
(ii) ι : Oq ↪→ End(X/S) is an Oq-action such that

det(T − ι(α)|Lie(X)) = (T 2 − tr(α)T +N(α))2, ∀α ∈ Oq.

(iii) λ : X
∼−→ X∨ is a principal polarization such that the Rosati involution on End(X/S) extends the

involution ∗ on Oq.
(iv) If S = S ×Z̆q Fq denotes the mod q fiber, then ρ is an Oq-linear quasi-isogeny

ρ : X ×S S → X×Fq S

such that ρ∨ ◦ λX ◦ ρ = c(ρ)λ for some c(ρ) ∈ Q×
q .
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The functor N is studied in [118]; in this section, we will recall the key points, and prove additional
properties needed for our applications.

6.1.3. The functor N is represented by a formal scheme over Spf Z̆q, locally formally of finite type, which
admits a decomposition into open and closed formal subschemes

(6.1) N = ⊔i∈ZN (i)

according to the q-adic valuation of c(ρ).

6.1.4. Let σ : Z̆q → Z̆q denote the arithmetic Frobenius, lifting the qth power map onFq. The formal scheme
N is equipped with a canonical Weil descent datum φ : N ∼−→ σ∗N over Z̆q, which we now recall. On S-
points, φ is given by the isomorphism φ(S) : N (S)

∼−→ N ((σ−1)∗S), which sends (X, ι, λ, ρ) ∈ N (S) to
((σ−1)∗X, (σ−1)∗ι, (σ−1)∗λ, ρ ◦ FX/S), where

FX/S : (σ−1)∗XS → XS

is the relative Frobenius. Since c(ρ ◦ FX/S) = c(ρ) + 1, φ restricts to an isomorphism

φi : N (i)
∼−→ σ∗N (i+ 1)

for each i ∈ Z.

6.2. The Bruhat-Tits stratification.

6.2.1. LetM denote the underlying reduced scheme ofN (0). We now recall the description in [118] of the
stratification ofM in terms of lattices in the isocrystalN of our fixed q-divisible groupX. By the assumption
that the involution ∗ on Oq is of unit type, we may choose coordinates

(6.2) Oq = Zq2 ⊕ΠZq2 ,

where α∗ = ΠαΠ−1 = σα for α ∈ Zq2 , Π∗ = Π, and Π2 = q.

6.2.2. Label the two embeddings of Zq2 into Z̆q by j• and j◦. Then we have a decomposition

(6.3) N = N• ⊕N◦,

where ι(α) = j?(α) on N? for ? = •, ◦. Each of N• and N◦ is an isocrystal of dimension 4 and slope 1
2 .

The polarization λX induces a pairing

⟨·, ·⟩ : N ⊗N → Q̆q = Z̆q ⊗Qq,

with respect to whichN• andN◦ are each isotropic (since ∗ is nontrivial on Zq2 ⊂ Oq). Define a new pairing

(6.4) ⟨·, ·⟩• : N• ⊗N• → Q̆q

by
⟨x, y⟩• = ⟨x,Πy⟩.

Then ⟨·, ·⟩• is symplectic and non-degenerate.
The operators Π and V on N both interchange N• and N◦, so the operator

(6.5) τ := ΠV −1

stabilizes N•; moreover

(6.6) ⟨τx, τy⟩• = ⟨x, y⟩σ• ,

where again σ is the arithmetic Frobenius of Q̆q. Hence W := N τ=1
• is a 4-dimensional Qq-vector space

equipped with a Qq-valued symplectic form, such that N• =W ⊗Qq Q̆q.
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Definition 6.2.3. For a lattice Λ ⊂ W , denote the Zq-dual lattice by Λ∨. We define the following families
of lattices in W :

L{0} =
{

lattices Λ ⊂W s.t. Λ = Λ∨} .
L{2} =

{
lattices Λ ⊂W s.t. Λ = qΛ∨} .

L{02} =
{

pairs of lattices Λ0,Λ2 ⊂W s.t. qΛ0 = qΛ∨
0 ⊂2 qΛ

∨
2 = Λ2 ⊂2 Λ0

}
.

L{1} =
{

lattices Λ1 ⊂W s.t. qΛ∨
1 ⊂2 Λ1 ⊂2 Λ

∨
1

}
.

Here, the notation Λ ⊂n Λ′ was defined in (1.1.8).

Theorem 6.2.4. The underlying reduced schemeM of N (0) admits a stratification

M =M0
{0} ⊔M

0
{2} ⊔M

0
{02} ⊔M

0
{1},

with a decomposition into open and closed subschemes

M0
? =

⊔
y∈L?

M0
?(y)

for each ? = {0}, {2}, {02}, {1}, satisfying the following conditions (whereM? andM?(y) denote the
Zariski closures ofM0

? andM0
?(y), respectively):

(1) For ? = {0} or {2} and each Λ ∈ L?,M?(Λ) is isomorphic to the smooth projective hypersurface
in P3

Fq
defined by the equation

Xq
3X0 −Xq

0X3 +Xq
2X1 −Xq

1X2.

The schemeM is the unionM{0} ∪M{2}.
(2) Given Λ0 ∈ L{0} and Λ2 ∈ L{2},M{0}(Λ0) meetsM{2}(Λ2) if and only if (Λ0,Λ2) ∈ L{02}, in

which case the intersection is transverse and

M{0}(Λ0) ∩M{2}(Λ2) =M{02}(Λ0,Λ2).

For each (Λ0,Λ2) ∈ L{02},M{02}(Λ0,Λ2) is isomorphic to P1
Fq

, and both of the resulting embed-
dings P1

Fq
↪→ P3

Fq
are linear.

(3) For eachΛ1 ∈ L{1},M0
{1}(Λ1) =M{1}(Λ1) is an isolated point. GivenΛ0 ∈ L{0} andΛ2 ∈ L{2},

M{1}(Λ1) lies onM{0}(Λ0) if and only if Λ1 ⊂ Λ0, and onM{2}(Λ2) if and only if Λ2 ⊂ Λ1.
(4) For a pair of distinct Λ0,Λ

′
0 ∈ L{0},M{0}(Λ0) meetsM{0}(Λ

′
0) if and only if Λ0 ∩ Λ′

0 ∈ L{1}; in
this case the intersection is transverse and we have

M{0}(Λ0) ∩M{0}(Λ
′
0) =M{1}(Λ0 ∩ Λ′

0).

(5) For a pair of distinct Λ2,Λ
′
2 ∈ L{2},M{2}(Λ2) meetsM{2}(Λ

′
2) if and only if Λ2 +Λ′

2 ∈ L{1}; in
this case the intersection is transverse and we have

M{2}(Λ2) ∩M{2}(Λ
′
2) =M{1}(Λ2 + Λ′

2).

(6) The stratumM{1} is precisely the nonsmooth locus of N (0), and the complete local ring of N (0)
at each point inM{1} is isomorphic to

Z̆qJX,Y, Z,W K/q −XY + ZW.

Proof. Each point except (6) is contained in [118], and (6) is [85, Corollary 4.2]. □
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6.2.5. For later use, we recall the meaning of each of the strata in Theorem 6.2.4 on the level of Fq-points.
Given s = (X, ι, λ, ρ) ∈ N (Fq), the covariant Dieudonné module of X gives rise to an Oq-stable lattice

M ⊂ N . Such an M admits a decomposition

M =M• ⊕M◦ ⊂ N• ⊕N◦

as in (6.2.2); here we are using q ̸= 2. For a lattice Λ ⊂ W , define Λ̆ := Λ ⊗ Z̆q ⊂ M•. Then we have, for
any s ∈M(Fq) and any lattices Λ0 ∈ L{0}, Λ2 ∈ L{2}, Λ1 ∈ L{1}:

• s lies inM{1} if and only if M• = τM•, and is the pointM{1}(Λ1) if and only if M• = Λ̆1.

• s lies inM{0}(Λ0)−M{1} if and only if M• + τM• = Λ̆0.
• s lies inM{2}(Λ2)−M{1} if and only if M• ∩ τM• = Λ̆2.

By Theorem 6.2.4, at least one of these three options occurs for any point s ∈M(Fq).

Notation 6.2.6. From now on, to ease the notation we shall abbreviateM{0}(Λ0) asM(Λ0), etc.

6.3. Deformation theory and the geometry of N .

6.3.1. Let (X,λ, ι, ρ) be an S-valued point of N , for some S ∈ Nilp. To X we associate the (covariant)
Dieudonné crystal D(X) [74]; thus for any thickening S ↪→ Ŝ in Nilp admitting locally nilpotent divided
powers, we obtain a locally free sheafD(Ŝ) ofO

Ŝ
-modules, such thatD(X) := D(X)(S) fits into a canonical

exact sequence

(6.7) 0→ ωX∨ → D(X)→ Lie(X)→ 0

of locally free OS-modules.

6.3.2. As in (6.2.5) above, the action of Zq2 ⊂ Oq on D(X) induces a decomposition

D(X) = D(X)• ⊕ D(X)◦,

and likewise for D(X), ωX∨ , and LieX; the action of Π interchanges the two components in each case.
The polarization λ induces a perfect alternating pairing

⟨·, ·⟩ : D(X)⊗ D(X)→ Ocris
S .

Since both D(X)• and D(X)◦ are isotropic, ⟨·, ·⟩ identifies D(X)• with the dual of D(X)◦. Finally, the
submodule ωX∨ of D(X) is also isotropic, so that λ induces perfect pairings of locally free OS-modules:

⟨·, ·⟩ : ωX∨,• ⊗ LieX◦ → OS
⟨·, ·⟩ : ωX∨,◦ ⊗ LieX• → OS .

If S = SpecFq, then D(X) is equivalent to the data of the Dieudonné moduleM ofX; the exact sequence
(6.7) becomes

0→ VM/pM →M →M/VM → 0.

6.3.3. LetS ↪→ Ŝ be a thickening inNilp admitting locally nilpotent divided powers, and fixx = (X,λ, ι, ρ) ∈
N (S). Denote by Lift(x) the set of isomorphisms classes of lifts of x to x̂ = (X̂, λ̂, ι̂, ρ̂) ∈ N (Ŝ), and de-
note by Lift(x) the set of locally free, Oq-stable, totally isotropic O

Ŝ
-submodules ω̂X∨ ⊂ D(X)(Ŝ) lifting

ωX∨ . From the well-known deformation theory of q-divisible groups [76], one has:

Proposition 6.3.4. The canonical map

x̂ = (X̂, λ̂, ι̂, ρ̂) 7→ ω
X̂∨ ⊂ D(X̂) = D(X)(Ŝ)

defines a bijection
Lift(x)

∼−→ Lift(x).
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6.3.5. LetN sm denote the formally smooth locus ofN (0), which by Theorem 6.2.4(6) is the complement of⊔
Λ1∈L{1}

M(Λ1). Before we can calculate the tangent bundle to the mod q fiber of N sm in Theorem 6.3.7
below, we need the following lemma.

Lemma 6.3.6. Suppose given (X,λ, ι, ρ) ∈ N sm(S), for some Fq-scheme S. Then Π induces isomorphisms
of line bundles on S:

Π :
LieX•
ΠLieX◦

∼−→ ΠLieX• ⊂ LieX◦

Π :
ωX∨,•
ΠωX∨,◦

∼−→ ΠωX∨,• ⊂ ωX∨,◦,

and likewise with • and ◦ reversed.

Proof. We consider the first map; the second, and the versions with • and ◦ reversed, are all similar to this
case. Without loss of generality, we may assume that S = Spf R is affine and formally of finite type, and that
R is a local ring with maximal ideal m such that R/m = Fq. Then LieX• and LieX◦ are each free of rank
two over R by the Kottwitz condition, and the map Π• : LieX• → LieX◦ is nonzero modulo m; indeed,
this amounts to the assertion that ΠM• ̸= VM• for the Dieudonné module M = M• ⊕M◦ corresponding
to the special fiber ofX , and this holds because we are away from the nonsmooth locus ofN (0), cf. (6.2.5).

In particular, we can choose bases of LieX• and LieX◦ such that

Π• =

(
1 0
0 d

)
: LieX• → LieX◦

for some d ∈ R. Now, we also know that Π2 = q = 0 on Lie(X), so the matrix g for Π◦ : LieX◦ → LieX•
must satisfy

g

(
1 0
0 d

)
=

(
1 0
0 d

)
g = 0.

A direct calculation shows that g =

(
0 0
0 w

)
for some w ∈ R, where wd = 0; but the same reasoning as for

Π• shows that Π◦ is nonzero modulo m, so w is a unit and we conclude d = 0. From these coordinates for
Π• and Π◦, it is clear that ΠLieX• and LieX•/ΠLieX◦ are both free of rank one over R and that the map
in the lemma is indeed an isomorphism. □

Theorem 6.3.7. Let T denote the tangent bundle on the mod q fiber N sm
Fq

. Then we have a canonical exact
sequence:

0→ T → Hom(ωX∨,•,LieX•)→ Hom(ΠωX∨,◦,LieX•/ΠLieX◦)→ 0,

where X is the universal q-divisible group.

Proof. It suffices to consider deformations of a point (X, ι, λ, ρ) ∈ N sm(R) to points ofN sm(R[ϵ]/ϵ2), for
R an Fq-algebra. Let S = SpecR and Ŝ = SpecR[ϵ]/ϵ2. By Proposition 6.3.4, we need to consider lifts
of ωX∨ to locally free submodules ω̂X∨ ⊂ D(X)(Ŝ) which are Oq-stable and isotropic; this is equivalent
to lifting ωX∨,• ⊂ D(X)• and ωX∨,◦ ⊂ D(X)◦ to locally free submodules ω̂X∨,• ⊂ D(X)•(Ŝ) and
ω̂X∨,◦ ⊂ D(X)◦(Ŝ), subject to the following conditions.

(i) ⟨ω̂X∨,•, ω̂X∨,◦⟩ = 0.
(ii) Πω̂X∨,• ⊂ ω̂X∨,◦.
(iii) Πω̂X∨,◦ ⊂ ω̂X∨,•.

Now, lifts of ωX∨,• correspond to maps of R-modules f• : ωX∨,• → LieX• via
f• 7→ span

{
x+ ϵf•(x) + ϵωX∨,• : x ∈ ωX∨,•

}
,

and likewise for ωX∨,◦. The conditions (i)-(iii) translate to:
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(i)’ ⟨x, f•(y)⟩ = ⟨y, f◦(x)⟩, for all x ∈ ωX∨,◦, y ∈ ωX∨,•.
(ii)’ Πf•(x) = f◦(Πx) for all x ∈ ωX∨,•.
(iii)’ Πf◦(x) = f•(Πx) for all x ∈ ωX∨,◦.

If we specify f•, then (i)’ can be taken as a definition of f◦. In terms of f• only, conditions (ii)’ and (iii)’
correspond to:

(ii)” ⟨y,Πf•(x)⟩ = ⟨x,Πf•(y)⟩, for all x, y ∈ ωX∨,•.
(iii)” ⟨y, f•(Πx)⟩ = ⟨x, f•(Πy)⟩, for all x, y ∈ ωX∨,◦.

Now, since we are outside the singular locus, Lemma 6.3.6 implies that ΠωX∨,• and ΠωX∨,◦ are locally rank-
one direct summands of the rank-two projective R-modules ωX∨,◦ and ωX∨,•, respectively. In particular,
using that (ii)” and (iii)” are clearly satisfied when x and y are linearly dependent, it suffices to check (ii)”
and (iii)” for x ∈ ΠωX∨,◦ and x ∈ ΠωX∨,•, respectively. Using ⟨Πz,Πw⟩ = q⟨z, w⟩ = 0, we find that both
conditions (ii)” and (iii)” are equivalent to Πf•(ΠωX∨,◦) = 0. Again by Lemma 6.3.6, the kernel of Π on
LieX• is ΠLieX◦, so we are just requiring

f•(ΠωX∨,◦) ⊂ ΠLieX◦,

as desired. □

6.3.8. Scheme-theoretic description of the strataM(Λ0),M(Λ2). Fix a lattice Λ ∈ L{0} ⊔L{2}; we recall
the construction ofM(Λ) as a subscheme ofN given in [118, §4]. Let Λ̆ = Λ⊗ Z̆q ⊂ N•, and let Y denote
the q-divisible group over Fq associated to the lattice

Λ̆⊕ qδΠ−1Λ̆ ⊂ N• ⊕N◦,

where δ = 0 if Λ ∈ L{0} and δ = 1 if Λ ∈ L{2}. The group Y comes with a natural quasi-isogeny

t : Y → X.

For any (X,λ, ι, ρ) ∈ N (S) with S an Fq-scheme, consider the two quasi-isogenies:

ρ+ : X
ρ−→ XS

qδt−1

−−−→ YS ,

ρ− : YS
q1−δt−−−→ XS

ρ−1

−−→ X,

where δ = 0 if Λ ∈ L{0} and δ = 1 if Λ ∈ L{2}.
Then the schemeM(Λ) is constructed as the locus where ρ+ and ρ− are both isogenies. In fact, since the

dual lattice to Λ̆⊕Π−1Λ̆ is q1−2δ(Λ̆⊕Π−1Λ̆), we may identify Y ∼−→ Y ∨ by q1−2δt∨ ◦ λX ◦ t; with respect
to this polarization, ρ+ and ρ− are duals, so ρ− is an isogeny if and only if ρ+ is.

Proposition 6.3.9. Let O(1) be the line bundle onM(Λ) corresponding to the embedding into P3
Fq

of The-
orem 6.2.4 (2). Then, if (X,λ, ι, ρ) is the universal q-divisible group overM(Λ), we have isomorphisms of
line bundles onM(Λ)sm :=M(Λ) ∩N sm:

O(−q) ∼= ΠLieX◦ ∼= LieX•/ΠLieX◦.

Proof. We give the proof in the case Λ ∈ L{0}; for Λ ∈ L{2}, the roles of • and ◦ are interchanged. Let
S :=M(Λ)sm, and let YS be the constant q-divisible group Y on S.

We need to recall the construction of the projective embedding from [118, §4]. First of all, one has the
Dieudonné crystal

D(YS) = D(YS)• ⊕ D(YS)◦,
with notation as in (6.3.2), and

D(YS)◦ = D(Y )◦ ⊗OS
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is a free OS-module of rank 4. The submodule ρ+,∗D(X)◦ ⊂ D(YS)◦ is locally a free summand of rank 1,
and this is the tautological bundle O(−1) under the mapM(Λ) ↪→ P3

Fq
. The canonical Verschiebung map

V : D(YS)◦ → D(Y
(q)
S )◦ ≃ D(YS)• ⊗OS OS(q)

is given by the qth power map OS → OS(q) tensored with the isomorphism

V : D(Y )◦ = Π−1Λ̆/ΠΛ̆
∼−→ Λ̆/qΛ̆ = D(Y )•,

so we have an isomorphism
O(−q) ≃ V(ρ+,∗(D(X)◦).

Now we note that the map

(6.8) V ◦ ρ+,∗ : D(X)◦ → D(YS)• ⊗OS OS(q)

annihilates both ΠD(X)• and ωX∨,◦ , because V(ωY ∨
S ,◦) = V ◦ Π(D(YS)◦) = 0 by the definition of Y . In

particular, (6.8) induces a surjection

(6.9) V ◦ ρ+,∗ :
LieX◦
ΠLieX•

∼−→ O(−q),

which is a map of line bundles by Lemma 6.3.6 and therefore an isomorphism. Combined with Lemma 6.3.6
for the other isomorphism, this completes the proof. □

Theorem 6.3.10. For any Λ ∈ L{0} ⊔ L{2}, the normal bundle toM(Λ)sm inside N sm
Fq

is isomorphic to
O(−2q) for the embedding into P3

Fq
given in Theorem 6.2.4.

Proof. For simplicity, we continue to assume Λ ∈ L{0}; the other case is similar.
The first step is to compute the tangent bundle toM(Λ)sm. We wish to consider the lifts of (X,λ, ι, ρ) ∈

M(Λ)sm(R) to points ofM(Λ)sm(R[ϵ]/ϵ2) for R an Fq-algebra, which we may take to be reduced since
M(Λ) is reduced. Continuing the notation of (6.3.8), such lifts correspond to the pairs{

f• : ωX∨,• → LieX•

f◦ : ωX∨,◦ → LieX◦

satisfying (i)’-(iii)’ from the proof of Theorem 6.3.7, subject to the additional condition that

f•(ρ−,∗(ωY ∨
R ,•)) = f◦(ρ−,∗(ωY ∨

R ,◦)) = 0.

By the definition of Y , we have ωY ∨
R ,◦ = 0, so the second condition is automatic.

Claim. OnM(Λ)sm we have

(6.10) ρ−,∗(ωY ∨
R ,•) = ΠωX∨,◦.

Given the claim, we conclude by comparing with the proof of Theorem 6.3.7 that the tangent bundle TΛ
toM(Λ)sm is canonically isomorphic to

Hom(ωX∨,•/ΠωX∨,◦,LieX•).

The normal bundle is the quotient T /TΛ, which by Theorem 6.3.7 is

Hom(ΠωX∨,◦,ΠLieX◦).

Since ΠωX∨,◦ is dual to LieX•/ΠLieX◦ onM(Λ)sm, the theorem then follows from Proposition 6.3.9.
Now we turn to the proof of the claim. We have

ρ−,∗(ωY ∨
R ,•) = ρ−,∗(D(YR)•) = (ker (ρ+,∗ : D(X)◦ → D(YR)◦))

⊥
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because ρ+ and ρ− are duals; the orthogonal complement is with respect to the perfect pairing on D(X).
Because R is reduced, the Verschiebung V : D(YR)◦ → D(YR)• is injective, so (6.9) implies that

ker (ρ+,∗ : D(X)◦ → D(YR)◦) = ωX∨,◦ +ΠD(X)◦.

Arguments similar to Lemma 6.3.6 show that (ΠD(X)◦)
⊥ = ΠD(X)•, and so we conclude

ρ−,∗(ωY ∨
R ,•) =

(
ωX∨,◦ +ΠD(X)•

)⊥
= ωX∨,• ∩ΠD(X)◦.

Now it follows from Lemma 6.3.6 and the snake lemma for the diagram

0 ωX∨,◦ D(X)◦ LieX◦ 0

0 ωX∨,• D(X)• LieX• 0

Π Π Π

that ωX∨,• ∩ΠD(X)• = ΠωX∨,◦, so the proof of the claim is complete. □

6.4. Regularization ofM and intersection theory.

Notation 6.4.1. Let Ñ (0) be the blowup of N (0) along M{1}, and let M̃ be the strict transform of the
reduced locusM; then M̃ is smooth. We denote by C(Λ1) the exceptional divisor of M̃ aboveM(Λ1) for
each Λ1 ∈ L{1}. For any Λ0 ∈ L{0} and Λ2 ∈ L{2}, let M̃(Λ0) and M̃(Λ2) be the strict transforms of
M(Λ0) andM(Λ2), respectively.

Lemma 6.4.2. For any Λ1 ∈ L{1}, there exists an isomorphism C(Λ1) ∼= P1
Fq
× P1

Fq
such that:

(1) For any Λ0 ∈ L{0} with Λ1 ⊂1 Λ0, M̃(Λ0) meets C(Λ1) transversely along a divisor with class
(1, 0).

(2) For any Λ2 ∈ L{2} with Λ2 ⊂1 Λ1, M̃(Λ2) meets C(Λ1) transversely along a divisor with class
(0, 1).

Proof. By Theorem 6.2.4(6), we may fix one isomorphism C(Λ1) ∼= P1
Fq
× P1

Fq
. Let L{0}(Λ1) be the set of

Λ0 ∈ L{0} with Λ1 ⊂1 Λ0, and likewise L{2}(Λ1). The actions of Stab(Λ1) ⊂ Sp(W )(Qq) on L{0}(Λ1)
and L{2}(Λ1) are transitive, and compatible with the natural Sp(W )(Qq)-action on N (0) (see (6.5.1)). For
distinct Λ0,Λ

′
0 ∈ L{0}(Λ1), it follows that the divisor classes

DΛ0
:= M̃(Λ0) ∩ C(Λ1)

and
DΛ′

0
:= M̃(Λ′

0) ∩ C(Λ1)

differ by an automorphism of C(Λ1). In particular, if DΛ0 = (α, β), then DΛ′
0
= (α, β) or (β, α). On the

other hand, sinceM(Λ0) meetsM(Λ′
0) transversely atM(Λ1), we have

DΛ0 ·DΛ0 = 0

for the intersection product on C(Λ1). Since (α, β) · (β, α) = α2+β2, which can only vanish if α = β = 0,
it follows that DΛ0 = DΛ′

0
= (α, β) with αβ = 0; without loss of generality, assume β = 0. By the same

reasoning, for any Λ2 ∈ L{2}(Λ1),
DΛ2

:= M̃(Λ2) ∩ C(Λ1)

has divisor class (γ, δ) with γδ = 0. However,M(Λ0) meetsM(Λ2) transversely alongM(Λ0,Λ2), so we
have

DΛ0 ·DΛ2 = 1.

This implies αδ = 1, so we have DΛ0 = (1, 0) and DΛ2 = (0, 1), as desired. □
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Notation 6.4.3. LetΛ ∈ L{0}⊔L{2}. We denote byO(1) the line bundle on M̃(Λ) arising from the pullback
of O(1) along the composite

M̃(Λ)→M(Λ) ↪→ P3
Fq
.

Lemma 6.4.4. For any Λ ∈ L{0} ⊔ L{2}, the normal bundle to M̃(Λ) inside Ñ (0) is O(−2q).

Proof. Let
{
Λ
(0)
1 , . . . ,Λ

(n)
1

}
be the set of lattices Λ1 in L{1} such that M(Λ1) lies on M(Λ). Then the

projection M̃(Λ)→M(Λ) is the blowup along the pointsM(Λ
(i)
1 ), with exceptional divisors

Ei := C(Λ
(i)
1 ) ∩ M̃(Λ).

SinceM(Λ) is a smooth surface, we have Ei · Ej = −δij for the intersection pairing on M̃(Λ).
Now, the normal bundle to M̃(Λ) inside Ñ (0) is locally free of rank one, and Lemma 6.3.6 implies it is

isomorphic to
O(−2q + α0E0 + . . .+ αnEn)

for some αi ∈ Z. On the other hand, as Ñ (0) is formally smooth, we can compute the triple intersection
number

mi = M̃(Λ) · M̃(Λ) · C(Λ(i)
1 )

in two ways, for each 0 ≤ i ≤ n:

mi =
(
M̃(Λ) · C(Λ(i)

1 )
)
·
C(Λ

(i)
1 )

(
M̃(Λ) · C(Λ(i)

1 )
)
= 0 (Lemma 6.4.2)

=
(
M̃(Λ) · M̃(Λ)

)
·M̃(Λ)

(
M̃(Λ) · C(Λ(i)

1 )
)
= −αi.

So we find αi = 0 for all i, as desired. □

6.5. The GSpin action on N .

6.5.1. The endomorphism algebraEnd(W ) is equipped with an involution † given by the adjoint with respect
to ⟨·, ·⟩•, and

V := End(W )†=1,tr=0 = End(X, ιX)∗=1,tr=0

is a split orthogonal space of dimension 5, where ∗ denotes the Rosati involution. There is a natural projection

(6.11) π : GSp(W )→ SO(V )

inducing an isomorphismGSpin(V )(Qq) ∼= GSp(W )(Qq). There is also a canonical action ofGSpin(V )(Qq)
onN (by modifying ρ); when restricted to Spin(V )(Qq), the resulting action of Sp(W )(Qq) onM is com-
patible with the natural actions on L{0}, L{2}, L{02}, and L{1}.

Definition 6.5.2. Define the sets of lattices

L =
{
Λ ⊂W : Λ = qnΛ∨ for some n ∈ Z

}
LPa =

{
ΛPa ⊂W : qn+1Λ∨

Pa ⊂2 ΛPa ⊂2 p
nΛ∨

Pa for some n ∈ Z
}
.

Remark 6.5.3. Both L and LPa are homogeneous spaces for GSp(W )(Qq); the stabilizer of a point in L
is a hyperspecial subgroup, and the stabilizer of a point in LPa is a paramodular subgroup.

Using L and LPa rather than L{0}, L{2}, and L{1}, we can extend the combinatorial description ofM
to all of Nred.
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Definition 6.5.4. For any Λ ∈ L , choose an arbitrary g ∈ GSp(W )(Qq) such that gΛ ∈ L{0} ⊂ L , and
define

M+(Λ) := g−1M{0}(gΛ).

Similarly, choose g′ ∈ GSp(W )(Qq) such that g′Λ ∈ L{2} ⊂ L , and define

M−(Λ) := (g′)−1M{2}(g
′Λ).

For any ΛPa ∈ LPa, choose g ∈ GSp(W )(Qq) such that gΛPa ∈ L{1} ⊂ LPa, and defineM(ΛPa) =

g−1M{1}(gΛPa).

Proposition 6.5.5. (1) Definition 6.5.4 yields bijections

L × {±} ∼−→ {irreducible components of Nred}
and

LPa
∼−→ {singular points of Nred} .

(2) Choose any Λ ∈ L . For the Weil descent datum in (6.1.4), we have
φ (M+(Λ)) = σ∗M−(qΛ)

and
φ (M−(Λ)) = σ∗M+(Λ).

Proof. For (1), it suffices to show there are two GSpin(V )(Qq)-orbits of irreducible components of Nred,
and only one orbit of singular points. However, since

g · N (i) = N (i+ ordqν(g))

for g ∈ GSpin(V )(Qq), it suffices to show that there are two Spin(V )(Qq)-orbits of irreducible compo-
nents ofM, and one Spin(V )(Qq)-orbit of singular points onM. This follows from the transitivity of the
Sp(W )(Qq)-actions on L{0}, L{2}, and L{1}.

For (2), note that φ2(M+(Λ)) = (σ2)∗M+(qΛ), so it suffices to show the first relation. Without loss of
generality, assume Λ ∈ L{0}. By definition, φ(M+(Λ))(Fq), viewed as a subset of N (Fq), is the Zariski
closure of the set of points corresponding to lattices M ⊂ N such that

(V −1(M + τM))• = Λ̆

and
Π−1M◦ = qM∨

• .

Since V Λ̆ = ΠΛ̆, the first condition is equivalent to Π−1M◦ +Π−1τM◦ = Λ̆, or dually

M• ∩ τM• = qΛ̆.

Now choose any g ∈ GSpin(V )(Qq) with ν(g) = q−1; we have qgΛ ∈ L{2}. The locus

gφ(M+(Λ))(Fq) ⊂M(Fq)

is the Zariski closure of the set of points corresponding to lattices with M• ∩ τM• = qgΛ̆ and Π−1M◦ =
M∨

• . But this is exactly the stratum M{2}(qgΛ)(Fq) = M−(qgΛ)(Fq), so we conclude φ(M+(Λ)) =

σ∗g−1M−(qgΛ) = σ∗M−(qΛ), as desired. □

From Theorem 6.2.4, we immediately deduce the following relations among the componentsM±(Λ) and
the pointsM(ΛPa).

Corollary 6.5.6. For any ΛPa ∈ LPa and Λ,Λ′ ∈ L , we have:
(1) M(ΛPa) lies onM+(Λ) if and only if ΛPa ⊂1 Λ.
(2) M(ΛPa) lies onM−(Λ) if and only if Λ ⊂1 ΛPa.
(3) M+(Λ) meetsM−(Λ

′) if and only if qΛ ⊂2 Λ
′ ⊂2 Λ.
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(4) If Λ ̸= Λ′, then for δ = + or −,Mδ(Λ) andMδ(Λ
′) can meet only in singular points of Nred.

7. The first explicit reciprocity law: geometric inputs

7.1. Abel-Jacobi maps for schemes with ordinary quadratic singularities.

7.1.1. Let R0 be a Henselian discrete valuation ring with uniformizer π, algebraically closed residue field
k, and fraction field K0. The inertia subgroup IK0 of Gal(K0/K0) has the canonical tame character tp :

IK0 → Zp(1) for any p ̸= char(k). Let R be the quadratic extension R0[π
1/2], and K its field of fractions,

with inertia subgroup IK ⊂ IK0 .We write s0, s, η0, η for the closed points and the generic points of SpecR0

and SpecR, with corresponding geometric points η0 = η. LetX be an irreducible scheme of finite type and
pure relative dimension 2r − 1 over SpecR0, for some integer r ≥ 1. We assume X has ordinary quadratic
singularities: this means that X is smooth outside a finite set of closed points {xi}i∈I in Xs0 , and, étale
locally near each xi, X is isomorphic to SpecR0[y0, . . . , y2r−1]/(Q− π), with Q the equation of a smooth
quadric in P2r−1

R0
.

7.1.2. The blowup Y ofXR at the points {xi}i∈I is strictly semistable in the sense of [97], with a particularly
simple form [47]. The irreducible components of the special fiber Ys of Y are X̃s, the strict transform of
Xs, and the exceptional divisors Di. Each Di is isomorphic to the smooth projective quadric in P2r

k =

Proj(k[y0, . . . , y2r−1, t]) cut out by Q − t2, and the intersection Ci = Di ∩ X̃s is the hyperplane section
t = 0, so that Ci is a smooth quadric in P2r−1

k . Since Y is semistable, we have

(7.1) N
Ci/X̃s

= −NCi/Di = O(−1)

in the Picard group of Ci.

7.1.3. Let O be a finite flat extension of Zp with p odd and p ̸= char(k), and let ϖ ∈ O be a uniformizer.
We fix a coefficient ring Λ = O or O/ϖm for some m ≥ 1. We recall the definition of the nearby cycles
complex: let j : Yη → Y and i : Ys → Y denote the inclusions of the geometric generic and special fibers,
respectively. ThenRΨΛ = i

∗ ◦j∗ ◦j
∗
Λ, an element of the bounded derived category of sheaves on Ys; it has

a canonical action of IK ⊂ IK0 factoring through the tame character tp, and the (increasing) monodromy
filtration M•RΨΛ. Fix T ∈ IK such that tp(T ) generates Zp(1); then the monodromy operator T − 1 on
RΨΛ induces compatible maps

T − 1 :MiRΨΛ→Mi−2RΨΛ

for all i ∈ Z.

Proposition 7.1.4 (Saito). Let
i0 : X̃s ⊔

⊔
i∈I

Di → Ys

and
i1 :

⊔
i∈I

Ci → Ys

be the natural maps. Then the graded pieces of M•RΨΛ are given by:

grMi RΨΛ = 0, |i| > 1,

grM1 RΨΛ = i1∗Λ(−1)[−1],
grM0 RΨΛ = i0∗Λ,

grM−1RΨΛ = i1∗Λ[−1].

Proof. This is [97, Proposition 2.2.3]. □
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Lemma 7.1.5. The following composite map is an isomorphism:

H2r(Ys,M0RΨΛ)→ H2r(Ys, gr
M
0 RΨΛ) = H2r(X̃s,Λ)⊕

⊕
i∈I

H2r(Di,Λ) ↠ H2r(X̃s,Λ).

Proof. First, consider the tautological distinguished triangle

(7.2) M−1RΨΛ→M0RΨΛ→ grM0 RΨΛ→M−1RΨΛ[+1].

This yields an exact sequence

H2r(Yk,M−1RΨΛ)→ H2r(Yk,M0RΨΛ)→ H2r(Yk, gr
M
0 RΨΛ)→ H2r+1(Yk,M−1RΨΛ).

Applying Proposition 7.1.4 and using H2r−1(Ci,Λ) = 0 for all i ∈ I , we obtain

0→ H2r(Yk,M0RΨΛ)→ H2r(X̃k,Λ)⊕
⊕
i∈I

H2r(Di,Λ)→ H2r(Ci,Λ).

However,H2r(Di,Λ)→ H2r(Ci,Λ) is an isomorphism for each i ∈ I by the Lefschetz hyperplane theorem,
and the lemma follows. □

7.1.6. LetRΨXΛ be the nearby cycles complex forX , defined as in (7.1.3); it also coincides with the nearby
cycles complex for XR. From now on, we will assume:

(BCX ) the base change map H i(Xη0 ,Λ)→ H i(Xs0 , RΨXΛ) is an isomorphism for all i.

Since the blowup map f : Y → XR is proper and is an isomorphism on generic fibers, we have a canonical
isomorphism

f∗RΨΛ = RΨXΛ

by [28, §2.1.7]. In particular, (BCX ) implies:

the base change map H i(Xη,Λ) = H i(Yη,Λ)→ H i(Ys, RΨΛ) is an isomorphism for all i.(BCY )

Lemma 7.1.7. Let j :
⊔
i∈I Ci ↪→ X̃s be the natural embedding. Then the monodromy operator T − 1 on

H2r−1(Ys, RΨΛ) fits into a commutative diagram with exact rows:

H2r−1(Xη,Λ) ⊕i∈IH2r−2(Ci,Λ(−1)) H2r(X̃s,Λ) H2r(Xη,Λ)

H2r−1(Xη,Λ) ⊕i∈IH2r−2(Ci,Λ) H2r−2(X̃s,Λ) H2r−2(Xη,Λ).

α

T−1

j∗

t

γ

β j∗

Here, t is the isomorphism −⊗ tp(T ).

Proof. From the vanishing of grMi RΨΛ for |i| > 1 (Proposition 7.1.4), we have a canonical factorization

(7.3) T − 1 : RΨΛ→ grM1 RΨΛ→M−1RΨΛ→ RΨΛ;

taking cohomology and applying Proposition 7.1.4, (7.3) induces a commutative diagram:

H2r−1(Ys, RΨΛ) ⊕i∈IH2r−2(Ci,Λ(−1))

H2r−1(Ys, RΨΛ) ⊕i∈IH2r−2(Ci,Λ).

α

T−1 t

β

The description of t is [97, Corollary 2.2.4.2].
We now explain the exactness of the top row

(7.4) H2r−1(Xη,Λ)
α−→ ⊕i∈IH2r−2(Ci,Λ(−1))

j∗−→ H2r(X̃s,Λ)→ H2r(Xη,Λ)
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of the diagram in the lemma. From the tautological distinguished triangle

(7.5) M0RΨΛ→ RΨΛ→ grM1 RΨΛ→M0RΨΛ[+1],

we deduce the exact sequence

(7.6) H2r−1(Ys, RΨΛ)
α−→ ⊕i∈IH2r−2(Ci,Λ(−1))

δ−→ H2r(Ys,M0RΨΛ)→ H2r(Ys, RΨΛ).

Combined with Lemma 7.1.5 and (BCY ), it suffices to show that the composite

(7.7) ⊕i∈IH2r−2(Ci,Λ(−1))
δ−→ H2r(Ys,M0RΨΛ)

∼−→ H2r(X̃s,Λ)

is the pushforward map, and this follows from [97, Proposition 2.2.6]. The argument for the exactness of the
bottom row

H2r−2(Xη,Λ)→ H2r−2(X̃s,Λ)
j∗−→
⊕
i∈I

H2r−2(Ci,Λ)
β−→ H2r−1(Xη,Λ)

is essentially identical. □

7.1.8. By (BCY ), the monodromy filtration M• of RΨΛ induces filtrations M• on

H2r−1(Xη,Λ)

and on

H1(IK0 , H
2r−1(Xη,Λ)) = H1(IK , H

2r−1(Xη,Λ))

(using p ̸= 2).

Proposition 7.1.9. The diagram in Lemma 7.1.7 induces an exact sequence

0→M−1H
1(IK0 , H

2r−1(Xη,Λ))
ζ−→ H2r(X̃s,Λ)

Im(j∗ ◦ t−1 ◦ j∗)
γ−→ H2r(Xη,Λ)

Im(γ ◦ j∗ ◦ t−1 ◦ j∗)
,

such that ζ(c) = j∗ ◦ t−1(y) for any y ∈ ⊕i∈IH2r−2(Ci,Λ) such that c(T ) = β(y).

Proof. By definition, M−1H
2r−1(Xη,Λ) is the image of

β :
⊕
i∈I

H2r−2(Ci,Λ)→ H2r−1(Ys, RΨΛ) ∼= H2r−1(Xη,Λ).

Then, by the left half of the commutative diagram in Lemma 7.1.7, the map c 7→ c(T ) identifies

M−1H
1(IK0 , H

2r−1(Xη,Λ)) ≃
Imβ

Im(β ◦ t ◦ α)
.

Using the exactness of the rows in Lemma 7.1.7, we also have the exact sequence

0→ Imβ

Im(β ◦ t ◦ α)
j∗◦t−1

−−−−→ H2r(X̃s,Λ)

Im(j∗ ◦ t−1 ◦ j∗)
γ−→ H2r(Xη,Λ)

Im(γ ◦ j∗ ◦ t−1 ◦ j∗)
,

and the proposition follows. □
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7.1.10. Let CHr(Xη0)
0 denote the Chow group of cohomologically trivial algebraic cycles of pure codi-

mension r. We have the Abel-Jacobi map

∂AJ : CHr(Xη0)
0 → H1(IK0 , H

2r−1(Xη,Λ(r))),

which we are now ready to compute in terms of the geometry of the special fiber of X .
If Zη0 is a closed irreducible subvariety ofXη0 , then write Z for its Zariski closure inX , ZY for the strict

transform of ZR under the blowup Y → XR, and ZYs for ZY ×Y Ys. The intersection ZYs ×Y X̃s is Z̃s, the
strict transform of Zs0 under the blowup X̃s → Xs0 . Extending this construction linearly, for any algebraic
cycle zη = ΣnjZ

(j)
η of pure codimension r, we obtain a codimension-r algebraic cycle

z̃s = ΣnjZ̃
(j)
s

on X̃s.

Theorem 7.1.11. Let zη0 be an algebraic cycle of codimension r on Xη0 , whose class in CHr(Xη0) is
cohomologically trivial, and assume (BCX ). Then ∂AJ(z) lies in M−1H

1(IK0 , H
2r−1(Xη,Λ(r))). If, for

each irreducible component Zη of the support of zη, ZYs is generically smooth, then

ζ (∂AJ(z)) ∈
H2r(X̃s,Λ(r))

j∗ ◦ t−1 ◦ j∗
(
H2r−2(X̃s,Λ(r − 1))

)
coincides with the algebraic cycle class of z̃s, where ζ is the map from Proposition 7.1.9.

Proof. In the proof of [67, Theorem 2.18] there is constructed:
• An element F of the bounded derived category of abelian sheaves on Ys fitting into a commutative

diagram:

(7.8)
F RΨΛ

RΨΛ/M0RΨΛ RΨΛ/M−2RΨΛ.

T−1

T−1

• A class [z♯]′0 ∈ H2r−1(Ys, F (r)) such that ∂AJ(z)|IK is represented by the cocycle that factors
through tp : IK ↠ Zp(1) and satisfies

∂AJ(z)(T ) = (T − 1)[z♯]′0 ∈ H2r−1(Ys, RΨΛ(r)) = H2r−1(Xη,Λ(r)).

In our context, since grMi RΨΛ = 0 for |i| > 1, the diagram (7.8) becomes

F RΨΛ

RΨΛ/M0RΨΛ M−1RΨΛ.

T−1

T−1

In particular, (T − 1)H2r−1(Ys, F (r)) lies inside M−1H
2r−1(Xη,Λ(r)), and by construction ζ (∂AJ(z)) is

represented by the image of [z♯]′0 under the composite map

H2r−1(Ys, F (r))→ H2r−1(Ys, gr
M
1 RΨΛ(r))→ H2r(Ys, gr

M
0 RΨΛ(r))

= H2r(X̃s,Λ(r))⊕
⊕
i∈I

H2r(Di,Λ(r) ↠ H2r(X̃s,Λ(r)).
(7.9)

By [67, Proposition 2.19], under the generic smoothness assumption of the theorem, this image is exactly
the cycle class of z̃s. □
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7.1.12. We conclude this section with a related lemma.

Lemma 7.1.13. In addition to (BCX ), assume
(BCX,c) the base change map H i

c(Xη0 ,Λ)→ H i
c(Xs0 , RΨXΛ) is an isomorphism for all i.

SupposeH is a commutativeO-algebra (not necessarily finitely generated) of correspondences onX , such
that the singular locus of X is stable under H. Let m ⊂ H be a maximal ideal such that the natural map
induces an isomorphism

H i
ét,c(Xη,Λ)m → H i

ét(Xη,Λ)m

for all i. Then for all i, the natural map

H i
ét,c(X̃s,Λ)m → H i

ét(X̃s,Λ)m

is an isomorphism as well.

Proof. The tautological distinguished triangle (7.5) gives a commutative diagram of long exact sequences

· · · H i
c(Ys,M0RΨΛ)m H i

c(Ys, RΨΛ)m H i
c(Ys, gr

M
1 RΨΛ)m · · ·

· · · H i(Ys,M0RΨΛ)m H i(Ys, RΨΛ)m H i(Ys, gr
M
1 RΨΛ)m · · ·

∼ ∼

The first marked isomorphism is by (BCX ) and (BCX,c), and the second is by Proposition 7.1.4 and the
compactness of each Ci. By the five lemma, we have an isomorphism

H i
c(Ys,M0RΨΛ)m

∼−→ H i(Ys,M0RΨΛ)m

for all i. Arguing similarly with the distinguished triangle (7.2), we find a natural isomorphism

H i
c(Ys, gr

M
0 RΨΛ)m

∼−→ H i(Ys, gr
M
0 RΨΛ)m

for all i, which implies the lemma by Proposition 7.1.4 once again. □

7.2. Semistable reduction of GSpin5 Shimura varieties.

7.2.1. Let D ̸= 1 be a squarefree product of an even number of primes, and fix an odd prime q|D. With
VD as in (1.1.6), we suppose fixed a q-adic uniformization datum (∗, A0, ι0, λ0, iD, iD/q) for VD (Definition
1.4.4(2)); we will choose this uniformization datum more precisely in Construction 7.6.4 below.

Let D and D be the associated PEL data and self-dual q-integral refinement from Definition 1.4.2.

7.2.2. For the entirety of this section, we fix a neat level subgroup

Kq =
∏
ℓ̸=q

Kℓ ⊂ GSpin(VD)(Aqf ) ∼=
∏
ℓ̸=q

GSpin(VD/q)(A
q
f ),

with the isomorphism arising from Remark 1.4.5(2); then we obtain a flat, quasi-projective scheme X =
MKq over Z(q) representing the PEL-type moduli problem defined by D at level Kq. The generic fiber XQ
of X is isomorphic to ShKqKram

q
(VD), where Kram

q ⊂ GSpin(VD)(Qq) is a paramodular subgroup in the
sense of Notation 2.6.1.

Lemma 7.2.3. Let RΨXO denote the nearby cycles complex on XFq . Then the natural maps

H i
c,ét(XQ, O)→ H i

c,ét(XFq , RΨXO)

and
H i

ét(XQ, O)→ H i
ét(XFq , RΨXO)
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are isomorphisms for all i.

Proof. This is a special case of [57, Theorem 6.8]. □

Let OD ⊂ BD be the unique maximal Z(q)-order. We now take the q-divisible group X := A0[q
∞],

with its induced polarization and (OD ⊗ Zq)-action, to be the base point for the Rapoport-Zink space N
(Definition 6.1.2).

Theorem 7.2.4.
(1) Let X be the completion of X along the supersingular locus Xss

Fq
. Then we have a canonical iso-

morphism
X ∼= GSpin(VD/q)(Q)\GSpin(VD/q)(A

q
f )×N/K

q,

where GSpin(VD/q)(Q) ↪→ GSpin(VD/q)(Qq) acts on N as described in §6.5.
(2) The singular locus of XFq is the discrete set of points

Xsing

Fq
= GSpin(VD/q)(Q)\GSpin(VD/q)(A

q
f )×N

sing
red /K

q.

The complete local ring of X at any point of Xsing

Fq
is isomorphic to

Z̆qJx, y, z, wK/(xy − zw − q).

Proof. Part (1) is the Rapoport-Zink uniformization theorem for X; part (2) follows from (1) and Theorem
6.2.4(6), after noting that all singularities of XFq lie in the supersingular locus by [85, Theorem 7.5]. □

7.2.5. In particular, Theorem 7.2.4(2) asserts that X has ordinary quadratic singularities, so that the results
of §7.1 apply. Following the notation therein, let X̃Fq be the blowup of XFq along the singular locus; note
that X̃Fq inherits an action of the full prime-to-q Hecke algebra.

7.3. Tate classes. The goal of this subsection is to show that the full cohomology group H2
ét(X̃Fq , O) is

generated by Tate classes from the supersingular locus, after a Hecke localization.

Notation 7.3.1. Recall the sets L and LPa from Definition 6.5.2.
(1) For

g = (gq,Λ) ∈ GSpin(VD/q)(Q)\GSpin(VD/q)(A
q
f )×L /Kq,

let B±(g) be the image of (gq,M±(Λ)) under the uniformization in Theorem 7.2.4, and let B̃±(g)

be its strict transform under the blowup X̃Fq → XFq .
(2) For

g = (gq,ΛPa) ∈ GSpin(VD/q)(Q)\GSpin(VD/q)(A
q
f )×LPa/K

q,

let y(g) ∈ Xsing

Fq
be the image of (gq,M(ΛPa)), and let C(g) be the exceptional divisor of X̃Fq over

the point y(g).
(3) Recall that L and LPa are homogeneous spaces for GSpin(VD/q)(Qq) ∼= GSp4(Qq), with the

stabilizer of any point a hyperspecial or paramodular subgroup, respectively. We will therefore ab-
breviate the two sets in (1) and (2) by ShKqKq(VD/q) and ShKqKPa

q
(VD/q), respectively, even though

the identifications actually depend on a non-canonical choice of base point which we do not need to
make.

Remark 7.3.2. Notation 7.3.1 identifies ShKqKq(VD/q) × {±} and ShKqKPa
q
(VD/q) with the set of irre-

ducible components of Xss
Fq

and the set of points of Xsing

Fq
, respectively.
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To study the intersections of the divisors B̃±(g) and C(g), we need to define some additional Hecke
operators.

Definition 7.3.3. Let
δ± : O[ShKqKPa

q
(VD/q)]→ O[ShKqKq(VD/q)]

be the maps defined by
δ+ : (gq,ΛPa) 7→

∑
ΛPa⊂1Λ
Λ∈L

(gq,Λ),

δ− : (gq,ΛPa) 7→
∑

Λ⊂1ΛPa
Λ∈L

(gq,Λ).

Similarly, let
θ± : O[ShKqKq(VD/q)]→ O[ShKqKPa

q
(VD/q)]

be the maps defined by

θ+ : (gq,Λ) 7→
∑

ΛPa⊂1Λ
ΛPa∈LPa

(gq,ΛPa), θ− : (gq,Λ) 7→
∑

Λ⊂1ΛPa
ΛPa∈LPa

(gq,ΛPa).

These are incarnations of the level-lowering and level-raising operators in [95, §3].

Definition 7.3.4. We define the natural composite maps

(7.10) inc∗ : H4
ét(X̃Fq , O(2)) −→⊕

g∈Sh
KqKPa

q
(VD/q)

H4
ét(C(g), O(2)) ⊕

⊕
g∈ShKqKq (VD/q)

(
H4

ét(B̃+(g), O(2))⊕H4
ét(B̃−(g), O(2))

)
∼−→ O

[
ShKqKPa

q
(VD/q)

]
⊕O

[
ShKqKq(VD/q)

]⊕2

and

(7.11) incc,∗ : O
[
ShKqKPa

q
(VD/q)

]
⊕O

[
ShKqKq(VD/q)

]⊕2 ∼−→⊕
g∈Sh

KqKPa
q

(VD/q)

H0
ét(C(g), O)⊕

⊕
g∈ShKqKq (VD/q)

(
H0

ét(B̃+(g), O)⊕H0
ét(B̃−(g), O)

)
−→ H2

c,ét(X̃Fq , O(1)).

We also denote by inc∗c the composite

inc∗c : H
4
c,ét(X̃Fq , O(2))→ H4

ét(X̃Fq , O(2))
inc∗−−→ O

[
ShKqKPa

q
(VD/q)

]
⊕O

[
ShKqKq(VD/q)

]⊕2

and likewise by inc∗ the composite

inc∗ : O
[
ShKqKPa

q
(VD/q)

]
⊕O

[
ShKqKq(VD/q)

]⊕2 incc,∗−−−→ H2
c,ét(X̃Fq , O(1)) −→ H2

ét(X̃Fq , O(1)).

Notation 7.3.5. For α ∈ O
[
ShKqKq(VD/q)

]
and g ∈ ShKqKq(VD/q), let m(g;α) ∈ O denote the coeffi-

cient of g in α, and similarly for ShKqKPa
q
(VD/q).

Lemma 7.3.6. Fix g ∈ ShKqKPa
q
(VD/q).
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(1) There exists an isomorphismC(g) ∼= P1
Fq
×P1

Fq
with the following property: for h ∈ ShKqKq(VD/q),

the intersection B̃+(h) · C(g) has the cycle class (m(h; δ+(g)), 0) on C(g); and the intersection
B̃−(h) · C(g) has the cycle class (0,m(h; δ−(g))).

(2) Let ιg : C(g) ↪→ X̃Fq be the natural inclusion. If we fix an isomorphism C(g) ∼= P1
Fq
× P1

Fq
as in

(1), then we have
inc∗(ιg)∗[(1, 0)] = (−g, 0, δ−(g))

and
inc∗(ιg)∗[(0, 1)] = (−g, δ+(g), 0).

Proof. (1) is immediate from Lemma 6.4.2 and Corollary 6.5.6; (2) follows from (1), using that the Chern
class of the normal bundle on C(g) is (−1,−1) (by (7.1)) to compute the first coordinate. □

Notation 7.3.7. For any g ∈ ShKqKq(VD/q), let

[O
B̃±(g)

(1)] ∈ H4
ét,c(X̃Fq , O(2))

denote the pushforward of the class of the line bundleO(1) on B̃±(g) (which is the one induced by Notation
6.4.3).

Recall the explicit Hecke algebra generators from (2.1.10).

Lemma 7.3.8. For all g ∈ ShKqKq(VD/q), we have

inc∗c [OB̃+(g)
(1)] = (0,−2q(q + 1) · g, Tq,2 · g)

and
inc∗c [OB̃−(g)

(1)] = (0, ⟨q⟩−1Tq,2 · g,−2q(q + 1) · g).

Proof. The two calculations are similar, so we consider
[
O
B̃+(g)

(1)
]
. We must calculate the intersection

pairings with divisor classes [C(h)] and
[
B̃±(g

′)
]
, for h ∈ ShKqKPa

q
(VD/q) and g′ ∈ ShKqKq(VD/q).

Since C(h) · B̃+(g) always lies in the exceptional divisor of the blowup B̃+(g)→ B+(g), we have

(7.12)
[
O
B̃+(g)

(1)
]
· [C(h)] = [O(1)] ·

B̃+(g)

[
C(h) · B̃+(g)

]
= 0.

Now, B̃+(g) and B̃+(g
′) meet only if g = g′, in which case we find

(7.13)
[
O
B̃+(g)

(1)
]
·
[
B̃+(g)

]
= [O(1)] ·

B̃+(g)

[
N
B̃+(g)/X̃Fq

]
= −2q(q + 1),

since the normal bundle to B̃+(g) isO(−2q) (Lemma 6.4.4) andB+(g) has degree q+1 (Theorem 6.2.4(1)).
Finally, we compute

(7.14)
[
O
B̃+(g)

(1)
]
·
[
B̃−(g

′)
]
= [O(1)] ·

B̃+(g)

[
B̃+(g) · B̃−(g

′)
]
= m(g′;Tq,2 · g),

since B+(g) ∩ B−(g
′) consists of m(g′;Tq,2 · g) linearly embedded copies of P1

Fq
inside B+(g) ⊂ P3

Fq
(by

Theorem 6.2.4(2) and Corollary 6.5.6). Combining these calculations gives

inc∗c

[
O
B̃+(g)

(1)
]
= (0,−2q(q + 1) · g, Tq,2 · g),

as desired. □
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Definition 7.3.9. Fix a finite set S of places of Q containing q, and all primes ℓ ̸= q such that Kℓ is not
hyperspecial. A maximal ideal m ⊂ TSO will be called weakly q-generic if the map

⟨q⟩−1T 2
q,2 − 4q2(q + 1)2 : O

[
ShKqKq(VD/q)

]
m
→ O

[
ShKqKq(VD/q)

]
m

is an isomorphism.

Remark 7.3.10. Using (2.3), one calculates the following: if π is a relevant automorphic representation of
GSp4(A) unramified at q with trivial central character and ι : Qp

∼−→ C is any isomorphism with p ̸= q, then
⟨q⟩−1T 2

q,2 − 4q2(q + 1)2 acts on the spherical vector of πq with eigenvalue

q2
(
ι tr(Frobq |Vπ,ι)2 − 4(q + 1)2

)
.

Lemma 7.3.11. Let m be a weakly q-generic maximal ideal of TSO. Then the map

inc∗c,m : H4
c,ét(X̃Fq , O(2))m → O

[
ShKqKPa

q
(VD/q)

]
m
⊕O

[
ShKqKq(VD/q)

]⊕2

m

is surjective.

We note that Lemma 7.3.11 is slightly stronger than the corresponding statement for inc∗m.

Proof. By Lemma 7.3.6, it suffices to show that the image of inc∗c,m contains O
[
ShKqKq(VD/q)

]⊕2

m
. Define

a map

(7.15) µ = (µ+, µ−) : O
[
ShKqKq(VD/q)

]⊕2

m
→ H4

ét,c(X̃Fq , O(2))m

by linearly extending

(7.16) µ±(g) =
[
O
B̃±(g)

(1)
]
.

Then by Lemma 7.3.8, the composite inc∗c,m ◦µ is given by the matrix map 0 0
−2q(q + 1) ⟨q⟩−1Tq,2

Tq,2 −2q(q + 1).


Since

det

(
−2q(q + 1) ⟨q⟩−1Tq,2

Tq,2 −2q(q + 1)

)
= 4q2(q + 1)2 − ⟨q⟩−1T 2

q,2

and m is weakly q-generic, we have

Im(inc∗c,m) ⊃ Im(inc∗c,m ◦µ) = O
[
ShKqKq(VD/q)

]⊕2

m
,

as desired. □

In Theorem 7.3.14, we will see that inc∗c,m also has torsion kernel.

Lemma 7.3.12. Let m be a generic and non-Eisenstein maximal ideal of TSO. There is a canonical injection
induced by pullback

H2(X̃Fq , O(1))m ↪→
⊕

g∈Sh
KqKPa

q
(VD/q)

H2
ét(C(g), O(1)) ≃ O

[
ShKqKPa

q
(VD/q)

]⊕2

m

and a canonical surjection induced by pushforward

O
[
ShKqKPa

q
(VD/q)

]⊕2

m
≃

⊕
g∈Sh

KqKPa
q

(VD/q)

H2
ét(C(g), O(1))m ↠ H4

ét(X̃Fq , O(2))m.



BLOCH-KATO FOR SOME FOUR-DIMENSIONAL SYMPLECTIC GALOIS REPRESENTATIONS 81

Proof. This follows from Lemma 7.1.7 and Theorem 2.7.5(2). □

Corollary 7.3.13 (Ihara’s Lemma). Let m be a generic, non-Eisenstein, and weakly q-generic maximal ideal
of TSO. Then the degeneracy map

(δ+, δ−) : O
[
ShKqKPa

q
(VD/q)

]
m
−→ O

[
ShKqKq(VD/q)

]⊕2

m

is surjective.

Proof. Combining Lemmas 7.3.12 and 7.3.11, we see that the composite map

O
[
ShKqKPa

q
(VD/q)

]⊕2

m
≃ ⊕H2

ét(C(g), O(1))m −→ H4
ét,c(X̃Fq , O(2))m

inc∗c,m−−−→

O
[
ShKqKPa

q
(VD/q)

]
m
⊕O

[
ShKqKq(VD/q)

]⊕2

m

is surjective. On the other hand, by Lemma 7.3.6, this composite is given as a matrix by(
−1 0 δ−
−1 δ+ 0

)
,

and the corollary follows by restricting to the preimage of O
[
ShKqKq(VD/q)

]⊕2

m
. □

Theorem 7.3.14. Let m be a generic, non-Eisenstein, and weakly q-generic maximal ideal of TSO. Then

inc∗m : H4
ét(X̃Fq , O(2))m → O

[
ShKqKPa

q
(VD/q)

]
m
⊕O

[
ShKqKq(VD/q)

]⊕2

m

and
inc∗,m : O

[
ShKqKPa

q
(VD/q)

]
m
⊕O

[
ShKqKq(VD/q)

]⊕2

m
→ H2

ét(X̃Fq , O(1))m

are both surjective. Moreover inc∗,m is injective, and inc∗m is injective modulo O-torsion.

In fact, only the surjectivity of inc∗,m is needed for the main result.

Proof. We claim that it suffices to show

(7.17) dimH4
ét(X̃Fq ,Qp)m ≤ dim

(
Qp

[
ShKqKPa

q
(VD/q)

]
m

)
+ 2dim

(
Qp

[
ShKqKq(VD/q)

]
m

)
;

indeed, this combined with Lemma 7.3.11 implies that inc∗m is injective modulo torsion as well as surjective,
and the other assertions follow by duality along with Lemma 7.1.13 and Theorem 2.7.5(2). (We also use
that H2(X̃Fq , O)m is O-torsion-free by Lemma 7.3.12.) Inspecting the diagram in Lemma 7.1.7 and using
Theorem 2.7.5(2), we see that

dimH4(X̃Fq ,Qp)m = 2dim
(
Qp

[
ShKqKPa

q
(VD/q)

]
m

)
− rank

(
T − 1|H3

ét

(
XQ,Qp

)
m

)
,

where T ∈ IQq is a generator of tame inertia, so we wish to show
(7.18)

dim
(
Qp

[
ShKqKPa

q
(VD/q)

]
m

)
≤ 2 dim

(
Qp

[
ShKqKq(VD/q)

]
m

)
+ rank

(
T − 1|H3

ét

(
XQ,Qp

)
m

)
.

Fix an isomorphism ι : Qp
∼−→ C. Applying Lemma 2.7.6, it suffices to show

dim
(
Qp

[
ShKqKPa

q
(VD/q)

] [
ι−1πqf

])
≤ 2 dim

(
Qp

[
ShKqKq(VD/q)

] [
ι−1πqf

])
+

rank
(
T − 1|H3

ét

(
XQ,Qp

) [
ι−1πqf

])(7.19)

for all relevant automorphic representations π of GSpin(VD/q)(A) such that πK
qKPa

q

f ̸= 0 and the Hecke

action on ι−1π
KqKPa

q

f factors through TSO,m.
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By Lemma 2.6.2(1,2), πq is uniquely determined by πqf , and is either spherical or of type IIa. Assume first
thatπq is spherical. Thenπqf cannot be completed to a relevant automorphic representation ofGSpin(VD)(A)
(by Corollary 2.5.3), so by Corollary 2.7.7 the final term in (7.19) vanishes. Since dimπ

Kq
q = 1 and

dimπ
KPa
q

q = 2 by [95, Table A.13], both sides of (7.19) are 2.
On the other hand, suppose that πq is of type IIa.
Case 1: π is non-endoscopic. Then πqf can be completed to a relevant automorphic representation

π′ of GSpin(VD)(A) by Theorem 2.4.6. By Lemma 2.6.2(3), π′q has a unique fixed vector for Kram
q ⊂

GSpin(VD)(Qq), so by Corollary 2.7.7,

H3
ét(XQ,Qp)

[
ι−1πqf

]
= ρπ,ι(−2)⊗ ι−1(πqf )

Kq
.

By Lemma 2.6.2(3), ρπ,ι is tamely ramified at q with monodromy of rank one. On the other hand, πq has a
unique paramodular fixed vector, and π has automorphic multiplicity one for GSpin(VD/q)(A) by Theorem
2.4.6(3). So in this case we see that both sides of (7.19) are 1.

Case 2: π is endoscopic, associated to a pair of cuspidal automorphic representations (π1, π2) of GL2

with discrete series archimedean components of weights 2 and 4, respectively. Theorem 2.5.2 implies that
there exist (uniquely determined) quaternion algebras B1 and B2 such that π is the theta lift Θ(πB1

1 ⊠ πB2
2 ),

with πBii the Jacquet-Langlands transfers. Moreover, B1 ⊗ R is ramified and B2 ⊗ R is split. Since πq is
of type IIa with a paramodular fixed vector, we can conclude from Lemma 2.6.2(3) and Theorem 2.2.1(1)
that exactly one of πi,q is a twist of a Steinberg representation, and the other is unramified. Let B′

i be the
quaternion algebras obtained from Bi by changing invariants at q and∞. Then πqf has a unique completion
to an automorphic representation of GSpin(VD), which is

(7.20)

{
Θ(π

B′
1

1 ⊠ πB2
2 ), π1,q ramified,

Θ(πB1
1 ⊠ π

B′
2

2 ), π2,q ramified.

We therefore have (applying Corollary 2.7.7)

H3
ét(XQ,Qp)

[
πqf

]
∼= (πqf )

Kq ⊗ ρ,

with

ρ =

{
ρπ1,ι(−2), π1,q ramified,
ρπ2,ι(−2), π2,q ramified.

In particular, the monodromy at q has rank one in either case, so again both sides of (7.19) are 1. □

7.4. Level-raising and potential map.

Lemma 7.4.1. The Hecke operators θ±, δ± satisfy:

δ+ ◦ θ+ = δ− ◦ θ− = Tq,1 + (q + 1)(q2 + 1)

δ− ◦ θ+ = (q + 1)Tq,2

δ+ ◦ θ− = ⟨q⟩−1(q + 1)Tq,2.
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Proof. By definition, δ+ ◦ θ+ is induced by

(gq,Λ) 7→ δ+

 ∑
ΛPa⊂1Λ
ΛPa∈LPa

(gq,ΛPa)


=

∑
ΛPa⊂1Λ′

Λ′∈L

∑
ΛPa⊂1Λ
ΛPa∈LPa

(gq,Λ′)

=
∑
Λ′∈L

e(Λ,Λ′)(gq,Λ′),

where
e(Λ,Λ′) = #

{
ΛPa ∈ LPa : ΛPa ⊂1 Λ, ΛPa ⊂1 Λ

′} .
If e(Λ,Λ′) ̸= 0, then either Λ = Λ′ or Λ′ ∈ Tq,1 ·Λ. In the latter case, ΛPa = Λ∩Λ′ is uniquely determined,
so e(Λ,Λ′) = 1. On the other hand, e(Λ,Λ) is the number of lattices ΛPa ⊂1 Λ, or equivalently the number
of rational 3-planes in the symplectic space Λ/qΛ. Thus

e(Λ,Λ) = #P3(Fq) = (q + 1)(q2 + 1).

This shows
δ+ ◦ θ+ = Tq,1 + (q + 1)(q2 + 1),

and the calculation for δ− ◦ θ− is similar. We now compute δ− ◦ θ+, which is induced by

(gq,Λ) 7→ δ−

 ∑
ΛPa⊂1Λ
ΛPa∈LPa

(gq,ΛPa)


=

∑
ΛPa⊂1Λ
λPa∈LPa

∑
Λ′⊂1ΛPa
Λ′∈L

(gq,Λ′)

=
∑
Λ′∈L

e′(Λ,Λ′)(gq,Λ′),

where
e′(Λ,Λ′) = #

{
ΛPa ∈ LPa : Λ′ ⊂1 ΛPa ⊂1 Λ

}
.

If e′(Λ,Λ′) ̸= 0, then Λ′ ∈ Tq,2 · Λ. On the other hand, given Λ′ ∈ Tq,2 · Λ, then the choices of ΛPa with
Λ′ ⊂1 ΛPa ⊂1 Λ are in bijection with rational lines in the 2-dimensional Fq-vector space Λ/Λ′; hence

e′(Λ,Λ′) = #P1(Fq) = q + 1.

This shows δ− ◦ θ+ = (q + 1)Tq,2, and the computation of δ+ ◦ θ− is similar. □

7.4.2. Recall from Lemma 7.1.7 the natural embedding

j :
⊔
C(g) ↪→ X̃Fq .

Lemma 7.4.3. The composite map

inc∗ ◦j∗ ◦ j∗ ◦ inc∗ : O
[
ShKqKPa

q
(VD/q)

]
⊕O

[
ShKqKq(VD/q)

]⊕2 −→

O
[
ShKqKPa

q
(VD/q)

]
⊕O

[
ShKqKq(VD/q)

]⊕2
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is given by the matrix  2 −θ+ −θ−
−δ+ 0 (q + 1)⟨q⟩−1Tq,2
−δ− (q + 1)Tq,2 0.


Proof. We begin by calculating inc∗ ◦j∗ ◦ j∗ [C(g)], for g ∈ ShKqKPa

q
(VD/q). Let ιg : C(g) ↪→ X̃Fq be the

natural embedding. Since the C(g) are all disjoint,

j∗ ◦ j∗ [C(g)] ∈ H4
ét,c(X̃Fq , O(2))

is the pushforward of the class of the normal bundle, i.e. ιg∗[(−1,−1)] in the notation of Lemma 7.3.6. Then
inc∗ ιg∗[(−1,−1)] = − inc∗ ιg∗[(1, 0)]− inc∗ ιg∗[(0, 1)] = (2 · g,−δ+(g),−δ−(g))

by Lemma 7.3.6 (2), which gives the first column of the matrix.
For the second column, we must calculate inc∗ ◦j∗ ◦ j∗

[
B̃+(g)

]
, for g ∈ ShKqKq(VD/q). By Lemma

7.3.6 (1), the class
j∗ ◦ j∗

[
B̃+(g)

]
∈ H4

ét(X̃Fq , O(2))

is ∑
h∈Sh

KqKPa
q

(VD/q)

m(h; θ+(g))ιh∗ [(1, 0)] .

Then by Lemma 7.3.6 (2),

inc∗ ◦j∗ ◦ j∗
[
B̃+(g)

]
= (−θ+(g), 0, δ− ◦ θ+(g)) .

By Lemma 7.4.1, δ− ◦ θ+ = (q + 1)Tq,2, so this gives the second column of the matrix; the third column is
similar. □

Definition 7.4.4. Define the potential map

∇ : H4
ét(X̃Fq , O(2))→ O

[
ShKqKq(VD/q)

]
as the composite

H4
ét(X̃Fq , O(2))

inc∗−−→ O
[
ShKqKPa

q
(VD/q)

]
⊕O

[
ShKqKq(VD/q)

]⊕2 M−→ O
[
ShKqKq(VD/q)

]
,

with M the matrix map (
δ+ + δ− 2 2

)
.

Definition 7.4.5. The level-raising Hecke operator Tlrq is defined by

Tlrq := Tq,1 + (q + 1)(q2 + 1)− Tq,2(q + 1).

Remark 7.4.6. Using (2.3), one calculates the following: If π is a relevant automorphic representation of
GSp4(A) unramified at q with trivial central character and ι : Qp

∼−→ C is any isomorphism with p ̸= q, then
Tlrq acts on the spherical vector of πq with eigenvalue

q−1ιdet(Frobq −q|Vπ,ι).

Theorem 7.4.7. Let m be a generic, non-Eisenstein, and weakly q-generic maximal ideal of TSO. The com-
posite map

∇ ◦ j∗ ◦ t−1 ◦ j∗ : H2
ét(XQ, O(2))m → O

[
ShKqKq(VD/q)

]
m

has image contained in (
⟨q⟩−1 − 1, Tlrq

)
·O
[
ShKqKq(VD/q)

]
m
.
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In particular, ∇ ◦ ζ gives a well-defined surjection

∇ ◦ ζ : M−1H
1
(
IQq , H

3
ét(XQ, O(2))m

)
↠

O
[
ShKqKq(VD/q)

]
m(

⟨q⟩−1 − 1, Tlrq
) ,

where ζ is the map from Proposition 7.1.9.

Proof. By Theorem 7.3.14, the image of∇ ◦ j∗ ◦ t−1 ◦ j∗ coincides with the image of

∇ ◦ j∗ ◦ j∗ ◦ inc∗,m : O
[
ShKqKPa

q
(VD/q)

]
m
⊕O

[
ShKqKq(VD/q)

)⊕2

m
→ O

[
ShKqKq(VD/q)

]
m
.

By Lemma 7.4.3, this is the composite of matrix maps

(
δ+ + δ− 2 2

)
◦

 2 −θ+ −θ−
−δ+ 0 (q + 1)⟨q⟩−1Tq,2
−δ− (q + 1)Tq,2 0


=
(
0 −Tlrq −Tlrq +

(
⟨q⟩−1 − 1

)
(q + 1)Tq,2

)
(using Lemma 7.4.1 to compute δ± ◦ θ±). □

7.5. Siegel cycles on the special fiber.

Definition 7.5.1. Recall the set L from Definition 6.5.2. We define

LSie :=
{

pairs (Λ+,Λ−) ∈ L 2 : qΛ+ ⊂2 Λ− ⊂2 Λ+

}
.

Notation 7.5.2. Note that LSie is a homogeneous space for GSpin(VD/q)(Qq), where the stabilizer of any
point is a Siegel parahoric subgroup. As in Notation 7.3.1, we abbreviate

(7.21) ShKqKSie
q

(VD/q) = GSpin(VD/q)(Q)\GSpin(VD/q)(A
q
f )×LSie/K

qKSie
q ,

although the identification depends on a choice of base point of LSie which is not necessary for our discussion.

Definition 7.5.3.
(1) We define degeneracy maps

δSie± : LSie → L

by
δSie± (Λ+,Λ−) = Λ±.

(2) We define the operator
θPaSie : LSie → Z [LPa]

by
θPaSie(Λ+,Λ−) =

∑
ΛPa∈LPa

Λ−⊂ΛPa⊂Λ+

[ΛPa] .

(3) We extend these maps linearly to

δSie± : O
[
ShKqKSie

q
(VD/q)

]
→ O

[
ShKqKq(VD/q)

]
and

θPaSie : O
[
ShKqKSie

q
(VD/q)

]
→ O

[
ShKqKPa

q
(VD/q)

]
.
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Notation 7.5.4. For each g ∈ ShKqKSie
q

(VD/q), let

D(g) = B+(δ
Sie
1 (g)) ∩B−(δ

Sie
2 (g)),

which is a closed subscheme of XFq isomorphic to P1
Fq

. We write D̃(g) ↪→ X̃Fq for the strict transform of

D(g) under the blowup X̃Fq → XFq , and [D̃(g)] ∈ H4
ét(X̃Fq , O(2)) for its algebraic cycle class.

Lemma 7.5.5. For g ∈ ShKqKSie
q

(VD/q), we have

∇
[
D̃(g)

]
= (δ+ + δ−) ◦ θPaSie(g)− 4qδSie+ (g)− 4qδSie− (g).

Proof. We first calculate inc∗
[
D̃(g)

]
. For g′ ∈ ShKqKq(VD/q), we have[

D̃(g)
]
·
[
B̃+(g

′)
]
=
[
B̃+(δ

Sie
1 (g))

]
·
[
B̃−(δ

Sie
2 (g))

]
·
[
B̃+(g

′)
]
= 0

unless g′ = δSie1 (g), in which case the intersection number is−2q (cf. the proof of Lemma 7.3.8). Similarly,[
D̃(g)

]
·
[
B̃−(g

′)
]
=

{
−2q, g′ = δSie2 (g),

0, else.

Now consider the intersections with C(h), for h ∈ ShKqKPa
q
(VD/q). We see from Lemma 7.3.6 that D̃(g)

meets C(h) transversely with multiplicity m(h; θPaSie(g)). Hence

inc∗
[
D̃(g)

]
=
(
θPaSie(g),−2qδSie1 (g),−2qδSie2 (g)

)
.

The claimed formula then follows from the formula for∇ in Definition 7.4.4. □

7.6. Special cycles on ramified GSpin5 Shimura varieties. The goal of this section is to compute the
local ramification of Abel-Jacobi images of special cycles Z(T, φ) on the generic fiber ofX , by applying the
results of §7.1. However, our first task is to make a good choice of the uniformization datum from (7.2.1).

Notation 7.6.1. Fix a matrix T ∈ Sym2(Z(q))≥0 such that

T ≡
(
0 α
α 0

)
(mod q),

for some α ∈ F×
q . Then we make the following notations.

(1) Let V⋆ be the two-dimensional quadratic space over Qq with basis {e⋆1, e⋆2} and pairing matrix given
by T .

(2) Let B⋆ be the quaternion algebra C(V⋆), with its natural positive nebentype involution ∗.
(3) Let d be the discriminant of the unique quaternion algebra Bd such that BD ⊗ B⋆ ≃ M2(Bd), and

let Od ⊂ Bd be the unique maximal Z(q)-order.

Remark 7.6.2. Because B⋆ is split at q and ∞, Bd is ramified at q and split at ∞. In particular, Od is
well-defined.

Proposition 7.6.3. Fix a nebentype involution ∗ on OD, of unit type. Then there exists an isomorphism

β : BD ⊗B⋆
∼−→M2(Bd)

such that:
(1) β(OD) ⊂M2(Od).
(2) The induced involution † on M2(Bd) stabilizes M2(Od), and is of non-unit type.
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(3) If ΠD ∈ OD and Πd ∈ Od are uniformizers, then

β(ΠD) ·
(
Π−1
d 0
0 Π−1

d

)
lies in GL2(Od).

(4) The Z(q)-lattice Λ⋆ :=M2(Od)
†=1,tr=0 ∩B⋆ ⊂ V⋆ has basis {e⋆1, qe⋆2}.

Proof. Let
X = Isom(BD ⊗B⋆,M2(Bd)),

viewed as algebraic variety over Q; X is a (split) torsor for the algebraic group GL2(Bd). Note that all the
conditions of the proposition can be checked after tensoring with Zq, and define an open subset U ⊂ X(Qq)
in the q-adic topology. Since X(Q) is dense in X(Qq), it suffices to show U ̸= ∅.

Since the involution ∗ onBD is nebentype and of unit type, we can fix a unit j ∈ O×
D such that j∗D = −j∗D

and α∗ = j(α∗D)j−1 for α ∈ BD (recall ∗D is the canonical involution on BD). Also choose a uniformizer
Π ∈ OD satisfying trΠ = 0 and Πj = −jΠ, and let K := Q(Π) ⊂ BD. We have a decomposition

BD = K ⊕ j ·K,

which defines an embedding
ι : BD ↪→M2(K) ↪→M2(BD),

satisfying α(OD) ⊂M2(OD). Now let † be the non-unit type involution on OD defined by

j† = j, Π† = Π, and (Πj)† = −Πj.

We extend † to an involution of non-unit type on M2(BD) by(
α β
γ δ

)
7→
(

α† −γ†j2
−β†/j2 δ†

)
.

A simple calculation shows ι(α)† = ι(α∗), for all α ∈ BD. Moreover, the centralizer Z of ι(BD) inside
M2(BD) satisfies

L := Z ∩M2(OD)
†=1,tr=0 = Z(q) ·

(
Π 0
0 Π

)
⊕ Z(q) ·

(
0 Πj

Πj−1 0

)
.

We have a natural quadratic form x 7→ x2 on L, which is represented by
(
qα 0
0 −qα

)
in the basis above, for

a unit α ∈ Z×
(q). Let LQ = L⊗Z(q)

Q.
We may then choose the following two isomorphisms:

(i) An isomorphism β1,q : Z ⊗ Qq = C(LQ) ⊗ Qq
∼−→ C(V⋆) ⊗ Qq = B⋆ ⊗ Qq compatible with the

involutions, such that β1,q(L⊗ Zq) ⊂ V⋆ ⊗Qq is the lattice spanned by e⋆1 and qe⋆2.
(ii) An isomorphism β2,q :M2(OD)⊗ Zq

∼−→M2(Od)⊗ Zq.
. One checks readily that the induced isomorphism

βq : (BD ⊗Qq)⊗ (B⋆ ⊗Qq)
id⊗β−1

1,q−−−−−→
∼

BD ⊗ Z ⊗Qq
ι−→
∼
M2(BD)⊗Qq

β2,q−−→
∼

M2(Bd)⊗Qq

lies in U , so indeed U ̸= ∅. □

Now we use Proposition 7.6.3 to construct some particular integral models of special cycles on XQ =
ShK(VD).

Construction 7.6.4. Fix once and for all a positive, unit type involution on BD, and a choice of β as in
Proposition 7.6.3 for this choice. We will now also write ∗ for the induced involution on M2(Bd).
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(1) By Corollary 1.3.5 and Remark 7.6.2, we fix an abelian schemeA0 over Z̆q with supersingular reduc-
tion, equipped with an embedding ι⋄0 :M2(Od) ↪→ End(A0)⊗Z(q) and a polarizationλ0 : A0 → A∨

0

such that
ι⋄0(α)

∨ ◦ λ0 = λ0 ◦ ι⋄0(α∗).

We choose our q-uniformization datum for VD in (7.2.1) to be of the form (∗, A0, ι
⋄
0◦β, λ0, iD, iD/q).

With notation as in Definition 1.4.4, we also obtain the PEL datum D⋄ = (M2(Bd), †, H, ψ), with
self-dual q-integral refinement D⋄ = (M2(Od), †,Λ, ψ).

(2) We observe that, following Remark 1.4.5(2), our choice of q-adic uniformization datum defines an
orthogonal decomposition

VD
iD−→
∼

End(H,BD)
†=1,tr=0 = V⋆ ⊕ V ⋄

d

where
V ⋄
d := End(H,M2(Bd))

†=1,tr=0.

(3) Now fix an element
gq =

∏
ℓ ̸=q

gℓ ∈ GSpin(VD)(Aqf ).

Let
K⋄
ℓ := gℓKℓg

−1
ℓ ∩GSpin(V ⋄

d )(Qℓ)

for each ℓ ̸= q; we define
Kq⋄ =

∏
ℓ ̸=q

K⋄
ℓ ,

a neat compact open subgroup by [89, §0.1]. We let Z(gq, V⋆, VD) be the Z(q)-scheme representing
the moduli functorM⋄

Kq⋄ associated to D⋄ at level Kq⋄, with special fiber Z(gq, V⋆, VD)Fq .

Remark 7.6.5. Note that (by Corollary 1.3.4 combined with Proposition 1.2.4), Z(gq, V⋆, VD) is the usual
integral model of the quaternionic Shimura curve associated toBd at levelKq⋄, with maximal compact level
structure at q.

7.6.6. We have the obvious forgetful finite morphism

(7.22) j : Z(gq, V⋆, VD)→ X

defined on the moduli problems by (A, ι⋄, λ, ηq) 7→ (A, ι⋄ ◦ β, λ, gq · ηq).

Lemma 7.6.7. The generic fiber of (7.22) coincides with the special cycle

Z(gq, V⋆, VD)KqKram
q
→ ShKqKram

q
(VD).

Proof. See the proof of [56, Proposition 2.5]. □

Notation 7.6.8. We now consider the special fiber Z(gq, V⋆, VD)Fq .
(1) Similarly to Construction 7.6.4(2), we obtain a natural orthogonal decomposition

VD/q
iD/q−−−→
∼

End0(A0, BD)
†=1,tr=0 = V⋆ ⊕ V ⋄

d/q,

with
V ⋄
d/q := End0(A0,M2(Bd))

†=1,tr=0

a three-dimensional quadratic space whose Hasse invariant coincides with that of Bd/q.
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(2) LetN ⋄ be the Rapoport-Zink space parametrizing framed, polarized deformations of the q-divisible
group A0[q

∞], with action of M2(Od ⊗ Zq). (The details are analogous to Definition 6.1.2). Let
jloc : N ⋄ ↪→ N be the natural closed immersion induced by β ⊗ Zq : OD ⊗ Zq ↪→ M2(Od ⊗ Zq),
and let

N ⋄ = ⊔i∈ZN ⋄(i)

be the decomposition defined analogously to (6.1), or equivalently defined byN ⋄(i) = N ⋄ ∩N (i).

Remark 7.6.9. By the local analogue of Corollary 1.3.4,N ⋄ is isomorphic to the formal scheme considered
in [12, §I.3], which is the one encountered in the well-known Čerednik-Drinfeld uniformization of quater-
nionic Shimura curves.

Lemma 7.6.10. The image ofM⋄ := N ⋄
red(0) under jloc is contained inM{02} (cf. Theorem 6.2.4).

Proof. It suffices to consider Fq-valued points, so suppose given x = (Xx, ιx, λx, ρx) ∈ M⋄(Fq), with
ι : M2(Od) ⊗ Zq ↪→ End(Xx) an embedding compatible with involutions. By (6.2.5), it suffices to show
the Dieudonné module M of Xx satisfies M + τM = τM + τ2M for τ = (ι ◦ β(ΠD)) · V −1. (Since M is

self-dual, M ∩ τM is then τ -stable as well.) If τ ′ = ι

(
Πd 0
0 Πd

)
· V −1, then we have

(τ ′)nM = τnM

for all n ∈ Z by Proposition 7.6.3(3). So it suffices to show M + τ ′M is τ ′-stable. The action of
M2(Zq) ⊂M2(Od)⊗ Zq

on M defines a decomposition M = M0 ⊕ M0, where M0 inherits an action ι0 of Od. We can further
decomposeM0 =M0,•⊕M0,◦ according to the eigenvalues of the action of Zq2 ⊂ Od⊗Zq. ThenM0,• and
M0,◦ are both free of rank two over Z̆q and stable under τ0 := ι0(Πd)V

−1. Hence M0 + τ0M0 is τ0-stable
by [93, Proposition 2.17]; so M + τ ′M is τ ′-stable, as desired. □

Definition 7.6.11. We define a subset L ⋄ ⊂ LSie by

jloc(N ⋄
red) =

⋃
(Λ+,Λ−)∈L ⋄

(M+(Λ+) ∩M−(Λ−)) ,

which makes sense by Lemma 7.6.10.

By [12, Proposition III.2] (and Remark 7.6.5), the special fiber Z(gq, V⋆, VD)Fq is purely supersingular.
Hence by Rapoport-Zink uniformization, we have:

Proposition 7.6.12. The special fiber Z(gq, V⋆, VD)Fq is isomorphic to

GSpin(V ⋄
d/q)(Q)\GSpin(V ⋄

d/q)(A
q
f )×N

⋄
red/K

q⋄
gq ,

in such a way that the special fiber of j : Z(gq, V⋆, VD) → X is given by (hq, x) 7→ (hqgq, jloc(x)) under
the uniformization of Theorem 7.2.4.

Notation 7.6.13. Let
(7.23) j̃ : Z̃(gq, V⋆, VD)Fq → X̃Fq

be the strict transform of
Z(gq, V⋆, VD)Fq → XFq ,

and
(7.24)

[
Z̃(gq, V⋆, VD)Fq

]
∈ H4

ét,c(X̃Fq , O(2))
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its algebraic cycle class.

Corollary 7.6.14. We have

∇
[
Z̃(gq, V⋆, VD)Fq

]
=

∑
[(hq ,Λ)]∈

GSpin(V ⋄
d/q

)(Q)\GSpin(V ⋄
d/q

)(Aqf )×L /Kq⋄
gq

m(Λ)[(hqgq,Λ)],

where
m(Λ) =

∑
y∈L ⋄

mult(Λ,−4qδSie+ (y)− 4qδSie− (y) + (δ+ + δ−) ◦ θPaSie(y)).

Proof. This is immediate from Lemma 7.5.5, Proposition 7.6.12, and Definition 7.6.11. □

To compute the multiplicities m(Λ) in the Corollary 7.6.14 above, it is better to work with lattices in the
split 5-dimensional quadratic space V := VD/q ⊗Qq rather than the symplectic space W (see (6.5.1)).

Definition 7.6.15.
(1) A vertex lattice L ⊂ V is a Zq-lattice satisfying

L∨ ⊃ L ⊃ qL∨.

For 0 ≤ i ≤ 2, set

VL(2i) :=
{

vertex lattices L ⊂ V : dimFq L
∨/L = 2i

}
.

(The analogous sets VL(2i+ 1) are all empty.)
(2) For any Zq-lattice Λ ⊂W , we define

LΛ = EndZq(Λ) ∩ V,

which makes sense because V = End(W )†=1,tr=0.

Lemma 7.6.16. The map Λ 7→ LΛ induces an isomorphism

L /qZ
∼−→ VL(0)

and a surjection
LPa/q

Z ↠ VL(4).

Moreover, the map
(Λ+,Λ−) 7→ LΛ+ ∩ LΛ−

induces a surjection
LSie/q

Z ↠ VL(2).

Proof. For each 0 ≤ i ≤ 2,VL(2i) is a homogeneous space for GSpin(V )(Qq). Since the maps

L /qZ → VL(0)

LSie/q
Z → VL(2)

LPa/q
Z → VL(4)

are all GSpin(V )(Qq)-equivariant, they are automatically surjective. Finally, for the injectivity of the first
map, it suffices to note that the stabilizers coincide, i.e. the hyperspecial subgroup of SO(V )(Qq) is the
image of a hyperspecial subgroup of GSpin(V )(Qq). □

Lemma 7.6.17. The projections of Lemma 7.6.16 fit into the following commutative diagrams:
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LPa Z[L ]

VL(4) Z[VL(0)]

δ++δ−

δ

LSie Z[L ]

VL(2) Z[VL(0)]

δSie+ +δSie−

δ
Sie

LSie Z[LPa]

VL(2) Z[VL(4)]

θPa
Sie

θ
Pa
Sie

Here, the bottom maps are:

δ(L4) =
∑

L0∈VL(0)
L0⊃L4

[L0], for L4 ∈ VL(4),

δ
Sie

(L2) =
∑

L0∈VL(0)
L0⊃L2

[L0], for L2 ∈ VL(2),

θ
Pa
Sie(L2) =

∑
L4∈VL(4)
L4⊂L2

[L4], for L2 ∈ VL(2).

Proof. Given ΛPa ∈ LPa with
qn+1Λ∨

Pa ⊂2 ΛPa ⊂2 q
nΛ∨

Pa

and Λ ∈ L with Λ ∈ δ+(ΛPa), we first claimLΛ ⊃ LΛPa
. Indeed, for any ℓ ∈ LΛPa

, ℓ induces a self-adjoint,
trace-zero endomorphism of the two-dimensional symplectic space qnΛ∨

Pa/ΛPa; hence ℓ(qnΛ∨
Pa) ⊂ ΛPa.

Since Λ fits into a chain
ΛPa ⊂1 Λ = qnΛ∨ ⊂1 q

nΛ∨
Pa,

we conclude
ℓ(Λ) ⊂ ΛPa ⊂ Λ,

so ℓ ∈ LΛ. Similarly, we see that, for Λ ∈ L appearing in δ−(ΛPa), we have LΛ ⊃ LΛPa
. Now to prove the

first diagram commutes, it suffices to show

(7.25) deg δ(LΛPa
) = deg(δ+(ΛPa)) + deg(δ−(ΛPa)).

The left-hand side is the number of lattices L ∈ VL(0) containing LΛPa
; such lattices are in bijection with

isotropic planes in the split 4-dimensional Fq-quadratic space L∨
ΛPa

/LΛPa
, hence there are 2(q+1) of them.

Meanwhile deg(δ±(ΛPa)) = q + 1, since lattices Λ ⊃1 ΛPa (resp. Λ ⊂1 ΛPa) are in bijection with lines
in the 2-dimensional Fq-symplectic space qnΛ∨

Pa/ΛPa (resp. ΛPa/q
n+1Λ∨

Pa). This proves (7.25), hence the
commutativity of the first diagram; and the rest are similar. □

Notation 7.6.18.
(1) For convenience, we now abbreviate

V⋆,q = V⋆ ⊗Qq.

Let L⋆ ⊂ V⋆,q be the Zq-lattice spanned by {e⋆1, qe⋆2}, and let L(0)
⋆ = SpanZq

{
q−1eT1 , qe

T
2

}
and

L
(1)
⋆ = SpanZq

{
eT1 , e

T
2

}
be the two self-dual lattices in V⋆,q containing L⋆.

(2) We write VL(2)⋄ ⊂ VL(2) for the subset consisting of lattices of the form

L2 = L⋆ ⊕ L⋄,

where
L⋄ ⊂ V⋄ := V ⋄

d/q ⊗Qq

is self-dual.
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Lemma 7.6.19. L ⋄ consists of two GSpin(V ⋄
d/q)(Qq)-orbits; if O ⊂ L ⋄ is one orbit, then the map of

Lemma 7.6.16 induces an isomorphism
O/qZ ∼−→ VL(2)⋄.

Proof. By [12, Théorème 9.3] and Remark 7.6.5, L ⋄ consists of two GSpin(V ⋄
d/q)(Qq)-orbits, and the

stabilizer of any point in L ⋄ is a hyperspecial subgroup. On the other hand, for any point in L ⋄ with
image L2 ∈ VL(2), we know

L2 ∩ V⋆,q ⊃ L⋆
by Proposition 7.6.3(4) and the definition of the strataM+(Λ+) andM−(Λ−). Since the stabilizer of L2 in
SO(V ⋄

d/q)(Qq) is hyperspecial, this forces

L2 = L⋆ ⊕ L⋄,

for some L⋄ ⊂ V⋄ self-dual. Hence the image of either orbit O ⊂ L ⋄ in VL(2) is contained in VL(2)⋄;
since VL(2)⋄ is a single orbit, we have a surjection O/qZ ↠ VL(2)⋄. Finally, we see that this map is an
isomorphism because the stabilizers coincide. □

Lemma 7.6.20. The multiplicity m(Λ) in Corollary 7.6.14 depends only on LΛ ∈ VL(0), and is given by:

m(Λ) =


4, if LΛ ∩ V⋆,q = L⋆,

4− 4q, if LΛ ∩ V⋆,q = L
(0)
⋆ or L(1)

⋆ ,

0, else.

Proof. Let O be one of the two GSpin(V ⋄
d/q)(Qq)-orbits in L ⋄; we will compute

mO(Λ) =
∑
y∈O

mult
(
Λ,−4qδSie+ (y)− 4qδSie− (y) + (δ+ + δ−) ◦ θPaSie(y)

)
.

Let m(Λ, y) be the summand above, so that mO(Λ) =
∑

y∈Om(Λ, y). Fix some y ∈ O corresponding to
Ly ∈ VL(2). Then

m(Λ, qny) = m(q−nΛ, y)

is nonzero for at most one n, so∑
n∈Z

m(Λ, qny) = mult(LΛ,−4qδ
Sie

(Ly) + δ ◦ θPaSie(Ly))

by Lemma 7.6.17. Since O/qZ maps isomorphically to VL(2)⋄ by Lemma 7.6.19, we find

mO(Λ) =
∑

L2∈VL(2)⋄

mult
(
LΛ,−4qδ

Sie
(L2) + δ ◦ θPaSie(L2)

)
.

Next, we calculate, for any L2 ∈ VL(2),

δ ◦ θPaSie(L2) =
∑

L4∈VL(4)
L4⊂L2

∑
L0∈VL(0)
L0⊃L4

[L0]

=
∑

L0∈VL(0)
L0⊃L2

# {L4 ∈ VL(4) : L4 ⊂ L2}+
∑

L0∈VL(0)
L0∩L2∈VL(4)

[L0]

= (q + 1)δ
Sie

(L2) +
∑

L0∈VL(0)
L0∩L2∈VL(4)

[L0].
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(The q + 1 choices of L4 ⊂ L2 correspond to flags

qL∨
2 ⊂ qL∨

4 ⊂ L4 ⊂ L2,

hence to complete isotropic flags in the split 3-dimensional Fq-quadratic space L2/qL
∨
2 .) Hence

(7.26) mO(Λ) =
∑

L2∈VL(2)⋄

mult

LΛ, (1− 3q)δ
Sie

(L2) +
∑

L0∈VL(0)
L0∩L2∈VL(4)

[L0]

 .

Now observe that, for any L2 ∈ VL(2)⋄ and L4 ∈ VL(4) with L4 ⊂ L2, we have

L4 ⊃ qL∨
4 ⊃ qL∨

2 ⊃ L⋆.

Hence, if L2 ∈ VL(2)⋄, all L0 appearing in

(1− 3q)δ
Sie

(L2) +
∑

L0∈VL(0)
L0∩L2∈VL(4)

[L0]

have L0 ∩ V⋆,q ⊃ L⋆. In particular, if mO(Λ) ̸= 0, then

LΛ ∩ V⋆,q = L
(0)
⋆ , L

(1)
⋆ , orL⋆,

since these are the only lattices containing L⋆ on which the pairing is Zq-valued.
Suppose first LΛ ∩ V⋆,q = L

(i)
⋆ , for i = 0 or 1. Then we may write

LΛ = L⋄ ⊕ L(i)
⋆

with L⋄ ⊂ V⋄ self-dual, and

mO(Λ) = (1− 3q)#
{
L2 ∈ VL(2)⋄ : LΛ ∈ δ

Sie
(L2)

}
+# {L2 ∈ VL(2)⋄ : L2 ∩ LΛ ∈ VL(4)} .

Recall that all L2 ∈ VL(2)⋄ are of the form L′
⋄ ⊕ L⋆, with L′

⋄ ⊂ V⋄ self-dual, and

δ
Sie

(L′
⋄ ⊕ L⋆) =

[
L′
⋄ ⊕ L

(0)
⋆

]
+
[
L′
⋄ ⊕ L

(1)
⋆

]
.

Hence

mO(Λ) = (1− 3q) + #
{
L′
⋄ ⊂ V⋄ self-dual : (L′

⋄ ∩ L⋄)⊕ L⋆ ∈ VL(4)
}

= (1− 3q) + (q + 1)

= 2− 2q;

the (q+1) choices of L′
⋄ correspond bijectively to the isotropic lines in the 3-dimensional Fq-space L⋄/qL⋄.

Now suppose LΛ ∩ V⋆,q = L⋆. Then LΛ does not appear in δSie(L2) for any L2 ∈ VL(2)⋄, so by (7.26),
we have

mO(Λ) = # {L2 ∈ VL(2)⋄ : LΛ ∩ L2 ∈ VL(4)} .
Recall that any L4 contained in L2 ∈ VL(2)⋄ satisfies qL∨

4 ⊃ L⋆; we first show that there is a unique such
L4 contained in LΛ. Indeed, any such L4 fits in a chain

qLΛ ⊂2 qL
∨
4 ⊂1 L4 ⊂2 LΛ,

and so we must have
qL∨

4 = L⋆ + qLΛ,

which determines L4. Now, for this L4, we claim there are exactly two L2 ∈ VL(2)⋄ with L2 ⊃ L4. Such
an L2 fits into a chain

L4 ⊂1 L2 ⊂2 L
∨
2 ⊂1 L

∨
4 .
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Since L⋆ ⊂ qL∨
4 , we have

1

q
L⋆ ⊂ L∨

4 .

Thus
L∨
4 /L4

∼=
1

q
L⋆/L⋆ ⊕H,

with H a hyperbolic plane over Fq. For L2 to lie in VL(2)⋄ is equivalent to 1
qL⋆ ⊂ L∨

2 , so choices of L2

correspond to choices of isotropic lines in L∨
4 /L4 orthogonal to 1

qL⋆/L⋆; these are isotropic lines in H, so
there are exactly two. Hence mO(Λ) = 2 if LΛ ∩ V⋆,q = L⋆. We have now shown

mO(Λ) =


2, ifLΛ ∩ V⋆,q = L⋆,

2− 2q, ifLΛ ∩ V⋆,q = L
(0)
⋆ orL(1)

⋆ ,

0, else.

Since mO(Λ) is evidently independent of the choice of orbit O, we have

m(Λ) = 2mO(Λ),

which completes the proof. □

Combining Lemma 7.6.20 and Corollary 7.6.14 gives the following simple formula.

Corollary 7.6.21. We have

∇
[
Z̃(gq, V⋆, VD)Fq

]
= 4Z(gqg⋆q , V⋆, VD/q)KqKq

+ 4(1− q)
(
Z(gqg(0), V⋆, VD/q)KqKq) + Z(gqg(1), V⋆, VD/q)KqKq

)
∈ O

[
ShKqKq(VD/q)

]
,

where g⋆q , g
(0)
q , g(1)q ∈ GSpin(VD/q)(Qq) represent the cosets in

GSpin(V ⋄
d/q)(Qq)\GSpin(VD/q)(Qq)/Kq

corresponding to the lattices L⋆, L
(0)
⋆ , L(1)

⋆ under Proposition 3.1.8.

7.7. Interpretation in terms of test functions.

7.7.1. We now define a specific test function φtot
q ∈ S(V 2

D/q ⊗ Qq,Z) as follows. First, define a subset
X ⊂ V 2

D/q ⊗Qq by

(7.27) X =
{
(x, y) ∈ V 2

D/q ⊗Qq |x · x ∈ qZq, y · y ∈ qZq, x · y ∈ Z×
q

}
.

Let L ⊂ VD/q ⊗ Qq be a self-dual lattice, and let φ(0)
q , φ(1)

q , φ⋆q ∈ S(V 2
D/q ⊗ Qq,Z) be indicator functions

of the following compact open subsets of V 2
D/q ⊗Qq:

X(0) = {(x, y) ∈ X : x, y ∈ L− qL}

X(1) =
{
(x, y) ∈ X : x ∈ qL− q2L, y ∈ q−1L− L

}
X⋆ =

{
(x, y) ∈ X : x ∈ L− qL, y ∈ q−1L− L

}
.

Let
φtot
q = φ⋆q + (1− q)

(
φ(0)
q + φ(1)

q

)
.

Corollary 7.6.21 can then be reformulated as follows:
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Theorem 7.7.2. Let K =
∏
Kv ⊂ GSpin(VD/q)(Af ) be neat with Kq hyperspecial, and let

φq ∈ S(V 2
D/q ⊗ Aqf , O)

be a Kq-invariant Schwartz function. Let m ⊂ TSO be a generic, non-Eisenstein, and weakly q-generic
maximal ideal.

Then, for all T ∈ Sym2(Q)≥0, there exists a choice of uniformization datum for VD and a test function
φram
q ∈ S(V 2

D ⊗Qq,Z)K
ram
q such that

∇ ◦ ζ ◦ resQq ◦ ∂AJ,m

(
Z(T, φq ⊗ φram

q )KqKram
q

)
= 4Z(T, φq ⊗ φtot

q )KqKq ∈
O
[
ShKqKq(VD/q)(VQ)

]
m

(⟨q⟩−1 − 1, Tlrq )
.

Remark 7.7.3.
(1) The map ∂AJ,m is defined as in (4.4.2), and we are using Theorem 7.1.11 to apply ζ on the left-hand

side of the identity.
(2) The choice of uniformization datum intervenes in two points in the displayed equation: first in the

definition of ∇, and second in the isomorphism VD/q ⊗ Aqf ∼= VD ⊗ Aqf from Remark 1.4.5(2),
which we are using to view φq as a test function in S(V 2

D ⊗Aqf , O) andKqKram
q as a compact open

subgroup of GSpin(VD)(Af ).
(3) Without any great difficulty, φram

q can be chosen not to depend on T . Since this is not used in the
proofs of the main results, we omit the details.

Proof. Without loss of generality, we may assume T is of the form considered in Notation 7.6.1; otherwise
Z(T, φq⊗φtot

q )K = 0, soφram
q = 0 satisfies the conclusion of the theorem. We fix the uniformization datum

as in Construction 7.6.4(1); in particular, we are identifying V⋆ with a subspace of VD, so we may choose
φram
q ∈ S(V 2

D ⊗ Qq,Z) such that φram
q |ΩT,VD (Qq) is the indicator function of the coset Kram

q · (e⋆1, e⋆2). For
any φq ∈ S(V 2

D/q ⊗ Aqf , O), write

supp(φq) ∩ ΩT,VD/q(A
q
f ) = ⊔GSpin(V ⋄

D/q)(A
q
f )g

q
iK

q.

Then we have

Z(T, φq ⊗ φram
q )KqKram

q
=
∑
i

Z(gqi , V⋆, VD)KqKram
q
φq((gqi )

−1e⋆1, (g
q
i )

−1e⋆2).

Now, by Theorem 7.1.11, we conclude that

∇ ◦ ζ ◦ resQq ◦ ∂AJ,m

(
Z(T, φq ⊗ φram

q )KqKram
q

)
∈
O
[
ShKqKq(VD/q)(VQ)

]
m

(⟨q⟩−1 − 1, Tlrq )

coincides with ∑
i

φq((gqi )
−1e⋆1, (g

q
i )

−1e⋆2) · ∇
[
Z̃(gqi , V⋆, VD)KqKram

q

]
.

Then the theorem follows from Corollary 7.6.21 and the construction of φtot
q . □

8. First explicit reciprocity law

For this section, let π, S, and E0 be as in Notation 4.0.1, fix a prime p of E0 satisfying Assumption 4.1.1,
and put m := mπ,p as usual. Our goal for this section is to combine Theorem 7.7.2 with Corollary 5.6.3 to
prove Theorems 8.5.1 and 8.5.2 below. First we make some deformation-theoretic preparations in §8.1-§8.3;
then we check the criterion from Corollary 5.6.3 in §8.4; and we complete the proofs in §8.5.
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8.1. Typic modules. The following definition is a generalization of [98, Definition 5.2].

Definition 8.1.1. LetG be a group,R a Noetherian local ring with maximal idealmR, andσ1, · · · , σm a finite
collection of representations σi : G → GLni(R) such that the residual representations σi := σ ⊗R R/mR

are distinct and absolutely irreducible for each i = 1, · · · ,m.
AnR[G]-moduleM is calledσi-typic if it is isomorphic toσi⊗RM0 for anR-moduleM0, and (σ1, · · · , σm)-

typic if it is isomorphic to a direct sum ⊕Mi with each Mi σi-typic.

Proposition 8.1.2. With notation as in Definition 8.1.1, let N ⊂M be an inclusion of R[G]-modules.
(1) If M is σi-typic for some i ∈ {1, · · · ,m}, then N is σi-typic.
(2) If M is (σ1, · · · , σm)-typic, then N is (σ1, · · · , σm)-typic.

Proof. Part (1) is proved in [98, Proposition 5.4]. For (2), as in loc. cit. we may assume without loss of
generality that M and N are finitely generated. Let M = ⊕Mi be the decomposition of M into σi-typic
parts, and let πi : M → Mi be the projection map for each i = 1, · · · ,m. Without loss of generality, we
may assume πi(N) =Mi. We claim that the natural injection

⊕πi : N ↪→ ⊕Mi

is an isomorphism, i.e. ⊕πi is surjective. LetN := N ⊗RR/mR andM i :=Mi⊗RR/mR; by Nakayama’s
lemma, it suffices to show the induced map

⊕πi : N → ⊕M i

is surjective. Because the residual representations σi are all distinct, any R[G]-stable submodule of ⊕M i

is a direct sum ⊕M ′
i for some M ′

i ⊂ M i. So if ⊕πi is not surjective, then πi is not surjective for some
i = 1, · · · ,m; but this contradicts our assumption that πi(N) = Mi for all i, so ⊕πi is surjective, which
shows (2). □

8.2. Deformation theory: non-endoscopic case. We assume for this subsection that π is not endoscopic.
We will apply the results and notations of Appendix B to ρπ = ρπ,p, which we view as valued in GSp4(O)
via Remark 4.1.4. First note:

Lemma 8.2.1. The representation ρπ satisfies Assumptions B.1.3 and B.1.5 from Appendix B.

Proof. By Assumption 4.1.1, ρπ is absolutely irreducible, so H0(Q, ad0 ρπ) = 0. Also, ρπ ̸∼= ρπ(1) by
considering the similitude characters (since p > 3). So, again using the absolute irreducibility,

H0(Q, ad0 ρπ(1)) ⊂ HomGQ(T π, T π(1)) = 0

as well. This shows Assumption B.1.3(1). Assumptions B.1.3(2,3) are clear from Theorem 2.2.10. We
now consider Assumption B.1.5. By Lemma B.1.6 it suffices to show H0(Qv,WD(ad0 ρπ)) = 0 for all
non-archimedean v. But

H0(Qv,WD(ad0 ρπ)) ⊂ HomWDv(WD(Vπ),WD(Vπ(1))),

with WDv the local Weil-Deligne group, which vanishes by purity (Theorem 2.2.10(1)). □

8.2.2. Suppose q is an admissible prime, and let Dq and Rq be as in Notation B.1.4. For any A ∈ CNLO
and ρA ∈ Dq(A), let MA be the free, rank-four A-module with GQq action determined by ρA. Then by [65,
Lemma 3.21], MA admits a GQq -stable decomposition
(8.1) MA =M0 ⊕M1,

where:
• Each of M0 and M1 is free of rank two over A.
• M0 ⊗A k has Frobq eigenvalues 1 and q.



BLOCH-KATO FOR SOME FOUR-DIMENSIONAL SYMPLECTIC GALOIS REPRESENTATIONS 97

• M1 ⊗A k has generalized Frobq eigenvalues a and q/a, with a ̸= 1, q.
(Here k = O/ϖ, and Frobq ∈ GQq is any lift of Frobenius.)

Definition 8.2.3. Let Dord
q ⊂ Dq be the subfunctor of lifts ρA such that

det(ρA(Frobq)− T |M0) = (1− T )(q − T ).

Lemma 8.2.4. The functorDord
q is represented by a formally smooth quotientRord

q ofRq, of relative dimen-
sion 10 over O.

Proof. This follows the same argument as [65, Proposition 3.35] (cf. also [121, Proposition 3.8]). □

8.2.5. In light of Lemma 8.2.4, we take the admissible primes in Notation B.2.4 to be the ones of Definition
4.2.1, and the notion of Rord

q to be the one from Lemma 8.2.4; the definitions of n-admissible primes in
Definition 4.2.1 and Definition B.2.5(3) then coincide.

Notation 8.2.6.
(1) Let Q ≥ 1 be admissible, and denote by R̃Qm the global GSp4-valued deformation ring of ρπ as a

representation ofGQ,S∪div(Qp), with fixed similitude characterχcyc
p . LetRQ andRQ be the quotients

of R̃Qm defined in Notation B.4.4 (identifying Q with div(Q) for notational convenience).
(2) Let

ρunivQ : GQ → GSp4(RQ)

be a framing of the universal deformation, and let Muniv
Q be the free RQ-module of rank four with

GQ-action defined by ρunivQ .

8.2.7. Let prp : IQq → Zp(1) be the maximal pro-p quotient.

Lemma 8.2.8. Suppose Q is admissible and q|Q is a prime. In the decomposition Muniv
Q |GQq =M0 ⊕M1

of (8.1), M1 is unramified. Moreover, there exists a basis of M0 and an element tq ∈ RQ such that

ρunivQ |M0 =

(
χp,cyc ∗
0 1

)
,

and
ρunivQ (g)|M0 =

(
1 tq prp(g)
0 1

)
, ∀g ∈ IQq .

Proof. Since M0 and M1 are GQq -stable, this follows from [102, Propositions 5.3, 5.5]. □

Definition 8.2.9. Suppose Q and q ∤ Q are admissible. Then:
(1) We set Pq(T ) = det(ρunivQ (Frobq)− T |Muniv

Q ) ∈ RQ[T ].
(2) We set Rcong

Q,q := RQ ⊗RQq RQq.

Lemma 8.2.10. Suppose Q ≥ 1 is admissible, and q ∤ Q is an admissible prime. Then
Rcong
Q,q = RQ/(Pq(q)) = RQq/(tq).

Proof. We have Rcong
Q,q = RQ/(Pq(q)) because an unramified deformation of ρπ|GQq is ordinary if and only

if q is an eigenvalue of Frobq; on the other hand, it is clear from Lemma 8.2.8 that Rcong
Q,q = RQq/(tq). □

Lemma 8.2.11. Suppose q is n-admissible. Then:
(1) H1

ord(Qq, ad
0 ρπ,n) +H1

unr(Qq, ad
0 ρπ,n) = H1(Qq, ad

0 ρπ,n).
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(2) The quotients
H1(Qq, ad

0 ρπ,n)

H1
unr(Qq, ad

0 ρπ,n)
,

H1(Qq, ad
0 ρπ,n)

H1
ord(Qq, ad

0 ρπ,n)

are both free of rank one over O/ϖn.
In particular, q is standard in the sense of Definition B.4.7.

Proof. First note that
H1(Qq, ad

0 ρπ,n)

H1
unr(Qq, ad

0 ρπ,n)
= HomFrobq(Zp(1), ad0 ρπ,n)

is free of rank one overO/ϖn since q is n-admissible. On the other hand,H1
ord(Qq, ad

0 ρπ,n) clearly surjects
onto this quotient by definition, which shows (1). Since Z1

ord(Qq, ad
0 ρπ,n) and Z1

unr(Qq, ad
0 ρπ,n) both

contain all coboundaries, we see that

Z1
ord(Qq, ad

0 ρπ,n)

Z1
ord(Qq, ad

0 ρπ,n) ∩ Z1
unr(Qq, ad

0 ρπ,n)
=

H1
ord(Qq, ad

0 ρπ,n)

H1
ord(Qq, ad

0 ρπ,n) ∩H1
unr(Qq, ad

0 ρπ,n)
=

H1(Qq, ad
0 ρπ,n)

H1
unr(Qq, ad

0 ρπ,n)

is free of rank 1 over O/ϖn. On the other hand, Z1
ord(Qq, ad

0 ρπ,n) and Z1
unr(Qq, ad

0 ρπ,n) are both free of
rank 10 over O/ϖn because Rord

q and the unramified local deformation ring Runr
q are formally smooth, so

we conclude that Z1
ord(Qq, ad

0 ρπ,n) ∩ Z1
unr(Qq, ad

0 ρπ,n) is free of rank 9 over O/ϖn. In particular,

Z1
unr(Qq, ad

0 ρπ,n)

Z1
ord(Qq, ad

0 ρπ,n) ∩ Z1
unr(Qq, ad

0 ρπ,n)
=

H1
unr(Qq, ad

0 ρπ,n)

H1
ord(Qq, ad

0 ρπ,n) ∩H1
unr(Qq, ad

0 ρπ,n)
=

H1(Qq, ad
0 ρπ,n)

H1
ord(Qq, ad

0 ρπ,n)

is also free of rank one over O/ϖn, as desired. □

8.2.12. To state the next lemma, we establish some temporary notation. Suppose Q is admissible and let
K be an S-tidy level structure K for GSpin(VDQ) (Definition 4.3.1). Abbreviate T := TS∪div(Q)

K,VDQ,O,m
, which

may be the zero ring. Also fix an isomorphism ι : Qp
∼−→ C inducing p. Then we write T for the set of

relevant automorphic representations Π of GSpin(VDQ)(A) with ΠKf ̸= 0 such that the Hecke action on
ι−1ΠKf factors through T. Recall from Corollary 2.7.8 that we have an embedding of T-algebras

(8.2) T ↪→
⊕
Π∈T

Qp(Π),

where Qp(Π) is Qp with Hecke action through the eigenvalues on ι−1ΠKf . By the same argument as [13,
Theorem 7.9.4], there exists a Galois representation

ρ : GQ,S∪div(Qp) → GSp4(T)

such that, for each Π ∈ T , the composite

GQ,S∪div(Qp)
ρ−→ GSp4(T)→ GSp4(Qp(Π))

is conjugate to the Galois representation ρΠ,ι from Remark 2.5.4.

Lemma 8.2.13. With notation as in (8.2.12), we have:
(1) The composite

GQ
ρ−→ GSp4(T)

ν−→ T×

is given by χp,cyc, and the corresponding O-algebra map rρ : R̃Qm → T factors through RQ.
(2) Suppose σ(DQ) is even. Then H3

ét(ShK(VDQ)Q, O(2))m is ρunivQ -typic when viewed as a RQ[GQ]-
module via (1).
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Proof. We have ν ◦ ρ = χp,cyc because each Π ∈ T has trivial similitude character by Lemma 4.3.2. To
complete the proof of (1), it suffices to show that all the composite maps

R̃Qm
rρ−→ T→ Qp(Π)

factor through RQ for Π ∈ T . Because Kp is hyperspecial, each ρΠ,ι|GQp is crystalline with Hodge-Tate
weights {−1, 0, 1, 2} by Theorem 2.2.10(2). So it suffices to check that ρΠ,ι|GQq is ordinary for all q|Q.
Indeed, ρΠ,ι|GQq is tamely ramified because ρπ is unramified, but ramified by Corollary 2.5.3(2) and Theorem
2.2.10(1). In particular, for any lift of Frobq ∈ GQq , ρΠ,ι(Frobq) has a pair of eigenvalues of ratio q. It
follows that ρΠ,ι|GQq is ordinary, and this shows (1).

For (2), by Proposition 8.1.2(1) and Theorem 2.7.5(2) it suffices to show H3
ét(ShK(VDQ)Q,Qp(2))m is

ρunivQ -typic. However, this is immediate from Corollary 2.7.7 and the construction of the map in (1); note
that each Π ∈ T is non-endoscopic because ρπ is absolutely irreducible. □

Definition 8.2.14. For any admissibleQwithσ(DQ) even and anyS-tidy level structureK forGSpin(VDQ),
we define HQ(K) = HomRQ[GQ]

(
Muniv
Q , H3

ét(ShK(VDQ)Q, O(2))m

)
.

Remark 8.2.15. In the context of Definition 8.2.14:
(1) By [98, Proposition 5.3] and Lemma 8.2.13(2), we have

H3
ét(ShK(VDQ)Q, O(2))m ≃Muniv

Q ⊗RQ HQ(K)

as RQ[GQ]-modules.
(2) Under the isomorphism of (1), we have, for all q|Q:

H1
(
IQq , H

3
ét(ShK(VDQ)Q, O(2))m

)
≃ H1(IQq ,M

univ
Q )⊗RQ HQ(K).

Lemma 8.2.16. SupposeQ is admissible withσ(DQ) even, andK is anS-tidy level structure forGSpin(VDQ).
Then for any q|Q, the ϖ-power-torsion of H1

(
IQq , H

3
ét(ShK(VDQ)Q, O(2))m

)
is contained in

H1
(
IQq , H

3
ét(ShK(VDQ)Q, O(2))m

)Frobq=1
≃ H1(IQq ,M

univ
Q )Frobq=1 ⊗RQ HQ(K) ≃ HQ(K)/(tq).

(The element tq ∈ RQ was defined in Lemma 8.2.8.)

Proof. By Lemma 8.2.8, we see that

H1(IQq ,M
univ
Q ) = RQ/(tq)⊕RQ(−1)⊕M1(−1)

as RQ-modules with Frobq-action, with M0 ⊕ M1 the decomposition of (8.1) for Muniv
Q . In particular,

Frobq −1 acts invertibly on RQ(−1) ⊕M1(−1). Since M1 is free over RQ and HQ(K) is ϖ-torsion-free
by Theorem 2.7.5(2), it follows that the ϖ-torsion part of H1(IQq ,M

univ
Q )⊗RQ HQ(K) is contained in(

H1(IQq ,M
univ
Q )⊗RQ HQ(K)

)Frobq=1
= H1(IQq ,M

univ
Q )Frobq=1 ⊗HQ(K) = HQ(K)/(tq),

as claimed.
□

Lemma 8.2.17. SupposeQ isn-admissible withσ(DQ) even, andK is anS-tidy level structure forGSpin(VDQ).
Then for all q|Q, all α0 ∈ HomRQ(HQ(K)/(tq), O/ϖ

n), and all z ∈ SC2
K(VDQ, O), we have

α0 ◦ resQq ◦ ∂AJ,m(z) ∈ ∂q(κn(Q;K)).
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Here resQq ◦ ∂AJm(z) is viewed as an element ofH1
(
IQq , H

3
ét(ShK(VDQ)Q, O(2))m

)Frobq=1
, which we

identify withHQ(K)/(tq) by Lemma 8.2.16; O/ϖn is viewed as an RQ-algebra via the map corresponding
to ρπ,n; and ∂q was defined in Notation 4.2.9.

Proof. By construction, Tπ,n and Muniv
Q ⊗RQ O/ϖn are isomorphic as O[GQ]-modules. Given a map α0 :

HQ(K)/(tq)→ O/ϖn, we obtain a corresponding map of Galois modules

α = id⊗ α0 : H
3
ét(ShK(VDQ)Q, O(2))m ≃Muniv

Q ⊗RQ HQ(K)→Muniv
Q ⊗RQ O/ϖ

n ≃ Tπ,n.

Let α∗ : H1
(
Q, H3

ét(ShK(VDQq)Q, O(2))m

)
→ H1(Q, Tπ,n) be the map induced by α. For any z ∈

SC2
K(VDQq, O), κn(Q;K) contains α∗(∂AJ,m)(z) ∈ H1(Q, Tπ,n). So the lemma follows from the commu-

tative diagram

H1
(
Q, H3

ét(ShK(VDQ)Q, O(2))m

)
H1
(
IQq , H

3
ét(ShK(VDQ)Q, O(2))m

)Frobq=1
H1(IQq ,M

univ
Q )Frobq=1 ⊗RQ HQ(K) HQ(K)/(tq)

H1(Q, Tπ,n) H1(IQq , Tπ,n)
Frobq=1 H1(IQq ,M

univ
Q )Frobq=1 ⊗RQ O/ϖn O/ϖn.

α∗

∼

α0

∼

α0

∼ ∼

□

8.3. Deformation theory: endoscopic case. For this subsection, we assume π is endoscopic, associated
to a pair (π1, π2) of automorphic representations of GL2 with discrete series archimedean components of
weights 2 and 4, in some order. In particular, we have ρπ = ρπ1 ⊕ ρπ2 .

Notation 8.3.1.
(1) Set Sπ := Tπ1 ⊗ Tπ2(−1) with the diagonal Galois action; for any n ≥ 1, we also write Sπ,n :=

Sπ ⊗O O/ϖn. Let

(8.3) H1
cris(Qp, Sπ,n) ⊂ H1(Qp, Sπ,n)

be the subspace of cocycles corresponding to extensions

0→ Tπ1,n → E → Tπ2,n → 0

such that E is torsion crystalline with Hodge-Tate weights in [−1, 2], cf. (1.5.4).
(2) For any squarefree Q ≥ 1 with p ∤ Q, define

SelGQ(Q, Sπ,n) := ker

H1(Q, Sπ,n)→
∏

ℓ̸∈S∪div(Qp)

H1(IQℓ , Sπ,n)×
H1(Qp, Sπ,n)

H1
cris(Qp, Sπ,n)

 .

When Q = 1 we drop it from the notation.

Lemma 8.3.2. Suppose Q ≥ 1 is admissible and let n ≥ 1 be any integer. Then SelGQ(Q, Sπ,n) =
SelG(Q, Sπ,n).

Proof. Fix q|Q. Since q is admissible, the eigenvalues of Frobq on Sπ,n ⊗ O/ϖ = T π1 ⊗ T π2(−1) are
of the form

{
α, α−1, qα−1, αq−1

}
for some α ∈ F×

p with α ̸= 1, q, q2, q−1. Thus H0(Qq, Sπ,n) =

H0(Qq, Sπ,n(1)) = 0 for all n, so H1(Qq, Sπ,n) = 0 for all n by the local Euler characteristic formula,
and the lemma follows. □

Notation 8.3.3. For an integer n ≥ 1, recall the notion of pseudorepresentations of degree n from [116,
Definition 2.1.1]. We use op. cit. as our basic reference for pseudodeformation theory, although some of the
relevant results are due to Bellaïche and Chenevier [5].
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(1) Let G be a group and R be a ring. If ρ : G→ GLn(R) is any representation, we write Dρ : G→ R
for the associated degree-n pseudorepresentation. A pseudorepresentation D : G→ R of degree n
is called reducible if it is equal to Dρ for a reducible representation ρ : G→ GLn(R).

(2) If Q ≥ 1 is squarefree, let

P̃sDef
Q

m : CNLO → Set

be the functor defined by

A 7→
{

pseudorepresentations D : GQ,S∪div(Qp) → A of degree 4 : D ⊗A k = Dρπ

}
,

where k = O/ϖ and ρπ is viewed as valued in GL4(k). Let PsDefQm ⊂ P̃sDef
Q

m be the subfunctor
of pseudorepresentations that are torsion crystalline at p with Hodge-Tate weights in [−1, 2] in the

sense of [116, Definition 2.5.4]. By Theorems 2.2.5 and 2.5.5 of op. cit., P̃sDef
Q

m and PsDefQm are
representable by universal pseudodeformation rings R̃Qm and RQm , respectively.

(3) Let J̃Qred ⊂ R̃Qm be the reducibility ideal defined in [116, Proposition 4.2.2(2)], and JQred ⊂ RQm its
image under the natural projection R̃Qm ↠ RQm .

Remark 8.3.4.
(1) The ideal J̃Qred is characterized by the property that, for any morphism f : R̃Qm → A in CNLO

corresponding to a pseudorepresentation D : GQ,S∪div(Qp) → A, D is reducible if and only if
f(J̃Qred) = 0.

(2) In what follows, we we will apply the results of [116, §4]. Although the discussion there is carried
out for residual representations which are a sum of two characters, as noted in Remark 4.3.6 of op.
cit., the results also apply for any residual representation which is multiplicity free with exactly 2
irreducible constituents, which includes ρπ by Lemma 4.1.8.

For all squarefree Q ≥ 1, let pQπ : RQm → O be the augmentation corresponding to ρπ.

Lemma 8.3.5. Suppose the Bloch-Kato Selmer group H1
f (Q, Vπ1 ⊗ Vπ2(−1)) vanishes. Then there is a

constant CRS ≥ 0 such that, for any admissible Q ≥ 1, there exists j ∈ Ann
RQm

(JQred) with pQπ (j) ̸≡ 0

(mod ϖC).

Proof. We know Fitt
RQm

(JQred) ⊂ Ann
RQm

(JQred). Then since Fitting ideals are stable under base change, it
suffices to show there exists C with ϖC ∈ FittO(J

Q
red ⊗pQπ O) for all Q, or equivalently that JQred ⊗pQπ O is

finite with uniformly bounded cardinality.
Let BQ and CQ be the finitely generated RQm -modules appearing in [116, p. 38] for the deformation

problem PsDefQm . By construction in [116, Proposition 4.2.2], we have a surjection BQ ⊗ CQ ↠ JQred, so
it suffices to show in turn that BQ ⊗

pQπ
O and CQ ⊗

pQπ
O are finite of uniformly bounded cardinality. Let

M be a finitely generated O-module. Because pQπ corresponds to the reducible Galois representation ρπ, we
have pQπ (JQred) = 0, so [116, Theorem 4.3.5] gives canonical isomorphisms

HomO(B
Q ⊗

pQπ
O,M) ∼= Ext1O[GQ],CQ(Tπ2 , Tπ1 ⊗OM)

HomO(C
Q ⊗

qQπ
O,M) ∼= Ext1O[GQ],CQ(Tπ1 , Tπ2 ⊗OM).

(8.4)

Here CQ is the full subcategory of finitely generatedO[GQ]-modules which are unramified outsideS∪div(Qp)
and all of whose finite subquotients are torsion crystalline with Hodge-Tate weights in [−1, 2].

In particular, for all n ≥ 1,

HomO(B
Q ⊗

pQπ
O,O/ϖn) = HomO(C

Q ⊗
pQπ
O,O/ϖn) = SelGQ(Q, Sπ,n).
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We conclude thatBQ⊗
pQπ
O and CQ⊗

pQπ
O are isomorphic, and by Lemma 8.3.2, they are also independent

of Q; so take Q = 1 without loss of generality. Then by Proposition 1.5.5,

HomO(B
1 ⊗p1π O,O)⊗Qp = Ext1O[GQ],C1(Tπ2 , Tπ1)⊗Qp = H1

f (Q, Vπ1 ⊗ Vπ2(−1)) = 0.

Since B1 ⊗p1π O is a finitely generated O-module, it follows that B1 ⊗p1π O is finite, as desired. □

8.3.6. We now study deformations of each ρπi . As in the non-endoscopic case, we will apply the results and
notations of Appendix B to ρπi , which we view as valued in GL2(O). In the same way as Lemma 8.2.1, we
obtain:

Lemma 8.3.7. For i = 1, 2, the representation ρπi satisfies Assumptions B.1.3 and B.1.5 from Appendix B.

8.3.8. For each prime ℓ, let Rℓ,i be the local deformation ring for ρπi as in Notation B.1.4. If q is BD-
admissible for ρπi (Definition 4.2.5), let Rord

q,i be the Steinberg quotient of Rq,i in the sense of [72, §2].

Lemma 8.3.9. The ring Rord
q,i is formally smooth over O of dimension 3.

Proof. Immediate from [102, Proposition 5.5]. □

8.3.10. In light of Lemma 8.3.9, we take the “admissible” primes in Notation B.2.4 to be the BD-admissible
ones for ρπi . Then the notion of n-admissible in Definition B.2.5(3) coincides with the notion of n-BD-
admissible from Definition 4.2.5; we will always say n-BD-admissible to avoid confusion.

Notation 8.3.11.
(1) For i = 1, 2 and a squarefree integer Q ≥ 1 coprime to p, let R̃Qm,i be the global deformation ring of

ρπi : GQ,S∪div(Qp) → GL2(O/ϖ),

with fixed determinant χcyc
p .

(2) Let RQi and – when Q is BD-admissible for ρπi – RQ,i be the quotients of R̃Qm,i defined in Notation
B.4.4(2,3). (We are identifying Q with div(Q) for notational convenience.)

(3) Let ρunivQ,i : GQ,S∪div(Qp) → GL2(RQ,i) be a framing of the universal deformation, with underlying
RQ,i[GQ]-module Muniv

Q,i .

8.3.12. As in the non-endoscopic case, let prp : IQq → Zp(1) be the maximal pro-p quotient. By the
construction of Rord

q,i , we have:

Lemma 8.3.13. Suppose Q ≥ 1 is BD-admissible for ρπi , and q|Q is a prime. Then there exists a basis for
Muniv
Q,i and an element tq ∈ RQ,i such that

ρunivQ,i |GQq =

(
χcyc
p ∗
0 1

)
,

and
ρunivQ,i (g) =

(
1 prp(g)tq
0 1

)
, ∀g ∈ IQq .

Definition 8.3.14. If Q and q ∤ Q are BD-admissible for ρπi :
(1) Define Pq,i(T ) = det(ρunivQ (Frobq)− T ) ∈ RQ,i[T ].
(2) Define Rcong

Q,q,i := RQ,i ⊗RQqm,i
RQq,i.

The same proof as Lemma 8.2.10 shows:
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Lemma 8.3.15. Suppose Q and q ∤ Q are BD-admissible for ρπi . Then

Rcong
Q,q,i = RQ,i/(Pq,i(q)) = RQq,i/(tq).

Lemma 8.3.16. Suppose q is n-BD-admissible for ρπi . Then

H1(Qq, ad
0 ρπi,n) = H1

ord(Qq, ad
0 ρπi,n)⊕H1

unr(Qq, ad
0 ρπi,n),

in which each factor is free of rank one over O/ϖn. In particular, q is standard in the sense of Definition
B.4.7.

Proof. Let Frobq ∈ GQq be a lift of Frobenius, and let τq ∈ IQq be an element such that prp(τq) = 1. Then,
with respect to the basis in Lemma 8.3.13, H1(Qq, ad

0 ρπi,n) is spanned by the following two cocycles:

Frobq 7→
(
1 0
0 −1

)
, τq 7→ 0

Frobq 7→ 0, τq 7→
(
0 1
0 0

)
.

The first generates H1
unr(Qq, ad

0 ρπi,n) and the second H1
ord(Qq, ad

0 ρπi,n); also, both cocycles are clearly
not ϖn−1-torsion, and the lemma follows. □

8.3.17. For the next two lemmas, we introduce some temporary notation. Let Q ≥ 1 be admissible, let K
be an S-tidy level structure for GSpin(VDQ), and abbreviate T := TS∪div(Q)

K,VDQ,O,m
, which may be the zero ring.

Also fix an isomorphism ι : Qp
∼−→ C inducing the prime p of E0. Then we write T for the set of relevant

automorphic representations Π of GSpin(VD)(A) such that ΠKf ̸= 0, and the Hecke action on ι−1ΠKf factors
through T. By Corollary 2.7.8, we have the embedding of T-algebras

(8.5) T ↪→
⊕
Π∈T

Qp(Π),

where Qp(Π) has Hecke action through the eigenvalues on ι−1ΠKf . Then by [22, Corollary 1.14], there is a
canonical pseudorepresentation

(8.6) DQ : GQ,S∪div(Qp) → T,

such that for allΠ ∈ T , the composite ofDQ with the character λΠ : T→ Qp(Π) is the pseudorepresentation
associated to ρΠ,ι. Finally, let Tend ⊂ T be the subset of endoscopic representations, and let T be the quotient
of T defined by the actions on Π ∈ Tend.

Lemma 8.3.18.
(1) The pseudodeformation DQ is induced by an O-algebra morphism RQm → T.
(2) The composite RQm → T→ T factors through RQm/JQred.

Proof. By definition, DQ is induced by an O-algebra morphism d : R̃Qm → T. By (8.5), to prove (1) it
suffices to show each composite map R̃Qm

d−→ T λΠ−−→ Qp factors through RQm , with λΠ as in (8.3.17); but this
is clear because Kp is hyperspecial, so ρΠ,ι is crystalline at p for all such Π. Similarly, for (2) it suffices to
note that λΠ ◦ d annihilates JQred for all Π ∈ Tend, because ρΠ,ι is reducible. □

8.3.19. Let

(8.7) RQm/J
Q
red → RQ1,1 ⊗O RQ2,2

be the canonical map, defined on moduli problems by sending a pair of deformations ρ1, ρ2 of ρπ1 and ρπ2
to the pseudorepresentation Dρ1⊕ρ2 . It follows from [116, Proposition 4.2.6] that (8.7) is surjective.
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Lemma 8.3.20. Write Q = Q1 ·Q2 such that each q|Qi is BD-admissible for ρπi (Remark 4.2.6(2)). Then:

(1) The map RQm/JQred → T induced by Lemma 8.3.18(2) factors through the surjection (8.7). In partic-
ular, T is an RQi,i-module for i = 1, 2.

(2) Assume σ(DQ) is even. For any j ∈ Ann
RQm

(JQred), the T-action on

jH3
ét(ShK(VDQ)Q, O(2))m

factors through T, and as a T-module, jH3
ét(ShK(VDQ)Q, O(2))m is

(ρunivQ1,1 ⊗RQ1,1
T, ρunivQ2,2 ⊗RQ2,2

T)-typic.

Proof. Arguing as in Lemma 8.3.18, for (1) it suffices to consider the pseudorepresentations attached to
Π ∈ Tend. Suppose Π is associated to a pair (τ1, τ2) of automorphic representations of GL2(A), and fix an
isomorphism ι : Qp

∼−→ C inducing p. Then ρΠ,ι = ρτ1,ι ⊕ ρτ2,ι. We have ρτ1,ι ⊕ ρτ2,ι ∼= ρπ1,ι ⊕ ρπ2,ι, and
since ρπi,ι are both absolutely irreducible, without loss of generality we may assume ρτi,ι ∼= ρπi,ι, i = 1, 2.
By Lemma 2.2.9 and Fontaine-Laffaille theory, πi,∞ and τi,∞ have the same weight.

By Corollary 2.5.3(2) and Theorem 2.2.10(1), (ρτ1,ι ⊕ ρτ2,ι)|GQq is ramified for all q|Q. It then follows
from [102, Propositions 5.3, 5.5] that ρτi,ι|GQq is ordinary for all q|Qi, and unramified for all q|Q/Qi. It is
also clear from Lemma 4.3.2 and Theorem 2.2.10(3) that det ρτi,ι = χcyc

p , and ρπi,ι and ρτi,ι have the same
Hodge-Tate weights by Theorem 2.2.10(2). Hence ρτi,ι arises from a deformation parametrized by RQi,i,
and this proves (1).

For (2), by Proposition 8.1.2(2) and Theorem 2.7.5(2), it suffices to show that jH3
ét(ShK(VDQ)Q,Qp(2))m

is (ρunivQ1,1
⊗RQ1,1

T, ρunivQ2,2
⊗RQ2,2

T)-typic.
For this, we use the decomposition of Corollary 2.7.7:

H3
ét(ShK(VDQ)Q,Qp(2))m =

⊕
Πf

ι−1ΠKf ⊗ ρΠf ,

as Πf ranges over finite parts of automorphic representations Π ∈ T . This is a decomposition of RQm [GQ]-
modules, where RQm acts on the factor ι−1ΠKf ⊗ ρΠf via the map λΠ : RQm → T→ Qp(Π) corresponding to
the pseudorepresentation of ρΠ,ι (equivalently, to the Hecke eigenvalues of ΠKf ). In particular, λΠ(JQred) =
0 if and only if ρΠ,ι is reducible, which by Lemma 2.2.12 and Remark 4.1.2 occurs if and only if Π is
endoscopic. Because the element j ∈ RQm annihilates JQred, it then suffices to show that, for all relevant
endoscopic automorphic representations Π ∈ Tend associated to a pair (τ1, τ2), ρΠf is either ρunivQ1,1

⊗RQ1,1
T-

typic or ρunivQ2,2
⊗RQ2,2

T-typic as a T[GQ]-module. However, as ρΠf = ρτ1,ι or ρτ2,ι by Corollary 2.7.7, this
is clear from the construction of the map RQ1,1 ⊗O RQ2,2 → T. □

Definition 8.3.21. Let Q be admissible, with a factorization Q = Q1 · Q2 such that σ(DQ) is even and
all q|Qi are BD-admissible for ρπi . Fix an S-tidy level structure K for GSpin(VDQ), and an element j ∈
Ann

RQm
(JQred). Then we define

HQ(K, j)
(i) = HomRQi,i[GQ](M

univ
Qi,i , jH

3
ét(ShK(VDQ)Q, O(2))m)

for i = 1, 2.

Remark 8.3.22. In the context of Definition 8.3.21, by [98, Proposition 5.3] and Lemma 8.3.20(2), we have

jH3
ét(ShK(VDQ)Q, O(2))m ≃Muniv

Q1,1 ⊗RQ1,1
HQ(K, j)

(1) ⊕Muniv
Q2,2 ⊗RQ2,2

HQ(K, j)
(2).
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Lemma 8.3.23. In the context of Definition 8.3.21, let q|Qi be a prime. Then under the natural isomorphism

H1
(
IQq , H

3
ét(ShK(VDQ)Q, O(2))m

)
≃ H1(IQq ,M

univ
Q1,1)⊗RQ1,1

HQ(K, j)
(1)⊕

H1(IQq ,M
univ
Q2,2)⊗RQ2,2

HQ(K, j)
(2),

the ϖ-power torsion of H1
(
IQq , jH

3
ét(ShK(VDQ)Q, O(2))m

)
is contained in

H1
(
IQq , jH

3
ét(ShK(VDQ)Q, O(2))m

)Frobq=1
≃ H1(IQq ,M

univ
Qi,i )

Frobq=1 ⊗RQi,i HQ(K, j)
(i)

≃ HQ(K, j)
(i)/(tq).

(The element tq ∈ RQi,i was defined in Lemma 8.3.13.)

Proof. Without loss of generality, suppose i = 1. Then ρunivQ2,2
|GQq is unramified, so by Lemma 8.3.13, we

have

H1(IQq ,M
univ
Qi,i ) =

{
RQ1,1/(tq) ⊕RQ1,1(−1), i = 1,

Muniv
Q2,2

(−1), i = 2.

Since HQ(K, j)
(1) and HQ(K, j)

(2) are ϖ-torsion-free by Theorem 2.7.5(2), the lemma follows as in the
proof of Lemma 8.2.16. □

Lemma 8.3.24. In the context of Definition 8.3.21, for all j ∈ Ann
RQm

(JQred), all z ∈ SC2
K(VDQ, O), all

q|Qi, and all α0 ∈ HomRQi,i
(HQ(K, j)

(i)/(tq), O/ϖ
n), we have

α0 ◦ j∗ ◦ resQq ◦ ∂AJ,m(z) ∈ ∂q(κn(Q;K)).

Here,

(8.8) j∗ : H
1(IQq , H

3
ét(ShK(VDQ)Q, O(2))m)→ H1(IQq , jH

3
ét(ShK(VDQ)Q, O(2))m)

is the natural map, and O/ϖn is viewed as an RQi,i-algebra through the map corresponding to ρπi,n.

Proof. For any α0 ∈ HomRQi,i
(HQ(K; j)(i)/(tq), O/ϖ

n), we obtain a corresponding induced map of Ga-
lois modules

α = id⊗ α0 :M
univ
Qi,i ⊗RQi,i HQ(K; j)(i) →Muniv

Qi,i ⊗RQi,i O/ϖ
n = Tπi,n.

Then by the decomposition from Remark 8.3.22, we can also view α as a map of Galois modules

jH3
ét(ShK(VDQ)Q, O(2))m → Tπi,n.

Let (α ◦ j)∗ be the induced map

H1(Q, H3
ét(ShK(VDQ)Q, O(2))m)→ H1(Q, Tπi,n).

For any z ∈ SC2
K(VDQ, O), κDn (Q;K) contains

(α ◦ j)∗(∂AJ,m(z)) ∈ H1(Q, Tπi,n) ↪→ H1(Q, Tπ,n).

The lemma now follows as in the proof of Lemma 8.2.17. □



106 NAOMI SWEETING

8.4. A test function calculation. For this subsection, we fix the following additional data:
◦ An integer n ≥ 1.
◦ A squarefree integer D ≥ 1 with div(D) ⊂ S, and an n-admissible Q ≥ 1 coprime to D, such that
σ(DQ) is odd.
◦ An n-admissible prime q ∤ Q.
◦ AnS-level structureK forGSpin(VDQ). LetL ⊂ VDQ⊗Qq be the unique self-dual lattice stabilized

by Kq.
◦ A Zq-basis {v0, v1, v2, v∗1, v∗2} for L as in (5.1.2), which identifies VDQ ⊗Qq with the standard split

five-dimensional quadratic space over Qq.
We will apply the results and notations of §7, with the D therein always replaced by DQq. However, we do
not yet specify the choice of q-adic uniformization datum for VDQq. The goal of this subsection is the crucial
Lemma 8.4.6.

8.4.1. Let φ(0)
q , φ

(1)
q , φ⋆q , φ

tot
q ∈ S(V 2

DQ ⊗ Qq,Z) be as in (7.7.1). We also let φ?
q ∈ S(V 2

DQ ⊗ Qq,Fp) be
the reduction of φ?

q for ? = (0), (1), ⋆, tot.

Notation 8.4.2. Without loss of generality, we write the almost level-raising generic character χ from Propo-
sition 5.6.2 as

(8.9) χ = | · |1/2 ⊠ α : (Q×
q )

2 → F×
p ,

where α2 ̸= | · |±1.

Then we can consider condition (Cχ) from Definition 5.4.3, for φtot
q :

(Cχ) There exists g ∈ Mp4(Qq) such that fχ(ωψ(1, g)φtot
q ) ̸= 0, where

fχ :
(
(| · |−

1
2 )⊠2 ⊠ χψ · (| · |

1
2 )⊠2

)
⊗ S(Q2

q ,Fp)→ χ⊠ χψ · χ−1

is the unique projection deduced from Lemma 5.2.1.

Lemma 8.4.3. The test function φtot
q satisfies condition (Cχ).

Proof. Let g ∈ Mp4(Qq) be a lift of the Weyl element
0 0 1 0
0 1 0 0
−1 0 0 0
0 0 0 1

 ∈ Sp4(Qq)

in the standard basis {e1, e2, e∗1, e∗2}. Then for some unit u ∈ F×
p , we have

ωψ(1, g)φ(x, y) = u

∫
z∈VDQ⊗Qq

φ(z, y)ψ(x · z)dz

for all
φ ∈ S(V 2

DQ ⊗Qq,Fp).

Notice that, since χ = | · |
1
2 ⊠ α, the projection

fχ :
(
(| · |−

1
2 )⊠2 ⊠ χψ · (| · |

1
2 )⊠2

)
⊗ S(Q2

q ,Fp)→ χ⊠ χψ · χ−1
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is the composite of the integration map
int : S(Q2

q ,Fp)→ S(Qq,Fp)

φ 7→
(
t 7→

∫
φ(t1, t)dt1

)
and the projection

fα|·|1/2 : S(Qq,Fp)→ α| · |1/2 ⊠ α−1| · |−1/2.

Abbreviate
s? = u−1 int

(
ωψ(1, g)φ

?
q

)
∈ S(Qq,Fp)

for ? = (0), (1), ⋆, tot. We will compute stot explicitly to show fα|·|1/2(s
tot) ̸= 0, which will prove the

lemma. By definition we have

s?(t) =

∫
t1∈Qq

∫
a∈Qq

∫
z∈VDQ⊗Qq

φ?
q(z, tv2 + av1)ψ(t1z · v1)dzdadt1.

Note that φ?
q(z, tv2 + av1) depends on z modulo q2L only, so the inner integral is nonzero only on the set{

t1 ∈ q−2Zq
}

. We may therefore reorder the integrals and obtain

s?(t) =

∫
z∈L

∫
a∈q−1Zq

∫
t1∈q−2Zq

φ?
q(z, tv2 + av1)ψ(t1z · v1)dt1dadz

= q2
∫
z∈L

∫
a∈q−1Zq

φ?
q(z, tv2 + av1) · 1z·v1∈q2Zqdadz.

For the inner integral to be nonzero, we must have z · tv2 ∈ Z×
q and t ∈ q−1Zq. In particular, since z and

v2 lie in L, s?(t) is supported on q−1Z×
q ⊔Z×

q . At this point, we are ready to compute the following table of
values for s?(t):

s(0)(t) s(1)(t) s⋆(t) stot(t)

q−1Z×
q 0 q−1

q4
(q2−1)(q−1)

q4
(q−1)2

q3

Z×
q

q−1
q2

0 (q−1)2

q2
0

The fourth column is determined by the first three by

stot = s⋆ + (1− q)(s(0) + s(1)).

On the other hand, the given values for stot(t) immediately imply fα|·|1/2(stot) ̸= 0 for any α ̸= | · |−
1
2 .

It remains to explain the calculation of the first three columns. First, since φ(0)
q (z, tv2 + av1) = 0 unless

tv2 + av1 ∈ L, we have s(0)(t) = 0 for t ∈ q−1Z×
q . For t ∈ Z×

q , we have

(8.10) s(0)(t) = q2Vol
{
z ∈ L− qL : z · v2 ∈ Z×

q , z · v1 ∈ q2Zq, z · z ∈ qZq
}
.

Label the set in (8.10) by S(0) and let S(0) be its image in L/qL. Write z, v1, v2 for the reductions in
L/qL.

Then S(0) is the set of z ∈ L/qL that are isotropic, and orthogonal to v1 but not v2. Now, there are
q3 = q2 · q isotropic vectors in L/qL orthogonal to v1 since v⊥1 /v1 is a split quadratic space over Fq of
dimension three. Of these, q2 are also orthogonal to v2; these are just the vectors in spanFq {v1, v2}, since
the latter is a maximal isotropic subspace. So

#S
(0)

= q3 − q2.

On the other hand, given any z0 ∈ S
(0), we have

Vol
{
z ∈ S(0) : z = z0

}
=

1

q6
.
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(It is almost the full coset z0+qL, which has volume 1
q5

, except that we must ensure that z remains orthogonal
to v1 modulo q2; this cuts down the volume by a factor of q.) So

Vol(S(0)) =
q3 − q2

q6
=
q − 1

q4
,

and

s(0)(t) = q2Vol(S(0)) =
q − 1

q2
for t ∈ Z×

q .

Next let us consider s(1)(t). Since φ(1)
q (z, tv2+av1) ·1z·v1∈q2Zq , when restricted to a ∈ q−1Zq, is supported

on z ∈ qL such that z · tv2 ∈ Z×
q , we see that s(1)(t) = 0 for t ∈ Z×

q . For t ∈ q−1Z×
q , we have

s(1)(t) = q2Vol
{
z ∈ qL, a ∈ q−1Zq : z · v2 ∈ qZ×

q , z · v1 ∈ q2Zq
}
.

(Note that the condition z · z ∈ qZq in the definition of X (7.27) is automatic from z ∈ qL.) Then replacing
z with z

q , we have

s(1)(t) =
q3

q5
Vol

{
z ∈ L : z · v2 ∈ Z×

q , z · v1 ∈ qZq
}

=
q3

q10
# {z ∈ L/qL : z ⊥ v1, z ̸⊥ v2}

=
q3

q10
· (q4 − q3) = q − 1

q4
.

Finally, consider s⋆(t). For t ∈ Z×
q , we have

s⋆(t) = q2Vol
{
z ∈ L− qL, a ∈ q−1Z×

q : z · v2 ∈ Z×
q , z · v1 ∈ q2Zq

}
= q2(q − 1)Vol

{
z ∈ L : z · z ∈ qZq, z · v2 ∈ Z×

q , z · v1 ∈ q2Zq
}
.

This is the same set that appeared for s(0)(t), so we have

s⋆(t) = (q − 1)s(0)(t) =
(q − 1)2

q2
for t ∈ Z×

q .

For t ∈ q−1Z×
q , we have

s⋆(t) = q2Vol
{
z ∈ L− qL, a ∈ q−1Zq : z · z ∈ qZq, z · v2 ∈ qZ×

q , z · v1 ∈ q2Zq
}

= q3Vol
{
z ∈ L− qL : z · z ∈ qZq, z · v2 ∈ qZ×

q , z · v1 ∈ q2Zq
}
.

(8.11)

To compute this, we use the same technique as for s(0). Let S⋆ be the set in the second line of (8.11) and let
S
⋆ be its image in L/qL. Then S⋆ consists of nonzero isotropic vectors in L/qL orthogonal to v2 and v1, of

which there are q2 − 1. On the other hand, for z0 ∈ S
⋆, we have

Vol {z ∈ S⋆ : z = z0} =
q − 1

q7
:

this is because, out of the coset z0+qL, we must take only those vectors with z ·v2 ∈ qZ×
q and z ·v1 ∈ q2Zq.

So

s⋆(t) = (q2 − 1) · q − 1

q7
· q3 = (q − 1)(q2 − 1)

q4
for t ∈ q−1Z×

q ,

as desired. □
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8.4.4. Now we return to the geometric setting of §7. We will write m := m
S∪div(Qq)
π,p ⊂ TS∪div(Qq)O .

Lemma 8.4.5. The maximal ideal m ⊂ TS∪div(Qq)O is generic and non-Eisenstein, and weakly q-generic
(Definition 7.3.9).

Proof. That m is generic and non-Eisenstein follows from Lemma 4.1.7. Then by Corollary 2.7.8, it suffices
to show that ⟨q⟩T 2

q,2 − 4q2(q + 1)2 ̸∈ mS
π,p ⊂ TSO. Indeed, this holds by Remark 7.3.10, because the

admissibility of q implies tr(Frobq |ρπ) ̸= ±2(q + 1). □

In particular, we can consider, for any choice of q-adic uniformization datum for VDQq, the map

(8.12) ξ := ∇ ◦ ζ :M−1H
1
(
IQq , H

3
ét(ShKqKram

q
(VDQq)Q, O(2))m

)
↠

O
[
ShKqKq(VDQ)

]
m

(Tlr)

from Theorem 7.4.7; here we use that ⟨q⟩ = 1 on O
[
ShKqKq(VD/q)

]
m

by Lemma 4.3.2. (The map ξ, and
the identification of Kq with a compact open subgroup of GSpin(VDQq)(Aqf ), both depend on the choice of
uniformization datum.)

The following is the crucial lemma for the proof of Theorems 8.5.1 and 8.5.2.

Lemma 8.4.6. Suppose Qq is n-admissible. Then there exists a test function α ∈ TestK(VDQ, π,O/ϖ
n),

a q-adic uniformization datum for VDQq, and a special cycle z ∈ SCKqKram
q

(VDQq, O) such that

α ◦ ξ ◦ resQq(∂AJ,m(z)) ∈ O/ϖn

generates λn(Q;K).

Here we are using Theorem 7.1.11 to apply ξ to resQq(∂AJ,m(z)).

Proof. By Corollary 5.6.3 and Lemma 8.4.3, we conclude
λDn (Q;K) = λDn (Q,φ

q ⊗ φtot
q ;K)

for some φq ∈ S(V 2
DQ ⊗ Aqf , O)K

q . Then by definition, there exists a test vector

α ∈ TestK(VDQ, π,O/ϖ
n)

such that α(Z(T, φq ⊗ φtot
q )K) generates λn(Q;K), for some T ∈ Sym2(Q)≥0.

Now note that, for any choice of uniformization datum, α ◦ ξ gives a well-defined map

M−1H
1
(
IQq , H

3
ét(ShKqKram

q
(VDQq)Q, O(2))m

)
↠

O
[
ShKqKq(VDQ)

]
m

(Tlr)
↠ O/ϖn

because α(Tlr) ⊂ (ϖn) by Remark 7.4.6.
Then the lemma is immediate from Theorem 7.7.2.

□

8.5. Conclusions. Finally, we are ready to prove the main results for this section. We start with the non-
endoscopic case.

Theorem 8.5.1. Suppose π is not endoscopic. Fix an integer m ≥ 1, and let n0 = n0(m, ρπ) satisfy the
conclusion of Lemma B.4.5. Suppose Q ≥ is n-admissible and q ∤ Q is an n-admissible prime, where
n ≥ max {3m,n0}, such that σ(DQ) is odd.

(1) Suppose SelF(Q)(Q, ad0 ρm) = 0. Then

∂qκ
D
n (Qq) ⊃ λDn (Q) · (ϖC),

where
C = 2 lgO SelF(Q)rel(Q, ad0 ρn−m+1) +m− 1.



110 NAOMI SWEETING

(2) Suppose there exists q′|Q which is not (n+1)-admissible, such thatQ/q′ is (n+m)-admissible and

SelF(Q/q′)(Q, ad0ρm) = SelF(Qq)(Q, ad0ρm) = 0,

but
SelF(Q)(Q, ad0ρ2m−1) ̸= 0.

Then
∂qκ

D
n (Qq) ⊃ λDn (Q) ·ϖC ,

where C = 2(m− 1) + lgOSelF(Qq)rel(Q, ad0ρn−m+1).

Proof. Choose an S-tidy level structure K for GSpin(VDQ) such that λDn (Q;K) = λDn (Q) (possible by
Lemma 4.4.7), and fix a q-adic uniformization datum for VDQq, a special cycle z ∈ SC2

KqKram
q

(VDQq), and
a test function α ∈ TestK(VDQ, π,O/ϖ

n) satisfying the conclusion of Lemma 8.4.6; in particular, we have

(8.13)
(
α ◦ ξ ◦ resQq(∂AJ,m(z))

)
= λDn (Q).

Now note that
M−1H

1
(
IQq , H

3
ét(ShKqKram

q
(VDQq)Q, O(2))m

)
is ϖ-power-torsion because H3

ét(ShKqKram
q

(VDQq)Q,Qp(2))m is pure as a GQq representation by Corollary
2.7.7 and Theorem 2.2.10(1). Hence by Lemma 8.2.16 and Theorem 7.4.7, we have a diagram:

(8.14)
M−1H

1
(
IQq , H

3
ét(ShKqKram

q
(VDQq)Q, O(2))m

)
HQq/(tq)

HQ/(T
lr
q ),

ξ

where we set
HQ := O [ShK(VDQ)]m , HQq := HQq(K

qKram
q )

(Definition 8.2.14). By Remark 7.4.6, (Tlrq ) = (Pq(q)) as ideals of TS∪div(Q)
K,VDQ,m

. Hence by Lemmas 8.2.10 and
8.2.13, the diagram (8.14) is a diagram of Rcong

Q,q -modules. Let Q′ = Q in case (1) and Q′ = Qq in case (2),
and define an element a ∈ RQ′ as follows. Let τQ′ : GQ → GSp4(O) be the representation constructed by
Theorem B.2.12, and let IQ′ ⊂ RQ′ be the kernel of the corresponding homomorphism fQ′ : RQ′ → O. By
Lemma B.4.5, we may fix an element a ∈ AnnRQ′ (IQ′) such that

(8.15) ordϖfQ′(a) ≤ lgO SelF(Q′)rel(Q, ad0 ρn−m+1).

By the definition of C in each case of the theorem, we may assume without loss of generality that

lgO SelF(Q′)rel(Q, ad0 ρn−m+1) < n−m+ 1.

Let fπ : RQm → O be the map corresponding to ρπ. Since fQ′ ≡ fπ (mod ϖn−m+1) by Theorem B.2.12(1),
we then have

(8.16) ordϖfπ(a) ≤ lgO SelF(Q′)rel(k, ad
0 ρn).

Applying a to the diagram (8.14) of RQ′-modules, we obtain a diagram

(8.17)
a ·M−1H

1
(
IQq , H

3
ét(ShKqKram

q
(VDQq)Q, O(2))m

)
a · (HQq/(tq))

a ·
(
O [ShK(VDQ)]m /(T

lr
q )
)
= aHQ/(aHQ ∩ fQ′(Tlrq )HQ).

ξ
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Suppose first we are in case (1). Because a annihilates IQ, Lemma 8.2.10 implies that (8.17) is a diagram
of Rcong

Q,q ⊗RQ,fQ O = O/fQ(T
lr
q )-modules. Note that

aHQ

afQ(Tlrq )HQ

is free over O/fQ(Tlrq ) because HQ, hence aHQ, is ϖ-torsion-free. Since the natural surjection

(8.18)
aHQ

afQ(Tlrq )HQ
↠

aHQ

aHQ ∩ fQ(Tlrq )HQ

has kernel annihilated by fQ(a), we conclude that

(8.19) fQ(a) · Ext1O/fQ(Tlrq )
(−, aHQ/(aHQ ∩ fQ(Tlrq )) = 0.

In particular, by (8.17), there exists a map ξ̃ : a · (HQq/(tq)) → aHQ/(aHQ ∩ fQ(Tlrq )HQ) fitting into the
following commutative diagram.

a ·M−1H
1
(
IQq , H

3
ét(ShKqKram

q
(VDQq)Q, O(2))m

)
a · (HQq/(tq))

aHQ/(aHQ ∩ TlrqHQ)

fQ(a)·ξ
ξ̃

Recall the test function α ∈ TestK(VDQ, π,O/ϖ
n) fixed above, and let β denote the composite map

HQq/(tq)
a−→ a · (HQq/(tq))

ξ̃−→ aHQ/(aHQ ∩ TlrqHQ)
α−→ O/ϖn.

By Lemma 8.2.17 and (8.13), we conclude

(8.20) ∂qκ
D
n (Qq) ⊃ (β(∂AJ,m(z))) =

(
α ◦ a2ξ ◦ resQq(∂AJ,m(z))

)
= fπ(a)

2λDn (Q).

Then the theorem follows from (8.16).
For case (2), (8.17) is a diagram of Rcong

Q,q ⊗RQq ,fQq O = O/fQq(tq)-modules. By Lemma 8.2.11, all
admissible primes are standard in the sense of Definition B.4.7, so by Lemma B.4.8, we have

(8.21) fQq(tq) ̸≡ 0 (mod ϖn+m).

In particular, (8.17) is a commutative diagram of O/ϖn+m−1-modules. Because

ϖm−1Ext1O/ϖn+m−1(−, O/ϖn) = 0,

we conclude that there exists a map α̃ : a · (HQq/(tq)) → O/ϖn fitting into the following commutative
diagram:

a ·M−1H
1
(
IQq , H

3
ét(ShKqKram

q
(VDQq)Q, O(2))m

)
a · (HQq/(tq))

O/ϖn

α◦ξ◦ϖm−1

α̃

A priori, α̃ is only equivariant with respect to fQq, but fπ ≡ fQq (mod ϖn−m+1). Multiplying byϖm−1,
we then obtain an fπ-equivariant map

ϖm−1(α̃ ◦ a) : HQq/(tq)→ O/ϖn.
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Hence by Lemma 8.2.17 and (8.13), we conclude

∂qκ
D
n (Qq) ⊃ ϖm−1

(
α̃ ◦ a ◦ resQq(∂AJ,m(z))

)
= ϖ2(m−1)

(
α ◦ ξ

(
a · resQq ∂AJ,m(z)

))
= ϖ2(m−1)fπ(a)

(
α ◦ ξ ◦ resQq ∂AJ,m(z)

)
= ϖ2(m−1)fπ(a)λ

D
n (Q).

Combined with (8.16), this completes the proof in case (2). □

Theorem 8.5.2. Suppose π is endoscopic associated to a pair (π1, π2). AssumeH1
f (Q, Vπ1,p⊗Vπ2,p(−1)) =

0, and let CRS be as in Lemma 8.3.5.
Fix an integerm ≥ 1, letn0 = n0(m, ρπ1) satisfy the conclusion of Lemma B.4.5, and letn ≥ max {3m,n0}

be an integer. Suppose Q = Q1 · Q2 is n-admissible such that Q1 is BD-admissible for ρπ1 , Q2 is BD-
admissible for ρπ2 , and σ(DQ) is odd. Let q ∤ Q be an n-admissible prime, BD-admissible for ρπi .

(1) Suppose SelF(Qi)(Q, ad
0ρπi,m) = 0. Then

∂qκ
D
n (Qq) ⊃ λDn (Q) ·ϖC ,

where
C = 2lgOSelF(Qi)rel(Q, ad

0ρπi,n−m+1) + 2CRS +m− 1.

(2) Suppose there exists a prime q′|Qi which is not (n + 1)-admissible such that Qi/q′ is (n + m)-
admissible and

SelF(Qi/q′)(Q, ad
0ρπi,m) = SelF(Qiq)(Q, ad

0ρπi,m) = 0

but
SelF(Qi)(Q, ad

0ρπi,2m−1) ̸= 0.

Then
∂qκ

D
n (Qq) ⊃ λDn (Q) ·ϖC ,

where
C = lgOSelF(Qiq)rel(Q, ad

0ρπi,n−m+1) + CRS + 2(m− 1).

Proof. First, choose the S-tidy level structure K for GSpin(VDQ) such that λDn (Q;K) = λDn (Q) (possible
by Lemma 4.4.7). Then fix a q-adic uniformization datum for VDQq, a special cycle z ∈ SC2

KqKram
q

(VDQq),
and a test function α ∈ TestK(VDQ, π,O/ϖ

n) satisfying the conclusion of Lemma 8.4.6; in particular, we
have (

α ◦ ξ ◦ resQq(∂AJ,m(z))
)
= λDn (Q).

We also fix j ∈ Ann
RQqm

(JQqred) satisfying the conclusion of Lemma 8.3.5.

As in the proof of Theorem 8.5.1, M−1H
1
(
IQq , H

3
ét(ShKqKram

q
(VDQq)Q, O(2))m

)
is ϖ-power-torsion,

hence j∗M−1H
1
(
IQq , H

3
ét(ShKqKram

q
(VDQq)Q, O(2))m

)
is as well, where j∗ is as in (8.8). Since the kernel

of (8.8) is j-torsion, we obtain the following diagram arising from Theorem 7.4.7 and Lemma 8.3.23:

j∗M−1H
1(IQq , H

3
ét(ShKqKram

q
(VDQq)Q, O(2))m) H1(IQq ,M

univ
Qiq,1

)Frobq=1 ⊗RQiq,1 H
(i)
Qq ≃ H

(i)
Qq/(tq)

j ·
(
HQ/(T

lr
q )
)
= jHQ/(jHQ ∩ Tlrq (HQ)

ξ
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where we abbreviate
HQ := O [ShK(VDQ)]m , H

(i)
Qq := HQq(K, j)

(i).

From here, the argument is entirely analogous to Theorem 8.5.1, replacing Lemma 8.2.17 with Lemma
8.3.24.

□

9. Main result: rank zero case

9.1. Chebotarev primes and proof of the main result.

9.1.1. Throughout this section, we let π, S, and E0 be as in Notation 4.0.1, and fix for now a prime p of E0.

Lemma 9.1.2. Suppose that π is non-endoscopic, that p satisfies Assumption 4.1.1(3), and that there exist
admissible primes for ρπ = ρπ,p. Let C ≥ 0 be the constant from Corollary C.2.8 applied to Tπ. Then for
all integersm ≥ n ≥ 1 and for any cocycle c ∈ H1(Q, Tπ,n), there are infinitely manym-admissible primes
q such that

ordϖ locq c ≥ ordϖc− C.

Recall here that locq was defined in Notation 4.2.9.

Proof. Let g ∈ GQ be an admissible element for ρπ, which is possible by Lemma 4.2.3. By Corollary C.2.8,
we have ϖCH1(Q(Tπ)/Q, Tπ,n) = 0, so by inflation-restriction there exists an element h ∈ GQ(Tπ) such
that ordϖc(h) ≥ ordϖc−C. Because T π is absolutely irreducible, we can assume without loss of generality
that the component of c(h) in the 1-eigenspace for g is nonzero modulo ϖn−ordϖc+C+1. Then since

c(gh) = gc(h) + c(g),

after possibly replacing g by gh we may assume without loss of generality that the same is true for the
component of c(g) in the 1-eigenspace for g (which is independent of the choice of cocycle representative).
Then any prime q ̸∈ S ∪ {p} with Frobenius conjugate to g in Gal(Q(Tπ,m, c)) satisfies the conclusion of
the lemma. □

The following theorem is a corollary of the work of Newton-Thorne [83] and Thorne [110].

Theorem 9.1.3. Suppose π is non-endoscopic, and p is a prime of E0 of residue characteristic p > 3 such
that πp is unramified. Then

H1
f (Q, ad0 ρπ,p) = 0.

Proof. By [110, Theorem 6.2], it suffices to show

(9.1) Vπ,p|GQ(µp∞ )
is absolutely irreducible.

By Lemmas 2.2.12 and C.2.5, we can write

Vπ,p ∼= Ind
GQ
GK

V0

for a finite extension K/Q, where V0 is a strongly irreducible representation of GK . By [87, Lemma 2.2.9]
and the assumption that πp is unramified, we concludeK is unramified at p; hence (9.1) follows from Lemma
C.2.9. □

Theorem 9.1.4. Let π be non-endoscopic. Suppose p satisfies Assumption 4.1.1, and that there exist admis-
sible primes for ρπ,p. Suppose as well that there exists a prime ℓ0 such that πℓ0 is transferrable (Definition
2.4.5). Then

L(π, spin, 1/2) ̸= 0 =⇒ H1
f (Q, Vπ,p) = 0.
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Proof. Set D := ℓ0, so that, by Theorem 2.4.6, πDf can be completed to an automorphic representation of
GSpin(VD)(A). By Proposition 4.4.5, if L(π, spin, 1/2) ̸= 0 then we have λD(1) ̸= 0, so there exists a
constant C0 ≥ 0 such that
(9.2) ordϖλ

D
m(1) ≥ m− C0, ∀m ≥ 1.

Suppose for contradiction that there exists a non-torsion element c ∈ H1
f (Q, Tπ), and let cn be the image

of c in H1
f (Q, Tπ,n) for all n ≥ 1. We fix a large integer N to be specified later. Let M ≥ N be the integer

of Lemma 1.6.3(3) for M = Tπ and n = N . By Lemma 9.1.2 and Lemma 4.1.6(2), we may choose an
M -admissible prime q such that
(9.3) ordϖ locq cN ≥ N − C1

for a constant C1 ≥ 0. Now by Theorem 9.1.3 and Lemma B.3.6 (which applies to ρπ by Lemma 8.2.1), for
some m0 ≥ 1 we have

SelF (Q, ad0 ρπ,m0) = 0.

Moreover, by Corollary B.4.3, lgO SelFrel(Q, ad0 ρπ,n) is uniformly bounded in n. Hence by Theorem
8.5.1(1), as long as M is sufficiently large depending on m0 – which we can ensure by choosing N suf-
ficiently large – there exists a constant C2 ≥ 0 and an element κDM (q)0 ∈ κDM (q) such that

(9.4) ordϖ∂qκ
D
M (q)0 ≥ ordϖλ

D
M (1)− C2 ≥M − C2 − C0.

Let κDN (q)0 be the image of κDM (q)0 in H1(Q, Tπ1,N ). We now consider the global Tate pairing

(9.5) 0 = ⟨κDN (q)0, cN ⟩ =
∑
v

⟨κDN (q)0, cN ⟩v.

For v ̸∈ S ∪ {q}, the local Tate pairing vanishes by Proposition 4.4.6(1) and Lemma 1.6.3(3) – recall here
that the local Tate pairing of two unramified classes is always trivial. By the same argument as [66, Lemma
4.3(1)], we may also pick a constantC3 ≥ 0 independent ofN such that, for all v ∈ S,ϖC3H1(Qv, Tπ1,N ) =
0; hence

ordϖ⟨κDN (q)0, cN ⟩v ≤ C3, ∀v ∈ S.
It then follows from (9.5) that

ordϖ⟨κDN (q)0, cN ⟩q ≤ C3.

On the other hand, by Proposition 4.2.8, (9.3) and (9.4) together imply

ordϖ⟨κDN (q)0, cN ⟩q ≥ N − C0 − C1 − C2,

so we obtain a contradiction when
N > C0 + C1 + C2 + C3.

□

9.2. The endoscopic case.

9.2.1. For completeness, we include an analogue of Theorem 9.1.4 in the endoscopic case. First, we require
an analogue of Lemma 9.1.2.

Lemma 9.2.2. Suppose π is endoscopic associated to a pair (π1, π2) of automorphic representations of
GL2(A), and fix i = 1 or 2. Let p be a prime of E0 such that there exist admissible primes for ρπ = ρπ,p
which are BD-admissible for ρπi = ρπi,p. Then there is a constant C with the following property.

For all integers m ≥ n ≥ 0 and for any cocycle c ∈ H1(Q, Tπi), there are infinitely many m-admissible
primes q, BD-admissible for ρπi , such that

ordϖ locq c ≥ ordϖc− C.

Proof. Without loss of generality, we may assume i = 1 (after possibly relabeling π1 and π2).
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Claim. There exists a constant C ≥ 0 such that ϖCH1(Q(ρπ)/Q, Tπ1,n) = 0 for all n ≥ 1.

Proof of claim. By Corollary C.2.8 and inflation-restriction, it suffices to show
HomGQ(Gal(Q(ρπ)/Q(ρπ1)), Tπ1,n)

is uniformly bounded in n. Note that, unless π2 has CM by an imaginary quadratic subfield K of Q(ρπ1),
the abelianization of Gal(Q(ρπ)/Q(ρπ1)) is finite. Indeed, if π2 is CM, this can be checked by hand;
otherwise one can use Theorem C.3.2 and Corollary C.1.2(2) to see that no closed normal subgroup of
Gal(Q(ρπ2)/Q(µp∞)) can have an infinite abelian quotient.

So we assume without loss of generality that π2 has CM by K ⊂ Q(ρπ1). In this case, one can calculate
directly that complex conjugation acts on Gal(Q(ρπ)/Q(ρπ1)) by −1, so the image of any Galois-invariant
group homomorphism Gal(Q(ρπ, )/Q(ρπ1)) → Tπ1,n lies in the −1 eigenspace of complex conjugation;
since T π1 is absolutely irreducible and odd, we conclude that all such homomorphisms vanish. □

Let g ∈ GQ be an element which is admissible for ρπ and BD-admissible for ρπ1 , which is possible by
(the argument of) Lemma 4.2.3. By the claim and inflation-restriction, there exists h ∈ GQ(Tπ) such that
ordϖc(h) ≥ ordϖc− C; as in the proof of Lemma 9.1.2 above, after possibly replacing g with gh, we may
assume without loss of generality that the component of c(g) in the 1-eigenspace for g is nonzero modulo
ϖn−ordϖc+C+1. Then any q ̸∈ S ∪ {p} with Frobenius conjugate to g in Gal(Q(Tπ,m, cn)) satisfies the
conclusion of the lemma. □

The same proof of Theorem 9.1.3 also shows:

Proposition 9.2.3. Suppose π is endoscopic associated to a pair (π1, π2). Then if p is any prime of E0 of
residue characteristic p such that πp is unramified,

H1
f (Q, ad0 ρπ1,p) = H1

f (Q, ad0 ρπ2,p) = 0.

Theorem 9.2.4. Letπ be endoscopic associated to a pair (π1, π2) of automorphic representations ofGL2(A),
which we order so that π1,∞ and π2,∞ have weights 2 and 4, respectively. Assume there exists a prime ℓ0
such that π1,ℓ0 is discrete series.

Fix i = 1 or 2. Then for any prime p satisfying Assumption 4.1.1, such that there exist admissible primes
for ρπ,p which are BD-admissible for ρπi,p, if H1

f (Q, Vπ1,p ⊗ Vπ2,p(−1)) = 0 then we have

L(π, spin, 1/2) ̸= 0 =⇒ H1
f (Q, Vπi,p) = 0.

Remark 9.2.5. Note that L(π, spin, 1/2) is the product of central L-values for π1 and π2; in particular,
Theorem 9.2.4 recovers (with extra conditions) the result of Kato [48].

Proof. The proof of Theorem 9.1.4 applies almost verbatim, with the following substitutions: Theorem
2.5.2 for Theorem 2.4.6; Lemma 9.2.2 for Lemma 9.1.2; Proposition 9.2.3 for Theorem 9.1.3; and Theo-
rem 8.5.2(1) for Theorem 8.5.1(1). □

9.3. Rigidity and p-integral vanishing of the Selmer group.

9.3.1. We can also give a more precise result on the vanishing of the dual Bloch-Kato Selmer groupH1
f (Q, Vπ,p/Tπ,p),

under some stronger conditions. Assume for this subsection that π is not endoscopic.
We consider the following additional assumptions on p (the R stands for “rigid”).
(R1) The image of the GQ action on T π,p contains a nontrivial scalar.
(R2) We have SelFrel(Q, ad0 ρ) = 0, with notation as in Definition B.4.1.
(R3) For all ℓ ∈ S, H1(Qℓ, T π,p) = 0.

It is proved in Theorem C.4.9 that (R1) holds for cofinitely many p. We will show in Proposition 9.3.5 below
that the same is true of (R2) and (R3).
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9.3.2. Under Assumption 4.1.1(3), letRuniv
p be the universal GSp4-valued deformation ring of ρπ,p denoted

R1 in Notation 8.2.6, with corresponding universal deformation ρunivp : GQ,S∪{p} → GSp4(R
univ
p ).

Lemma 9.3.3. Let (Runiv
p )0 ⊂ Runiv

p be the subring generated by the coefficients of the characteristic poly-
nomials of elements of GQ under the composite

ρunivp : GQ → GSp4(R
univ
p ) ↪→ GL4(R

univ
p ).

Then
(Runiv

p )0 = Runiv
p .

Proof. Recall the category CNLO from (1.1.3). By the universal property of ρunivp , it suffices to show the
following: given two morphisms

f1, f2 : R
univ
p → A

in CNLO, if f1 = f2 on (Runiv
p )0, then the associated deformations

ρ1, ρ2 : GQ → GSp4(A)

are GSp4(A)-conjugate. By [20, Théorème 1], ρ1 and ρ2 are GL4(A)-conjugate, say by a matrix a ∈
GL4(A). Then
(9.6) ρ1(g) = a · ρ2(g) · a−1 ∀g ∈ GQ.

On the other hand, because ρ1 and ρ2 are valued in GSp4 with similitude character χcyc
p , we also have

(9.7) ρi(g) = −χp,cyc(g) · Ω · ρi(g)−t · Ω ∀g ∈ GQ, i = 1, 2,

where Ω is the matrix from (1.1.4) with n = 2. Combining (9.6) and (9.7) and using Schur’s lemma, it
follows that ΩatΩa is scalar, or equivalently a ∈ GSp4(A), and this proves the lemma. □

Lemma 9.3.4. For all but finitely many primes p of E0, ρπ,p|GQ(ζp)
is absolutely irreducible.

Proof. First, recall that ρπ,p is absolutely irreducible for all but finitely many p by Lemma 4.1.5. We restrict
our attention to these p; the argument is based on [65, Proposition 4.5], but we are able to take advantage
of the low-dimensionality of ρπ,p. The representation ρπ,p|GQ(ζp)

is semisimple, so, after possibly extending
scalars, we may write

ρπ,p|GQ(ζp)
=

M⊕
i=1

ρ⊕mii

for distinct absolutely irreducible representations ρi ofGQ(ζp) and multiplicitiesmi ≥ 1. The same argument
as [38, Lemma 2.1] (which applies here because Q(ζp)/Q has degree coprime to p) shows that the integers
mi = m are all equal, and all ρi have the same dimension M , such that m2M is the number of characters ν
of Gal(Q(ζp)/Q) such that ρπ,p ∼= ρπ,p ⊗ ν. Considering the self-duality of ρπ,p, we see that this can occur
only if ν2 = 1, so that m2M ≤ 2. In particular, m = 1, so ρπ,p|GQ(ζp)

is multiplicity-free, and the result
now follows by the same argument as [65, Proposition 4.5]. □

Proposition 9.3.5. All but finitely many primes p of E0 satisfy (R2) and (R3).

Proof. First, choose an imaginary quadratic fieldK such that all ℓ ∈ S are split inK, and restrict attention to
the cofinitely many p such that the underlying rational prime p is unramified inK and ρπ,p|GQ(ζp)

is absolutely
irreducible. Then Q(ρπ,p) ∩K is unramified at all finite primes, hence equal to Q, and so
(9.8) ρπ,p(GK) = ρπ,p(GQ).

Note as well that BC(π)⊗ωK/Q ̸∼= BC(π) (with BC(π) as in Lemma 2.2.17), for otherwise we would have
ρπ,p ⊗ ωK/Q ∼= ρπ,p, and it is easy to check using Schur’s lemma that this implies ρπ,p|GK is not absolutely
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irreducible for any p, contradicting (9.8) and Lemma 2.2.12 as long as p > 3. In particular, the base change
Π of BC(π) to GL4(AK) is a regular algebraic, cuspidal automorphic representation of GL4(AK) by [3,
Chapter 3, Theorems 4.2(a), 5.1]. It is also clear that E0 is a strong coefficient field for Π.

Recall the universal deformation ρunivp : GQ → GSp4(Rp) from (9.3.2). Note that K ∩ Q(ρunivp ) is
unramified at all finite primes, hence equal to Q; in particular, there exists γ ∈ GQ such that ρunivp (γ) = 1
and γ acts nontrivially on K.

Recall the group scheme
G := (GL4×GL1)⋊ {1, c}

from [25, §2.1]. By the recipe of [65, Lemma 2.3(2)], ρunivp gives rise to a Galois representation

(9.9) ρ̃univp : GQ → G (Runiv
p ),

with residual representation ρ̃p : GQ → G (Op/ϖp). Note

(9.10) ρ̃univp |GK = (ρunivp |GK , χp,cyc, 1) : GK → (GL4×GL1)(R
univ
p )⋊ {1, c} ,

where p is the residue characteristic of p. By the argument of [65, Theorem 4.8] applied to Π, we have for
all but finitely many p:

(1) ρ̃p : GQ → G (Op/ϖp) satisfies [65, Definition 3.36] for the pair (S, ∅).
(2) There are no regular algebraic conjugate self-dual cuspidal automorphic representationsΠ′ ofGLN (AK)

such that Π′ is unramified outside primes above S, Π′ has the same archimedean weights as Π, and
there is a congruence of associated Hecke eigensystems with respect to any isomorphism ιp : Qp

∼−→
C inducing p.

For all but finitely many p, we also have:
(3) ρ̃π,p|GK(ζp)

is absolutely irreducible
by Lemma 9.3.4 and (9.8).

Restrict to the p satisfying the above properties with p ̸∈ S, and such that ρunivp |GQp is Fontaine-Lafaille,
i.e. p ≥ 5. Let Runiv

S be the universal Fontaine-Laffaille deformation ring of ρ̃p considered in [65, p. 1630]
withΣ+

min = S andΣ+
lr = ∅; more explicitly, Runiv

S classifies deformations that are unramified outside primes
above S ∪{p} and Fontaine-Laffaille at primes above p. It follows from the definition that (9.9) corresponds
to an Op-algebra morphism

(9.11) Runiv
S → Runiv

p .

Now let V be the unique four-dimensional Hermitian space over K which is positive definite and split at
all finite places. Then [65, Theorem 3.38] applied to V , together with properties (1)-(3) above, shows that
Runiv

S = Op for all but finitely many p. We claim that these p satisfy (R2) and (R3).
Now, by Remark B.4.6, (R2) is equivalent to requiring that the map Runiv

p → Op arising from ρπ,p is
an isomorphism, and so it suffices to show that the morphism (9.11) is surjective. By (9.10), the image of
(9.11) contains the coefficients of the characteristic polynomials of ρunivp (g) for g ∈ GK , and so the desired
surjectivity follows from Lemma 9.3.3 and the analogue of (9.8) for ρunivp .

For (R3), the local deformation ring of

ρ̃π,p|GQℓ
: GQℓ → G (Op/ϖp)

is formally smooth of relative dimension 16 overOp for all ℓ ∈ S: this follows from [65, Proposition 3.33(3)],
where Definition 3.36(1) of op. cit. is satisfied by property (1) above. In fact, because ℓ splits in K, this is
just the local deformation ring of

ρπ,p|GQℓ
: GQℓ → GL4(Op/ϖp)
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(without any self-duality condition). The usual tangent space computation together with the formal smooth-
ness then implies

16 = dimOp/ϖp
Z1(Qℓ,EndT π) = 16− dimOp/ϖp

H0(Qℓ,EndT π) +H1(Qℓ,EndT π).

In particular, by the local Euler characteristic formula and local Poitou-Tate duality, we conclude

(9.12) H0(Qℓ,EndT π(1)) = 0.

We then claim that H0(Qℓ, T π) = 0: otherwise ρπ,p has a GQℓ-invariant line, so by duality, it also has
a quotient on which GQℓ acts by χp,cyc, and so there is a line in EndTπ on which GQℓ acts by χ−1

p,cyc,
contradicting (9.12).

On the other hand, again by the local Euler characteristic formula and local duality, we see that dimH1(Qℓ, T π) =
2 dimH0(Qℓ, T π), so (R3) follows.

□

Proposition 9.3.6. Suppose p satisfies Assumption 4.1.1(3) and (R1). Then for any nonzero class c ∈
H1(Q, T π,p) and any N ≥ 0, there exist infinitely many N -admissible primes q such that locq c ̸= 0.

Proof. By the same argument as [40, Proposition 9.1], assumption (R1) implies thatH1(Q(T π)/Q, T π) = 0,
so by inflation-restriction

c|GQ(Tπ)
: GQ(Tπ)

→ T π

is nontrivial. Let g ∈ GQ be an admissible element for ρπ. Arguing as in Lemma 9.1.2, there exists h ∈ GQ
such that h acts as g on T π and c(h) has nonzero component in the 1-eigenspace for h.

Claim. We have Q(Tπ,N ) ∩Q(T π, c) = Q(T π).

Proof of claim. It suffices to show any groupGwithGQ-action which is a quotient of both the Galois groups
Gal(Q(T π, c)/Q(T π)) and Gal(Q(Tπ,N )/Q(T π)), must be trivial. Note that Gal(Q(T π, c)/Q(T π)) is an
Fp[GQ]-submodule of T π, so any element z ∈ GQ that acts as a nontrivial scalar on T π acts nontrivially on
G unless G = 1.

On the other hand, the group Gal(Q(Tπ,N )/Q(T π)) has a GQ-stable filtration in which each quotient is
abelian and isomorphic to an Fp[GQ]-subquotient of ad0 ρπ. In particular, z acts trivially on G, which is an
abelian quotient of Gal(Q(Tπ,N )/Q(T π)). We conclude G is trivial. □

By the claim, there exists g̃ ∈ GQ that acts as g on Tπ,N and has image h in Gal(Q(T π, c)/Q(T π)).
Any prime q ̸∈ S ∪ {p} with Frobenius conjugate to g̃ in Gal(Q(Tπ,N , c)/Q) satisfies the conclusion of the
lemma.

□

Definition 9.3.7. Let p be a prime of E0 such that T π,p is absolutely irreducible (so Tπ,p is well-defined up
to scalars).

(1) We write
Wπ,p = Vπ,p/Tπ,p.

As usual, we drop the subscript p when clarity permits.
(2) For each rational prime ℓ, let H1

f (Qℓ,Wπ) be the annihilator of H1
f (Qℓ, Tπ) under the perfect local

Tate pairing
H1(Qℓ,Wπ)×H1(Qℓ, Tπ)→ E/O,

and let

H1
f (Q,Wπ) := ker

(
H1(Q,Wπ)→

∏
ℓ

H1(Qℓ,Wπ)

H1
f (Qℓ,Wπ)

)
.
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Theorem 9.3.8. Suppose π is non-endoscopic, and p is a prime of E0 such that:
(1) Assumption 4.1.1 and (R1)-(R3) hold for p, and there exist admissible primes for ρπ,p.
(2) There exists a squarefree D > 1 with ν(D) odd, such that πℓ is transferrable for all ℓ|D (Definition

2.4.5) and
λD(1)p ̸≡ 0 (mod p).

Then
H1
f (Q,Wπ,p) = 0.

Proof. We follow the proof of Theorem 9.1.4, but with some integral refinements. Fix p andD satisfying (1)
and (2), and omit p from the notation for the rest of the proof. Suppose for contradiction thatH1

f (Q,Wπ) ̸= 0.
By the long exact sequence in Galois cohomology associated to

0→ T π →Wπ →Wπ → 0,

we have
H1(Q, T π) = H1(Q,Wπ)[ϖ];

in particular, there exists a class 0 ̸= c ∈ H1(Q, T π) with the following property:

(9.13) Res cv ∈ H1(Qv, T π) has trivial image in
H1(Qv,Wπ)

H1
f (Qv,Wπ)

for all primes v.

We fix an integer N ≥ 3 sufficiently large to satisfy the conclusion of Lemma 1.6.3(2) for n = 1 and
M = Tπ, and greater than the number n0(1, ρπ) from Theorem B.2.12.10

By Proposition 9.3.6 and the assumption (R1), we may choose an N -admissible prime q ̸∈ S such that

(9.14) locq c ̸= 0.

Then by Theorem 8.5.1(1) and the assumption (R2), we have an element κDN (q)0 ∈ κDN (q) such that its
image κD1 (q)0 in H1(Q, T π) satisfies

(9.15) ∂qκ
D
1 (q)0 ̸= 0.

We now consider the global Tate pairing

(9.16) 0 =
∑
v

⟨c, κD1 (q)0⟩v.

By the assumption (R3), the local terms vanish for all v ̸= q, p. The local term at v = q is nonzero by
Proposition 4.2.8 combined with (9.14), (9.15). So to obtain a contradiction with (9.16), it suffices to show
the local pairing at p vanishes. Indeed, the maps

α : H1(Qp, Tπ)→ H1(Qp, T π), β : H1(Qp, T π)→ H1(Qp,Wπ)

are adjoint with respect to the local Tate pairings, and by Lemma 1.6.3(2) combined with Proposition 4.4.6,
there exists d ∈ H1

f (Qp, Tπ) such that α(d) = Resp κ
D
1 (q)0. Hence indeed

⟨κD1 (q)0, c⟩p = ⟨d, β(Resp c)⟩p = 0

by (9.13). □

Corollary 9.3.9. Suppose π is relevant and non-endoscopic, and there exists a place ℓ0 such that πℓ0 is
transferrable (Definition 2.4.5). If L(π, spin, 1/2) ̸= 0, then for all but finitely many primes p such that
admissible primes exist for ρπ,p, H1

f (Q,Wπ,p) = 0.

10For cofinitely many p, all the local deformation rings of ρπ,p|GQℓ
for ℓ ∈ S ∪ {p} will be formally smooth (by the same

argument of Proposition 9.3.5 for ℓ ∈ S and by [10, Theorem A] for ℓ = p), so one can take n0(1, ρπ,p) = 1. The assumption
N ≥ 3 is to conform to the statement of Theorem 8.5.1 with m = 1, but in reality it is not needed since N ≥ 3m is used only in
Theorem 8.5.1(2). In particular, the argument would work with N = 1 in practice.



120 NAOMI SWEETING

Proof. By Theorem 2.4.6, πℓ0f can be completed to an automorphic representation of GSpin(Vℓ0)(A). Thus
the corollary follows from Theorem 9.3.8 combined with Proposition 4.4.5, Lemma 4.1.5, Theorem C.4.9,
and Proposition 9.3.5. □

Conditions are given in Theorem C.4.11 under which admissible primes exist for ρπ,p for cofinitely many
p. In particular:

Corollary 9.3.10. Suppose π is relevant and non-endoscopic, and there exists a place ℓ such that πℓ is type
IIa in the sense of [95]. If L(π, spin, 1/2) ̸= 0, then for all but finitely many primes p, H1

f (Q,Wπ,p) = 0.

9.4. Applications to automorphic inductions. In this section, we give some corollaries of Theorem 9.1.4
which may be of independent interest. Both of them could be upgraded to statements about dual Selmer
groups using Theorem 9.3.8; we omit the details only for concision.

In the next two corollaries, when π is a cuspidal unitary automorphic representation of GL2(A) such that
π∞ is discrete series of weight k ≥ 2 and ιp : Qp

∼−→ C is an isomorphism, the associated p-adic Galois
representations ρπ,ιp are normalized so that det ρπ,ιp = χk−1

p,cycωπ, where ωπ is the central character. We also
have the usual p-adic Galois representation χιp associated to any algebraic automorphic character χ of A×

K ,
with K/Q a number field. We write the (semisimplified) reductions mod p as ρπ,ιp and χιp .

Corollary 9.4.1. Let π be a non-CM cuspidal unitary automorphic representation of GL2(A) with π∞
discrete series of weight 3, and with central character ωπ. Let K be an imaginary quadratic field and
χ : A×

K → C× an automorphic character of infinity type (−1, 0) such that χ|A×
Q
= | · |ω−1

π .

Fix an isomorphism ιp : Qp
∼−→ C and assume:

(1) p splits in K and is coprime to the conductor of f and χ.
(2) For some inert nonarchimedean place v of K, WD(ρπ,ιp |GKv ) is indecomposable.
(3) ρ := ρπ,ιp ⊗ Ind

GQ
GK

χι,p satisfies:
(a) ρ is absolutely irreducible and generic (Definition 2.7.3).
(b) There exists a prime q such that ρ|GQq is unramified, q4 ̸≡ 1 (mod p), and ρ(Frobq) has

eigenvalues {q, 1, α, q/α} with α ̸∈
{
±1,±q, q2, q−1

}
.

Then
L(f, χ, 1/2) ̸= 0 =⇒ H1

f (K, ρπ,ιp ⊗ χιp) = 0.

Moreover, the conditions in (3) hold for all but finitely many p split in K and all choices of ιp.

Remark 9.4.2. The condition that p split in K is actually necessary for (3b) to hold.

Proof. Let BCK(π) be the base change to GL2(AK). By [3, Chapter 3, Theorems 4.2(e), 5.1], there is
a (strong) automorphic induction Π of BCK(π) ⊗ χ to GL4(A). Then by [92, Theorem C], there is an
automorphic representation π̃ of GSp4(A) with trivial central character, such that Π is the base change of π̃
as in Lemma 2.2.17. Note that π̃ is relevant by a direct calculation with archimedean L-parameters. We have

ρπ̃,ιp = ρπ,ιp ⊗ Ind
GQ
GK

χιp ,

where the symplectic structure is by viewing ρπ,ιp as symplectic and Ind
GQ
GK

χιp as orthogonal. The “more-
over” assertion of the corollary therefore follows from Lemma C.4.7 combined with Lemma 4.1.5.

For the rest, by Shapiro’s Lemma we have H1
f (Q, ρπ̃,ιp) = H1

f (K, ρπ,ιp ⊗ χιp). So by Theorem 9.1.4
applied to π̃, it suffices to show that there exists a prime ℓ such that π̃ℓ is transferrable.

Let v be the place in (2), and let ℓ be the rational prime underlying v. Comparing Definition 2.4.5 with
the explicit local Langlands parameters in [95, Table A.7] (and using as well Theorem 2.2.10(1) to see that
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π̃ℓ is tempered), we see that it suffices to show the associated Weil-Deligne representation
τℓ :WQℓ × SL(2,C)→ GSp4(C)

of ρπ̃,ιp |GQℓ
does not factor through a Siegel parabolic subgroup; equivalently, τℓ does not stabilize an

isotropic plane. Let W be the underlying two-dimensional complex symplectic space of the Weil-Deligne
representation τπ,ℓ : WQℓ × SL(2,C) → GL2(C) corresponding to ρπ,ιp |GQℓ

, and let V = Ind
WQℓ
WKv

τχ,v,

where τχ,v :WKv → C× is the character corresponding to χιp |GKv .
In particular, there is an isotropic basis {e1, e2} for V stable (as a set) underWKv . Suppose for contradic-

tion that I ⊂W ⊗ V is a WQℓ × SL(2,C)-stable isotropic plane. Because v is inert, I ̸=W ⊗ e1,W ⊗ e2.
In particular, it follows that

I = {w ⊗ e1 + g(w)⊗ e2, w ∈W}
for some g ∈ GL2(C). Then g commutes with τπ,ℓ(WKv × SL(2,C)), hence is scalar by (2); but clearly
such an I is not isotropic, so we have obtained a contradiction. □

Corollary 9.4.3. Let K be a real quadratic field, and let π be a cuspidal automorphic representation of
PGL2(AK) with πv discrete series of weights 2 and 4, in some order, for the two places v|∞ of K.

Let p be a prime and let ιp : Qp
∼−→ C be an isomorphism such that:

(1) p is unramified in K and coprime to the conductor of π.
(2) πv is discrete series for some nonarchimedean place v of K, and if v is split, then πv ̸∼= πv.
(3) ρ := Ind

GQ
GK

ρπ,ιp satisfies:
(a) ρ is absolutely irreducible and generic (Definition 2.7.3).
(b) There exists a prime q such that ρ|GQq is unramified, q4 ̸≡ 1 (mod p), and ρ(Frobq) has

eigenvalues {q, 1, α, q/α} with α ̸∈
{
±1,±q, q2, q−1

}
.

Then
L(π, 1/2) ̸= 0 =⇒ H1

f (K, ρπ,ιp) = 0.

Moreover:
• If π is non-CM and not Galois-conjugate to a twist of π ◦ τ , where τ ∈ Gal(K/Q) is a generator,

then the conditions in (3) hold for all but finitely many p and all choices of ιp.
• If π is non-CM and Galois-conjugate to a twist of π ◦ τ , then then the conditions in (3) hold for all

but finitely many p split in K.
• If π has CM by a totally imaginary quadratic extension F/K, then the conditions in (3) hold for all

but finitely many p split completely in F .

Proof. By the same argument as for Corollary 9.4.1, there exists an automorphic representation π̃ ofGSp4(A)
such that the base change of π̃ to GL4(A) is the automorphic induction of π. Again it suffices to show that π̃ℓ
is transferrable, where ℓ is the rational prime underlying v from (2); in this case, the “moreover” assertions
follow from Lemmas C.4.6 and C.4.8, combined with Lemma 4.1.5.

Now, let W be the underlying symplectic space of the associated Weil-Deligne representation
τℓ :WQℓ × SL(2,C)→ GSp4(C)

to ρπ̃,ιp |GQℓ
. As in the proof of Corollary 9.4.1, we wish to show that τℓ does not factor through a Siegel

parabolic subgroup, so suppose for contradiction that W contains a WQℓ × SL(2,C)-stable isotropic plane
I . We have a WKv × SL(2,C)-stable decomposition

W =W1 ⊕W2,

whereWKv × SL(2,C) acts onW1 through the Weil-Deligne representation corresponding to ρπv ,ιp |Qℓ – in
particular, irreducibly because πv is discrete series. The symplectic form is nondegenerate on each of W1

and W2, so we conclude that
I = {w + ℓ(w) : w ∈W1}
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for some linear isomorphism ℓ : W1
∼−→ W2. This ℓ is necessarily WKv × SL(2,C)-intertwining, so the

assumption in (2) means v is an inert prime. Hence W = W1 ⊗ V where V = Ind
WGQℓ
WKv

C, and the same
argument as in Corollary 9.4.1 shows again that no such I can exist. □

10. The second explicit reciprocity law: geometric inputs

10.1. Setup and notation.

10.1.1. Let D ≥ 1 be squarefree with σ(D) even, and recall the quadratic space VD from (1.1.6). For this
section, we suppose fixed a matrix T ∈ Sym2(Q)>0 satisfying:

(T1) T11 ∈ Q× \ (Q×)2.
(T2) The two-dimensional quadratic space defined by T has nontrivial local Hasse invariant for some

prime ℓ ∤ D.

10.1.2. Choose a base point (eT1 , eT2 ) ∈ ΩT,VD(Q) (Construction 3.1.2(2)), and let

(10.1) V ◦
D := (eT1 )

⊥ ⊂ VD, VT := spanQ
{
eT1 , e

T
2

}
⊂ VD, V ♢

D := V ⊥
T ⊂ V ◦

D.

Then V ◦
D is a four-dimensional quadratic space with discriminant field F := Q(

√
T11).

10.1.3. Let K =
∏
Kv ⊂ GSpin(VD)(Af ) be a neat compact open subgroup, and fix, throughout this

section, an element g0 =
∏
v g0,v ∈ GSpin(VD)(Af ). We write{

K♢
v = g0,vKvg

−1
0,v ∩GSpin(V ♢

D )(Qv)

K◦
v = g0,vKvg

−1
0,v ∩GSpin(V ◦

D)(Qv)

for all finite places v of Q, and K? :=
∏
K?
v for ? = ♢, ◦. The special cycle Z(g0, VT , VD)K factors as:

(10.2) ShK♢(V ♢
D )→ ShK◦(V ◦

D)
·g0−−→ ShK(VD).

10.2. Integral models at good primes. Fix a prime q ∤ D satisfying the following:

Assumption 10.2.1.
(1) T lies in GL2(Z(q)) ⊂M2(Q).
(2) T11 lies in (Z×

q \ (Z×
q )

2) ∩Q.
(3) Kq is hyperspecial and gq ∈ GSpin(VD)(Qq) lies in Kq.

Notation 10.2.2.
(1) Let OD ⊂ BD be a maximal Z(q)-order.
(2) The lattice SpanZ(q)

{
eT1 , e

T
2

}
defines a maximal Z(q)-orderOT ⊂ C(VT ), with the natural positive

nebentype involution.
(3) Let OF ⊂ OT be the subalgebra generated by eT1 , which is the unique maximal Z(q)-order in F .
(4) Fix an arbitrary positive involution ∗ of OD (necessarily nebentype). The Clifford involution ∗ is

positive and nebentype on OT , and stabilizes OF .

10.2.3. Under Notation 10.2.2, we have the chain of embeddings of Z(q)-algebras with positive involutions:
(10.3) OD ↪→ OD ⊗OF ↪→ OD ⊗OT .
We now use (10.3) to describe q-integral models for the cycles (10.2).

Construction 10.2.4. Using Corollary 1.3.5, we fix a four-dimensional abelian scheme A0 over Z̆q of su-
persingular reduction, equipped with:

(1) An embedding ι♢0 : OD ⊗Z(q)
OT ↪→ End(A0)⊗Z Z(q).
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(2) A prime-to-q quasi-polarization λ0 : A0 → A∨
0 such that

ι♢0 (α)
∨ ◦ λ0 = λ0 ◦ ι♢0 (α

∗), ∀α ∈ OD ⊗OT .

By restricting along (10.3), we also have ι0 : OD ↪→ End(A0)⊗Z(q) and ι◦0 : OD⊗Z(q)
OF ↪→ End(A0)⊗

Z(q). Note that (A0, ι0, λ0) is an (OD, ∗)-triple in the sense of Definition 1.4.2. Using Remark 1.4.5(1), we
extend this to a q-adic uniformization datum (A0, ι0, λ0, iD, iDq) for (OD, ∗). Consider the three PEL data
with self-dual q-integral refinements:

D♢ = (BD ⊗Q C(VT ), ∗, H, ψ), D♢ = (OD ⊗Z(q)
OT , ∗,Λ, ψ)

D◦ = (BD ⊗Q F, ∗, H, ψ), D◦ = (OD ⊗Z(q)
OF , ∗,Λ, ψ)

D = (BD, ∗, H, ψ), D = (OD, ∗,Λ, ψ)

arising from A0. Also write Kq? :=
∏
v ̸=qK

?
v for ? = ♢, ◦.

For ? = ♢, ◦, or ∅, letX? be the smooth quasiprojective scheme over Z(q) representing the moduli functor
M?

Kq? associated to D? at level Kq?.

Lemma 10.2.5. The scheme X♢ is proper over SpecZ(q).

Proof. The biquaternion algebra BD ⊗ C(VT ) is nonsplit by (T2). If BD ⊗ C(VT ) = M2(Bd) for some
squarefree d > 1, then σ(d) is necessarily even. By Corollary 1.3.4 combined with Propositions 1.2.4 and
1.2.12, X♢ can be identified with the canonical (smooth) integral model of the Shimura curve attached to
Bd at level K♢. The latter is well-known to be proper. □

10.2.6. We have natural finite maps

(10.4) X♢ → X◦ → X,

defined on the level of moduli problems by

(A, ι♢, λ, η) 7→ (A, ι♢|OD⊗Z(q)OF
, λ, η)

(A, ι◦, λ, η) 7→ (A, ι◦|OD , λ, g
q
0 · η).

Let X?
Q denote the generic fiber of X?, for ? = ♢, ◦, or ∅, and let X?

Fq denote the special fiber.

Proposition 10.2.7. There are isomorphisms

X?
Q
∼= ShK?(V ?

D)

for ? = ♢, ◦, or ∅, such that the generic fiber of (10.4) recovers (10.2).

Proof. This follows from the discussion in [56, §2]; note the isomorphisms depend on our choice of q-adic
uniformization datum in Construction 10.2.4. □

10.2.8. We let O be the ring of integers of a finite extension of Qp, where q ̸= p, and let ϖ ∈ O be a
uniformizer.

Lemma 10.2.9. For all i and for ? = ♢, ◦, or ∅, there are canonical GQq -equivariant isomorphisms

H i
ét(ShK?(V ?

D)Q, O) ∼= H i
ét(X

?
Fq
, O)

H i
ét,c(ShK?(V ?

D)Q, O) ∼= H i
ét,c(X

?
Fq
, O).

(BCX?)

These isomorphisms commute with the actions of prime-to-q Hecke correspondences and with the pullback
and pushforward maps induced by (10.4).
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Proof. Let RΨX?O denote the nearby cycles complex on X?
Fq

. Since X? is smooth over Z(q), the natural
map O → RΨX?O is an isomorphism. On the other hand, by [57, Corollary 5.20], the base change map

RΓét(X
?
Q, O)→ RΓét(X

?
Fq
, RΨX?O)

is also an isomorphism, and the lemma follows. □

10.3. Unramified Rapoport-Zink spaces.

Notation 10.3.1.
(1) Recall from Remark 1.4.5(2) that our choice of q-adic uniformization datum in Construction 10.2.4

entails a choice of isomorphism

End0(A0, ι0)
†=1,tr=0 ∼−→ VDq,

hence an inclusion VT ↪→ VDq. Let

V ♢
Dq := V ⊥

T ⊂ VDq
and

V ◦
Dq = (eT1 )

⊥ ⊂ VDq.

(2) For each ? = ♢, ◦, or ∅, let N ? denote the Rapoport-Zink space over Spf Z̆q parametrizing framed
polarized deformations (X, ι?, λ, ρ) of (A0[q

∞], ι?0 ⊗ Zq, λ0), where ι♢0 ⊗ Zq : OD ⊗OT ⊗ Zq ↪→
End0(A0[q

∞]) is the induced embedding, and likewise for ι◦0, ι0. We letM? denote the underlying
reduced scheme of N ?.

(3) Let φ : N ? ∼−→ σ∗N ? be the natural Weil descent datum as in (6.1.4).

10.3.2. We have natural closed embeddings

(10.5) N♢ ↪→ N ◦ ↪→ N

compatible with the actions of

GSpin(V ♢
Dq)(Qq) ⊂ GSpin(V ◦

Dq)(Qq) ⊂ GSpin(VDq)(Qq).

From the Rapoport-Zink uniformization theorem, we deduce:

Proposition 10.3.3. For each ? = ♢, ◦, or ∅, let Xss?
Fq

denote the supersingular locus. Then there is a
canonical isomorphism

Xss?
Fq
∼= GSpin(V ?

Dq)(Q)\GSpin(V ?
Dq)(A

q
f )×M

?/Kq?,

compatible with prime-to-q Hecke correspondences, Frobenius action, and the maps arising from (10.4),
(10.5).

Here Kq? is viewed as a subgroup of GSpin(V ?
Dq)(A

q
f ) by Remark 1.4.5(2).

Proposition 10.3.4.
(1) Each irreducible component of M◦ or M is isomorphic to P1

Fq
; in particular, M◦ is a union of

irreducible components ofM.
(2) The group GSpin(VDq)(Qq) acts transitively on the set of irreducible components ofM, and the

stabilizer of each component is a paramodular subgroup.
(3) There are two GSpin(V ◦

Dq)(Qq)-orbits of irreducible components ofM interchanged by φ, and the
stabilizer of each component is a hyperspecial subgroup.

(4) For any irreducible component A ⊂M, we have φ2(A) = (σ2)∗ (⟨q⟩ ·A) .
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Proof. See [56, §4] and [55, §4] for the structure ofM andM◦, respectively. □

Notation 10.3.5.
(1) Fix an irreducible componentM(1) ⊂M◦ as a basepoint, and let KPa

q ⊂ GSpin(VDq)(Qq) be the
stabilizer ofM(1).

(2) For all g ∈ GSpin(VDq)(Qq)/K
Pa
q , define

M(g) := g · M(1) ⊂M.

By Proposition 10.3.4(2), this defines a bijection betweenGSpin(VDq)(Qq)/K
Pa
q and the irreducible

components ofM.
(3) Let F ∈ GSpin(VDq)(Qq) be an element normalizing KPa

q such that F 2 = ⟨q⟩ and φ(M(g)) =
σ∗M(gF ) for all g ∈ GSpin(VDq)(Qq); such an F exists by Proposition 10.3.4(4).

(4) Let K◦
q := KPa

q ∩GSpin(V ◦
Dq)(Qq), which is hyperspecial by Proposition 10.3.4(3).11 We also set

K◦ = Kq◦K◦
q ⊂ GSpin(V ◦

Dq)(Af ).

Remark 10.3.6. By Proposition 10.3.4(3), under Notation 10.3.5 the irreducible components of M◦ are
labeled byM(g) andM(gF ) for g ∈ GSpin(V ◦

Dq)(Qq)/K
◦
q .

10.4. Tate classes on X◦
Fq

.

Definition 10.4.1.
(1) We label the irreducible components of Xss◦

Fq
as B◦

δ (g) for

(g, δ) ∈ ShK◦(V ◦
Dq)× {0, 1} ,

by definingB◦
δ (g) to be the image of (gq,M(gqF

δ)) under the uniformization of Proposition 10.3.3.
(2) We define the incidence map

inc◦∗ : H2(X◦
Fq
, O(1))→

⊕
(g,δ)∈ShK◦ (V ◦

Dq)×{0,1}

H2(B◦
δ (g), O(1))

∼= O[ShK◦(V ◦
Dq)]

⊕2

(10.6)

and dually

inc◦∗ : O[ShK◦(V ◦
Dq)]

⊕2 ∼=
⊕

(g,δ)∈ShK◦ (V ◦
Dq)×{0,1}

H2(B◦
δ (g), O(1))

→ H2
c (X

◦
Fq
, O(1)).

(10.7)

10.4.2. Let S◦ be the set of primes ℓ such that K◦
ℓ is not hyperspecial. For the rest of this section, we shall

apply the results and notations of Appendix A, with the added superscript ◦ for consistency. In particular,
we obtain a compact open subgroup K̃◦ =

∏
K̃◦
ℓ ⊂ C+(V ◦

D)
×(Af ), where K̃◦

ℓ is hyperspecial for ℓ ̸∈ S◦.

Proposition 10.4.3. The integral model X◦ for ShK◦(V ◦
D) extends to a smooth canonical model X̃◦ over

SpecZ(q) for S̃h
K̃◦(V

◦
D), with an open and closed embedding

(10.8) X◦ ↪→ X̃◦

extending the map on generic fibers. Moreover, the universal abelian variety on X extends naturally to X̃ .

11Since the subgroup K◦
q ⊂ GSpin(V ◦

D)(Qq) from (10.1.3) is also hyperspecial, we hope this will not produce any confusion.
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Proof. Under the condition (3) from Appendix A, this follows from the construction of the embedding on
generic fibers in [68, Proposition 2.10, Remark 2.11]. □

Lemma 10.4.4. For each i, there are canonical GQq -equivariant isomorphisms

H i
ét(S̃hK̃◦(V

◦
D)Q, O) ∼= H i

ét(X̃
◦
Fq
, O)

H i
ét,c(S̃hK̃◦(V

◦
D))Q, O) ∼= H i

ét,c(X̃
◦
Fq
, O).

(BC
X̃◦)

compatible with those of Lemma 10.2.9.

Proof. See [68, Lemma 4.4].
□

10.4.5. The Clifford algebra C+(V ◦
Dq) is a totally definite quaternion algebra over F , whose local invariants

coincide with those of C+(V ◦
D) at all finite places; let Q× be the Q-algebraic group of units of C+(V ◦

Dq).
Then by [68, Theorem 3.13], we have a uniformization

(10.9) X̃ss◦
Fq
≃ Q×(Q)\Q×(Aqf )×M

◦/K̃q◦

compatible with Proposition 10.3.3 for ? = ◦. Here K̃q◦ is viewed as a compact open subgroup of Q×(Aqf )
using the isomorphism

V ◦
Dq ⊗Q Aqf ≃ V

◦
D ⊗Q Aqf

that follows from the choice of q-adic uniformization datum, cf. Notation 10.3.1(1).
We may therefore extend inc◦∗ to a map ĩnc

◦∗
fitting into the following commutative diagram:

(10.10)

H2
ét(X

◦
Fq
, O(1)) O

[
ShK◦(V ◦

Dq)
]⊕2

H2
ét(X̃

◦
Fq
, O(1)) O

[
S̃h

K̃◦(V
◦
Dq)
]⊕2

.

inc◦∗

ĩnc
◦∗

On the bottom right, the level subgroup is K̃◦ = K̃q◦K̃◦
q , where K̃◦

q is the unique hyperspecial subgroup of
Q×(Qq) containing K◦

q , and by definition

S̃h
K̃◦(V

◦
Dq) = Q×(Q)\Q×(Af )/K̃◦.

Similarly, we have a map ĩnc
◦
∗ fitting into a commutative diagram

(10.11)

O
[
ShK◦(V ◦

Dq)
]⊕2

H2
ét,c(X

◦
Fq
, O(1))

O
[
S̃h

K̃◦(V
◦
Dq)
]⊕2

H2
ét,c(X̃

◦
Fq
, O(1)).

inc◦∗

ĩnc
◦
∗

10.4.6. Hecke actions. Recall the local and global Hecke algebras T◦
ℓ , T̃◦

ℓ , T◦S◦ , and T̃◦S◦ from (A.1.3).
We define actions of the local Hecke algebras T◦

q
∼= T̃◦

q on H i
ét(X

◦
Fq
, O), H i

ét,c(X
◦
Fq
, O), H i

ét(X̃
◦
Fq
, O), and

H i
ét,c(X̃

◦
Fq
, O) via the isomorphisms of Lemmas 10.2.9 and 10.4.4.

Lemma 10.4.7.
(1) The maps inc◦∗ and ĩnc

◦∗
are equivariant for T◦S◦ and T̃◦S◦ , respectively.
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(2) The maps inc◦∗ and ĩnc
◦
∗ are equivariant for T◦S◦ and T̃◦S◦ , respectively, after extending scalars to

Qp.

Proof. It is clear that inc◦∗, ĩnc
◦∗

, inc◦∗, and ĩnc
◦
∗ are equivariant for all prime-to-q Hecke operators, so it

suffices to consider the action of T◦
q
∼= T̃◦

q . Also, by the commutative diagrams (10.10) and (10.11), it
suffices to consider ĩnc

◦∗
and ĩnc

◦
∗. The final reduction is that we may prove both statements of the lemma

after extending scalars to Qp, since the target of ĩnc
◦∗

is O-torsion-free.
Applying Lemma 10.4.4 and the étale comparison theorem, for (1) it therefore suffices to show that any

map
H2(S̃h

K̃◦(VD)(C),C)→ C
[
S̃h

K̃◦(V
◦
Dq)
]

which is equivariant for T̃◦S◦∪{q} is also equivariant for T̃◦
q ; but this is clear from the Jacquet-Langlands

correspondence and strong multiplicity one for GL2. The proof of (2) is the same. □

Definition 10.4.8. Let T ◦
q ∈ T̃◦

q
∼= T◦

q be the double coset operator represented by
(
q 0
0 1

)
in any basis such

that K̃◦
q = GL2(Zq2).

Lemma 10.4.9. (1) The composite maps

O
[
ShK◦(V ◦

Dq)
]⊕2 inc◦∗−−→ H2

ét,c(X
◦
Fq
, O(1))→ H2

ét(X
◦
Fq
, O(1))

inc◦∗−−−→ O
[
ShK◦(V ◦

Dq)
]⊕2

and

O
[
S̃h

K̃◦(V
◦
Dq)
]⊕2 ĩnc

◦
∗−−→ H2

ét,c(X̃
◦
Fq
, O(1))→ H2

ét(X̃
◦
Fq
, O(1))

ĩnc
◦∗

−−−→ O
[
S̃h

K̃◦(V
◦
Dq)
]⊕2

are both given by the matrix (
−2q T ◦

q ⟨q⟩−1

T ◦
q −2q

)
.

(2) The restricted map

inc◦∗ : (T ◦2
q ⟨q⟩−1 − 4q2)H2

ét,!(X
◦
Fq
, O(1))Frob

2
q=⟨q⟩ → O

[
ShK◦(V ◦

Dq)
]⊕2

has ϖ-power-torsion kernel.

Proof. For (1), see [66, Proposition 2.21(4)]; the off-diagonal entries follow from the intersection combi-
natorics ofM◦ described in [55, §4]. For (2), it suffices to prove the analogous statement for ĩnc

◦∗
due to

the commutative diagram (10.10). Let us fix an isomorphism ι : Qp
∼−→ C. Extending scalars to Qp and

applying Lemma 10.4.7 and Proposition A.1.4, it suffices to show that

ĩnc
◦∗

: H2
ét,!(X̃

◦
Fq
,Qp(1))

Frob2q=⟨q⟩[ι−1τf ]→ Qp

[
S̃h

K̃◦(V
◦
Dq)
]
[ι−1τf ]

⊕2

is injective for all discrete automorphic representations τ of C+(V ◦
D)

×(A) such that

(Heckeq) T ◦2
q ⟨q⟩−1 − 4q2 ̸= 0 on τ K̃

◦
f .

Now note that Frob2q = ⟨q⟩ on the image of

ĩnc
◦
∗ : O

[
S̃h

K̃◦(V
◦
Dq)
]⊕2
→ H2

ét,c(X̃
◦
Fq
, O(1));

this follows from Proposition 10.3.4(4). In particular, we have a well-defined composite map

Qp

[
S̃h

K̃◦(V
◦
Dq)
]⊕2

[ι−1τf ]
ĩnc

◦
∗−−→ H2

ét,!(X̃
◦
Fq
,Qp(1))

Frob2q=⟨q⟩[ι−1τf ]
ĩnc

◦∗

−−−→ Qp

[
S̃h

K̃◦(V
◦
Dq)
]⊕2

[ι−1τf ],
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given by the matrix in part (1), which is invertible by the assumption (Heckeq).
It therefore suffices to show that

dimQp
H2

ét,!(X̃
◦
Fq
,Qp(1))

Frob2q=⟨q⟩[ι−1τf ] ≤ 2 dimQp

[
S̃h

K̃◦(V
◦
Dq)
]
[ι−1τf ]

for all τ satisfying (Heckeq). This dimension count follows from [111, Proposition 2.25] when τ is cuspidal;
when τ is not cuspidal, it is clear from Proposition A.1.4. □

10.4.10. Consider the algebraic cycle class

(10.12) [X♢
Fq
] ∈ H2

ét,c(X
◦
Fq
, O(1)).

which makes sense by Lemma 10.2.5.

Lemma 10.4.11. There exists a special cycle Z ∈ SC1
K◦(V ◦

Dq) such that

inc◦∗([X♢
Fq
]) = (Z,Z) ∈ O

[
ShK◦(V ◦

Dq)
]
.

Proof. Since [X♢
Fq
] is Frobenius-invariant, it suffices to consider the first coordinate of inc◦∗([X♢

Fq
]), which

we write as inc◦∗1 ([X♢
Fq
]). SinceM♢ is zero-dimensional, all the intersections of X♢

Fq
with supersingular

curves on X◦
Fq

are proper. Hence inc◦∗1 ([X♢
Fq
]) is computed by

(10.13)
∑

[(gq ,gq)]∈GSpin(V ♢
Dq)(Q)\GSpin(V ♢

Dq)(A
q
f )×GSpin(V ◦

Dq)(Qq)/K
♢q×K◦

q

m(gq)[(g
q, gq)],

where, for gq ∈ GSpin(V ◦
Dq)(Qq), m(gq) is the degree of the divisor N♢ ∩M(gq) onM(gq) ∼= P1

Fq
. In

particular, m(gq) depends only on the GSpin(V ♢
Dq)(Qq)-orbit of gq. Moreover, gq 7→ m(gq) is a compactly

supported function on GSpin(V ♢
Dq)(Qq)\GSpin(V ◦

Dq)(Qq) since each point ofM lies on only finitely many
irreducible components.12 Hence (10.13) is a finite linear combination of special cycles

Z(h(i)q , VT ∩ V ◦
Dq, V

◦
Dq)K◦ ∈ Z

[
ShK◦(V ◦

Dq)
]

for some elements
h(i)q ∈ GSpin(V ♢

Dq)(Qq)\GSpin(V ◦
Dq)(Qq)/K

◦
q ,

which completes the proof. □

Remark 10.4.12. It would not be difficult to make Lemma 10.4.11 more explicit, but it is unnecessary for
the main results.

Theorem 10.4.13. For any h ∈ T◦S◦
O , there exists a cycle Z◦

Dq ∈ SC1
K◦(V ◦

Dq, O) such that

inc◦∗[(Z
◦
Dq, Z

◦
Dq)]− (T ◦2

q − 4q2⟨q⟩)2h[X♢
Fq
] ∈ H2

ét,c(X
◦
Fq
, O(1))

has ϖ-power-torsion image in H2
ét,!(X

◦
Fq
, O(1)).

Proof. Let Z ∈ SC1
K◦(V ◦

Dq) be the special cycle in Lemma 10.4.11, so that

inc◦∗([X♢
Fq
]) = (Z,Z),

and define
Z◦
Dq := (T ◦2

q − 4q2⟨q⟩) · (T ◦
q + 2q) · h · Z ∈ SC1

K◦(V ◦
Dq, O).

12One can see this using that M is locally of finite type over Fq , or more concretely from [55, §4].
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By Lemma 10.4.9(2), it suffices to show that

(10.14) inc◦∗ inc◦∗[(Z
◦
Dq, Z

◦
Dq)] = inc◦∗(T ◦2

q − 4q2⟨q⟩)2h[X♢
Fq
].

By Lemmas 10.4.9(1) and 10.4.7, the left-hand side of (10.14) is

(T ◦2
q − 4q2⟨q⟩) · (T ◦

q + 2q) · h ·
(
−2q T ◦

q ⟨q⟩−1

T ◦
q −2q

)
·
(
Z
Z

)
= (T ◦2

q − 4q2⟨q⟩)2 · h ·
(
Z
Z

)
because the Hecke operator ⟨q⟩ acts trivially on special cycles. This coincides with the right-hand side of
(10.14) by Lemma 10.4.7 and the definition of Z, so the proof is complete. □

10.5. Pushing forward from X◦ to X .

10.5.1. Now let S be a finite set of primes of Q such that Kℓ is hyperspecial for ℓ ̸∈ S, and let m ⊂ TS∪{q}O
be a generic, non-Eisenstein maximal ideal.

Notation 10.5.2. We denote by j the closed embedding X◦ ↪→ X of (10.4).

Notation 10.5.3. Let

∂AJ,m,Fq : CH
2(XFq)→ H1(Fq, H3

ét(XFq , O(2))m)

denote the local Abel-Jacobi map constructed analogously to (4.4.2).

Lemma 10.5.4. The composite map

CH1(X◦
Fq)

j∗−→ CH2(XFq)
∂AJ,m,Fq−−−−−→ H1(Fq, H3

ét(XFq , O(2))m)

factors through the specialization map

H2(X◦
Fq , O(1))→ H2(X◦

Fq
, O(1))Frobq=1.

Proof. For any variety Y defined over Fq, we have the Hochschild-Serre spectral sequence:

(10.15) Ei,j2 = H i(Fq, Hj
ét(YFq , O(n)) =⇒ H i+j

ét (Y,O(n)), ∀n ∈ Z.

Since Fq has cohomological dimension one, it follows immediately that the map

H i(Y,O(n))→ H i(YFq , O(n))Frobq=1

is surjective. Let H i(Y,O(n))0 ⊂ H i(Y,O(n)) be the kernel of this map, and let

∂ : H i(Y,O(n))0 → H1(Fq, H i−1(YFq , O(n))

be the edge map from (10.15).
It then suffices to show that the map

H2(X◦
Fq , O(1))

j∗−→ H4(XFq , O(2))
∂−→ H1(Fq, H3(XFq , O(2))m)

factors through the surjectionH2(X◦
Fq , O(1)) ↠ H2(X◦

Fq
, O(1))Frobq=1, i.e. is trivial onH2(X◦

Fq , O(1))0.
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Consider the commutative diagram arising from the functoriality of (10.15):

H2
ét(X

◦
Fq , O(1))0 H1(Fq, H1

ét(X
◦
Fq
, O(1)))

H4
ét(XFq , O(2))0 H1(Fq, H3

ét(XFq , O(2)))

H4
ét(XFq , O(2))0m H1(Fq, H3

ét(XFq , O(2))m).

∂

j∗ j∗

∂

locm locm

∂

Now note that the composite map

H1
ét(X

◦
Fq
, O(1))

j∗−→ H3
ét(XFq , O(1))

locm−−→ H3
ét(XFq , O(1))m

is identically zero: indeed, the source is ϖ-power-torsion by [73, Chapter IX, Corollary 7.15(iii)], and the
target is ϖ-torsion-free by Theorem 2.7.5(2). In particular, the composite from the top left to the bottom
right of the commutative diagram vanishes, which proves the lemma. □

10.5.5. We now construct a map

∂ss,m : O[ShKqKPa
q
(VDq)]m → H1

unr(Qq, H
3
ét(ShK(VD)Q, O(2))m)

in several steps.

Construction 10.5.6. Assume ⟨q⟩ = 1 in TSK,VD,O,m.
(1) For g ∈ ShKqKPa

q
(VDq), let B(g) ⊂ Xss

Fq
be the image of (gq,M(gq)) under the uniformization of

Proposition 10.3.3.
(2) Define an action of Frobq on ShKqKPa

q
(VDq) by g 7→ gF . Then using Proposition 10.3.4(4), we

obtain a map
O[ShKqKPa

q
(VDq)]

Frobq=1 → CH2(XFq , O).

(3) By our assumption ⟨q⟩ = 1, the natural map gives an isomorphism

O[ShKqKPa
q
(VDq)]

Frob2q=1
m

∼−→ O[ShKqKPa
q
(VDq)]m.

(4) Finally, we define the map

∂ss,m : O[ShKqKPa
q
(VDq)]m → H1(Fq, H3

ét(ShK(VD)Q, O(2))m)

to be the composite

O[ShKqKPa
q
(VDq)]m

(3)−1

−−−→ O[ShKqKPa
q
(VDq)]

Frob2q=1
m

[g]7→[g]+[gF ]−−−−−−−−→ O[ShKqKPa
q
(VDq)]

Frobq=1
m

(2)−→ CH2(XFq , O)m
∂AJ,Fq,m−−−−−→ H1(Fq, H3

ét(XFq , O(2))m)
∼−−−→

BCX
H1

unr(Qq, H
3
ét(XQ, O(2))m).

Theorem 10.5.7. Suppose m ⊂ TS∪{q}O satisfies:
(1) m is non-Eisenstein and generic.
(2) ⟨q⟩ = 1 in TSK,VD,O,m.

Let h ∈ T◦S◦
O be any element, and let C ≥ 0 be an integer such that ϖC annihilates the ϖ-power-torsion

in H2(X◦
Q, O(1)). Then there exists a special cycle

ZDq ∈ SC2
K(VDq, O)
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such that

ϖC · ResQq ∂AJ,m

(
j∗

(
(T ◦2
q − 4q2⟨q⟩)2 · h · [X♢]

))
= ϖC · ∂ss,m(ZDq) ∈ H1

unr(Qq, H
3
ét(XQ, O(2))m).

Proof. Let

j : ShK◦(V ◦
Dq)

·gq0−−→ ShKqKPa
q
(VDq)

be the natural map, induced by the embedding V ◦
Dq ↪→ VDq from Notation 10.3.1(1). In particular, we have

(10.16) j(B◦
δ (g)) = B(j(g)F δ), (g, δ) ∈ ShK◦(V ◦

Dq)× {0, 1} .

Then we take
Z◦
Dq =

∑
g∈ShK◦ (V ◦

Dq)

n(g)[g] ∈ SC1
K◦(V ◦

Dq, O)

to be the special cycle provided by Theorem 10.4.13, and let

ZDq = j
(
Z◦
Dq

)
∈ SC2

K(VDq, O)

be the pushforward. If we let

cl◦ss(Z
◦
Dq) =

∑
g∈ShK◦ (V ◦

Dq)

n(g) ([B◦
0(g)] + [B◦

1(g)]) ∈ CH1(X◦
Fq , O),

then by (10.16),

∂ss,m(ZDq) = BCX
(
∂AJ,m,Fqj∗ cl

◦
ss(Z

◦
Dq)
)
∈ H1

unr(Qq, H
3(XQ, O(2))m).

In light of Lemma 10.5.4 and the local-global compatibility of the Abel-Jacobi map, it then suffices to show
that

cl◦ss(Z
◦
Dq)− (T ◦2

q − 4q2⟨q⟩)2 · h · [X♢
Fq ] ∈ CH1(X◦

Fq)

has ϖ-power-torsion image in H2
ét(X

◦
Fq
, O(1)). But this is precisely the content of Theorem 10.4.13. □

10.5.8. Now let π, S, andE0 be as in Notation 4.0.1, and let p be a prime ofE0 satisfying Assumption 4.1.1.
We set m := mπ,p as usual.

Corollary 10.5.9. Suppose q ∤ D is n-admissible and K is an S-tidy level structure for GSpin(VD). Then
for any α ∈ TestK(VD, π,O/ϖ

n) and any h ∈ T◦S◦
O ,

ordϖλ
D
n (q) ≥ ordϖ locq ◦α∗ ◦ ∂AJ,m

(
j∗

(
(T ◦2
q − 4q2⟨q⟩)2 · h · [X♢]

))
− C,

where C is a constant independent of n and q.

Proof. Recall the conditions on m from Theorem 10.5.7 are satisfied by Lemmas 4.1.7 and 4.3.2. Let α′ be
the composite map

O
[
ShKqKPa

q
(VDq)

]
m

∂ss,m−−−→ H1
unr(Qq, H

3
ét(ShK(VD)Q, O(2))m)

α∗−→ H1
unr(Qq, Tπ,n) ≃ O/ϖn,

where the last isomorphism is from Proposition 4.2.8. ThenλDn (q) containsα′(ZDq), whereZDq ∈ SC2
K(VDq, O)

is the cycle from Theorem 10.5.7, and the corollary follows. □

11. Second explicit reciprocity law

The goal of this section is to prove Theorem 11.2.6 below.
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11.1. Setup and notation. Let π, S, and E0 be as in Notation 4.0.1, and fix the following data:
◦ A prime p of E0 satisfying Assumption 4.1.1, with residue characteristic p.
◦ A squarefree product D ≥ 1 of primes in S, with σ(D) even.
◦ An S-tidy level structure K for GSpin(VD).
◦ A Schwartz function φ =

⊗′
ℓ φℓ ∈ S(V 2

D ⊗ Af , O)K .

11.1.1. For all ℓ ̸∈ S, let Lℓ ⊂ VD ⊗Qℓ be the unique self-dual lattice stabilized by Kℓ.

11.2. Modifying the test function. In several steps, we now construct a new Schwartz function φ′ which
coincides with φ at cofinitely many primes.

Construction 11.2.1.
(1) Label the finitely many imaginary quadratic fields contained in ρπ = ρπ,p as E1, . . . , Es for some

s ≥ 0.
(2) For each 1 ≤ i ≤ s, fix an odd prime ℓi ̸∈ S∪{p, ℓ1, . . . , ℓi−1} inert in Ei such that ρπ(Frobℓi) has

distinct eigenvalues (possible a fortiori by Assumption 4.1.1(2)).
(3) Let

Xℓi =
{
(x, y) ∈ V 2

D ⊗Qℓi : x · x ∈ (Z×
ℓi
)2, x · y ∈ Zℓi , y · y ∈ Z×

ℓi
− (Z×

ℓi
)2
}
.

(4) We define a test function

φ′
ℓi
= (ℓi + 1) · 1{

(x,y)∈L2
ℓi
∩Xℓi

} + 1{(x,y)∈Lℓi×(ℓ−1
i L−Lℓi )∩Xℓi} ∈ S(V

2
D ⊗Qℓi ,Z)

Kℓi .

(5) Now fix a prime ℓ0 ̸∈ S∪{p, ℓ1, . . . , ℓs} such that ρπ(Frobℓ0) has distinct eigenvalues.
(6) Let

φ′
ℓ0 ∈ S(V

2
D ⊗Qℓ0 ,Z)

Kℓ0

be the indicator function of the set{
(x, y) ∈ L2

ℓ0 : x · x ∈ Z×
ℓ0
− (Z×

ℓ0
)2, x · y ∈ ℓ0Zℓ0 , y · y ∈ ℓ0Z

×
ℓ0

}
.

(7) Finally, we define

φ′ :=
⊗
ℓ̸=ℓi

φℓ ⊗
s⊗
i=0

φ′
ℓi
∈ S(V 2

D ⊗ Af , O)K .

Lemma 11.2.2. Suppose κD(1, φ;K) ̸= 0. Then there exists a test function α ∈ TestK(VD, π,O) and a
matrix T ∈ Sym2(Q)>0 satisfying (T1) and (T2) of (10.1.1) such that

α∗ ◦ ∂AJ,m

(
Z(T, φ′)K

)
̸= 0.

Moreover, for all 1 ≤ i ≤ s, ℓi is split in the quadratic field F := Q(
√
T11) and T lies in GL2(Z(ℓi)).

Proof. Repeatedly applying Corollary 5.6.6, we concludeκD(1, φ′;K) ̸= 0; i.e., there existsT ∈ Sym2(Q)≥0

and α ∈ TestK(VD, π,O) such that

α∗ ◦ ∂AJ,m

(
Z(T, φ′)K

)
̸= 0.

By definition of Z(T, φ′)K , it follows that, for all 0 ≤ i ≤ s, there exists x, y ∈ ΩT,VD(Qℓi) such that
φ′
ℓi
(x, y) ̸= 0. Now the choice of φ′

ℓ0
implies that T is positive definite, T11 is not a rational square, and the

quadratic space defined by T has nontrivial Hasse invariant at ℓ0 ∤ D, and this proves the first claim of the
lemma. Similarly, for each 1 ≤ i ≤ s, ℓi is split in F and T lies in GL2(Z(ℓi)) by the choice of φ′

ℓi
. □
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11.2.3. We will now assume κD(1, φ;K) ̸= 0, and fix α and T satisfying the conclusion of Lemma 11.2.2.
We choose a base point (eT1 , eT2 ) ∈ ΩT,VD(Q) such that eT1 , eT2 ∈ Lℓi for all 1 ≤ i ≤ s (possible by the last
point of Lemma 11.2.2), and we adopt the setup of §10 for this choice of T , (eT1 , eT2 ), and K; the choice of
g0 is postponed to Proposition 11.2.5.

Definition 11.2.4. For each ℓ split in F and each hyperspecial subgroup K◦
ℓ ⊂ GSpin(V ◦

D)(Qℓ), we define
a Hecke operator T ◦

ℓ ∈ T◦
ℓ as follows. Choose an isomorphism

GSpin(V ◦
D)(Qℓ) ≃ Gℓ := {(g1, g2) ∈ GL2(Qℓ)×GL2(Qℓ) : det g1 = det g2}

mapping K◦
ℓ to Gℓ ∩ (GL2(Zℓ)×GL2(Zℓ)). Then T ◦

ℓ is the double coset operator represented by((
ℓ 0
0 1

)
,

(
ℓ 0
0 1

))
∈ Gℓ.

Proposition 11.2.5. There exists an element g0 ∈ GSpin(VD)(A
{ℓ1,...,ℓs}
f ) such that, adopting the notation

of (10.1.3) for this choice of g0:

(1) The compact open subgroups K◦
ℓi
⊂ GSpin(V ◦

D)(Qℓi) are hyperspecial for 1 ≤ i ≤ s.
(2) We have

α∗ ◦ ∂AJ,mj∗

(
s∏
i=1

T ◦
ℓi
· [ShK⋄(V ⋄

D)]

)
̸= 0,

where [ShK⋄(V ⋄
D)] ∈ CH1(ShK◦(V ◦

D)) is the class of the cycle from (10.2).

Proof. By definition of Z(T, φ′)K and the assumption α ◦ ∂AJ,m(Z(T, φ
′)K) ̸= 0, there exists g0 ∈

GSpin(VD)(A
{ℓ1,...,ℓs}
f ) such that

(11.1) Z :=
∑

g=
∏
gℓi∈

∏s
i=1 GSpin(V ⋄

D)(Qℓi )\GSpin(VD)(Qℓi )/Kℓi

(
s∏
i=1

φ′
ℓi
(g−1
ℓi
· (eT1 , eT2 ))

)
·Z(g0g, VT , VD)K

satisfiesα∗∂AJ,m(Z) ̸= 0. We will check the claimed properties for this choice of g0. First, ifφ′
ℓi
(g−1
ℓi

(eT1 , e
T
2 )) ̸=

0, then g−1
ℓi
eT1 · g

−1
ℓi
eT1 = eT1 · eT1 ∈ Z×

(ℓi)
, so in particular

Lℓi ∩Qℓig
−1
ℓi
eT1 = Zℓig

−1
ℓi
eT1 .

On the other hand, we chose (eT1 , e
T
2 ) so that Lℓi ∩ eT1 = ZℓieT1 . Hence by Proposition 3.1.8, we have

gℓi ∈ GSpin(V ◦
D)(Qℓi) ·Kℓi . In particular, we can rewrite (11.1) as

Z =
∑

g=
∏
gℓi∈

∏s
i=1 GSpin(V ⋄

D)(Qℓi )\GSpin(V ◦
D)(Qℓi )/Kℓi∩GSpin(V ◦

D)(Qℓi )

s∏
i=1

φ′
ℓi
(g−1
ℓi

(eT1 , e
T
2 )) · Z(g0g, VT , VD)K

=
∑

g=
∏
gℓi∈

∏s
i=1 GSpin(V ⋄

D)(Qℓi )\GSpin(V ◦
D)(Qℓi )/Kℓi∩GSpin(V ◦

D)(Qℓi )

s∏
i=1

φ′
ℓi
(g−1
ℓi

(eT1 , e
T
2 )) · j∗Z(g, VT ∩ V ◦

D, V
◦
D)K◦ .

(11.2)
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Again because eT1 · eT1 ∈ Z×
(ℓi)

, L◦ := Lℓi ∩ (V ◦
D ⊗ Qℓi) is self-dual, and so its stabilizer K◦

ℓi
:= Kℓi ∩

GSpin(V ◦
D)(Qℓi) in GSpin(V ◦

D)(Qℓi) is hyperspecial, which proves (1). To prove (2), by definition we have

φ′
ℓi
(eT1 , g

−1
ℓi
eT2 ) =


ℓi + 1, g−1

ℓi
eT2 ∈ Lℓi ,

1, g−1
ℓi
eT2 ∈ ℓ

−1
i Lℓi − Lℓi ,

0, g−1
ℓi
eT2 ̸∈ ℓ

−1
i Lℓi

=


ℓi + 1, g−1

ℓi
e2 ∈ L◦,

1, g−1
ℓi
e2 ∈ ℓ−1

i L◦ − L◦,

0, g−1
ℓi
e2 ̸∈ ℓ−1

i L◦,

(11.3)

where
e2 := eT2 −

eT2 · eT1
eT1 · eT1

eT1 ∈ V ◦
D.

Note that e2 ·e2 ∈ Z×
(ℓi)

because, for (eT1 , g
−1
ℓi
eT2 ) to lie in the support of φ′

ℓi
, we automatically have eT1 ·eT1 ∈

Z×
(ℓi)
− (Z×

ℓi
)2, eT1 · eT2 ∈ Z(ℓi), and eT2 · eT2 ∈ Z×

(ℓi)
∩ (Z×

ℓi
)2.

Letφ◦
ℓi
∈ S(V ◦

D⊗Qℓi ,Z)
K◦
ℓi be the indicator function ofL◦; by our specification eT2 ∈ Lℓi and Proposition

3.1.8, we see that φ◦
ℓi
(g−1
ℓi
e2) is the indicator function of GSpin(V ⋄

D)(Qℓi) ·K◦
ℓi

. The proposition therefore
follows from (11.2), (11.3), and the following:

Claim. When restricted to
{
y ∈ V ◦

D ⊗Qℓi : y · y ∈ Z×
ℓi

}
, we have T ◦

ℓi
· φ◦

ℓi
= (ℓi + 1)φ◦

ℓi
+ 1ℓ−1

i L◦−L◦ .

To prove the claim, observe first that

T ◦
ℓi
· φ◦

ℓi
=
∑
L′∼L◦

1L′ ,

where L′ runs over self-dual lattices in V ◦
D ⊗Qℓi such that

(11.4) ℓiL
◦ ⊂1 ℓiL

′ + ℓiL
◦ ⊂2 L

′ ∩ L◦ ⊂1 L
◦.

Note that such a chain (11.4) uniquely determines L′ because L′ and L◦ correspond to the two isotropic lines
in the split two-dimensional Fℓi-space L◦ + L′/L◦ ∩ L′. We can also write the chain (11.4) as
(11.5) ℓiL

◦ ⊂1 L1 ⊂2 L
∨
1 ⊂1 L

◦,

i.e. such chains correspond bijectively to isotropic lines L1/ℓiL
◦ in the Fℓi-quadratic space L◦/ℓiL

◦.
Now for any y ∈ V ◦

D ⊗Qℓi with y · y ∈ Z×
ℓi

, we wish to calculate

T ◦
ℓi
· φ◦

ℓi
(y) = #

{
L′ ∼ L◦ : y ∈ L′} .

If y ∈ L◦, then the choices of L′ correspond to isotropic lines orthogonal to y in the four-dimensional Fℓi-
space L◦/ℓiL

◦; there are ℓi + 1 such lines because y⊥ ⊂ L◦/ℓiL
◦ is a non-degenerate three-dimensional

Fℓi-space. Hence T ◦
ℓi
· φ◦

ℓi
(y) = ℓi + 1 for y ∈ L◦.

On the other hand, since any L′ ∼ L◦ is contained in ℓ−1
i L◦, if T ◦

ℓi
·φ◦

ℓi
(y) ̸= 0 we must have y ∈ ℓ−1

i L◦.
So suppose y ∈ ℓ−1

i L◦ − L◦. Now, lattices L′ ∼ L◦ with y ∈ L′ (equivalently ℓiy ∈ ℓiL′) are in bijection
with chains (11.5) satisfying ℓiy ∈ L1; since ℓiy ̸∈ ℓiL◦, the unique such chain is given by L1 = ℓiL

◦+ ℓiy,
and this makes sense because ℓiy is isotropic in L◦/ℓiL

◦. We therefore conclude that T ◦
ℓi
· φ◦

ℓi
(y) = 1 for

y ∈ ℓ−1
i L◦ − L◦, which completes the proof of the claim. □

Theorem 11.2.6. Suppose π is non-endoscopic, κD(1) ̸= 0, and admissible primes exist for ρπ. Then there
exists a constant C ≥ 0 such that, for all N , there exist infinitely many admissible primes q with n(q) ≥ N ,

ordϖ locq κ
D
n(q)(1) ≥ n(q)− C,
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and
ordϖ λ

D
n(q)(q) ≥ n(q)− C.

Proof. SinceκD(1) ̸= 0, we can choose the dataφ andK in the beginning of this section so thatκD(1, φ;K) ̸=
0 (where K can be made S-tidy by Lemma 4.4.7). Then fix g0 ∈ GSpin(VD)(A

{ℓ1,...,ℓs}
f ) as in Proposition

11.2.5, so that

(11.6) α∗ ◦ ∂AJ,mj∗

(
s∏
i=1

T ◦
ℓi
[ShK⋄(V ⋄

D)]

)
̸= 0;

equivalently, by Lemma 4.1.6, (11.6) is non-torsion. Let S◦ be the set of primes ℓ such that K◦
ℓ is not

hyperspecial. Without loss of generality, we may replaceO by a finite extension such that all the eigenvalues
of T◦S◦

O acting onH2
ét(ShK◦(V ◦

D)Q,Qp) lie inO; leth1, . . . ,hm : T◦S◦
O → O be the finitely many characters

that appear in the action onH2
ét,!(ShK◦(V ◦

D)Q,Qp(1))
GQ , cf. Corollary A.2.2. Then we may choose elements

hj ∈ T◦S◦
O such that T◦S◦

O acts on hjH2
ét,!(ShK◦(V ◦

D)Q,Qp(1))
GQ through hj , and moreover

m∑
j=1

hj = ϖC0 on H2
ét,!(ShK◦(V ◦

D)Q,Qp(1))
GQ

for a constant C0 ≥ 0. In particular, by Lemma 10.5.4 and Proposition 11.2.5,

c := α ◦ ∂AJ,mj∗

(
hj ·

(
s∏
i=1

T ◦
ℓi

)
[ShK⋄(V ⋄

D)]

)
is non-torsion for some 1 ≤ j ≤ m. Write h := hj and h := hj . Let us fix an isomorphism ι : Qp

∼−→ C.
By Corollary A.2.2, we are in one of the following two cases:

Case 1. The character ι ◦h is given by the action of T◦S◦ on a global newform in an automorphic represen-
tation σ ofBF (AF )× unramified outside primes above S◦. Moreover JL(σ) = BCF/Q(σ0)⊗χ where σ0 is
a cuspidal automorphic representation of GL2(AQ) of weight 2 and χ is a finite order character of F×\A×

F .

Case 2. The character ι ◦ h is given by the action of T◦S◦ on the automorphic representation χ0 ◦ ν, where
ν : GSpin(V ◦

D) → Gm is the restriction of the norm character in (A.1.1) and χ0 is a quadratic character of
Q×\A×/ν(K◦).

Claim 1. In Case 1, σ0 does not have CM by any imaginary quadratic field K0 ⊂ F (ρπ).

Proof of claim 1. If so, then K0 ̸= F , and K0 is contained in the compositum of F and one of the quadratic
fields Ei ⊂ Q(ρπ) from Construction 11.2.1; in particular, since ℓi is inert in Ki but split in F by Lemma
11.2.2, ℓi is inert in K0. It follows that tr ρσ,ι(Frobℓi) = 0. On the other hand, it is not difficult to compute
using the Satake transform and Theorem 2.2.1(1) that

T ◦
ℓi
= tr ρσ,ι(Frobℓi) · tr ρσ,ι(τ Frobℓi τ

−1)

on a local newform in σℓi , where τ ∈ GQ projects to the nontrivial element of Gal(F/Q). Hence h · T ◦
ℓi
=

h(T ◦
ℓi
) · h = 0, which contradicts the nontriviality of c. □

Now fix an element g ∈ Gal(F (ρπ)/Q) such that:
(1) g is admissible for ρπ and has nontrivial image in Gal(F/Q).
(2) c(g) has nonzero component in the 1-eigenspace for g for any cocycle representative of c.
(3) In Case 1 above, ρσ0,ι(g2) has distinct eigenvalues.

This is possible by Proposition C.5.3 because c is nontorsion. Now fix constants C1, C2, C3 ≥ 0 such that:
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(1) The component of c(g) in the 1-eigenspace for g is nonzero modulo ϖC1 .
(2) In Case 1 above, tr(ρσ,ι(g2))− 4 det ρσ,ι(g

2) ̸= 0 (mod ϖC2). In Case 2, C2 = 0.
(3) ϖC3 annihilates the O-torsion in H2

ét,!(ShK◦(V ◦
D)Q, O).

Now fix N ≥ C1 + C2 + C3 and let cN ∈ H1(Q, Tπ,N ) be the reduction of c modulo ϖN . All but
finitely many primes with Frobenius conjugate to g in Gal(F (Tπ,N , cN )/Q) are N -admissible and satisfy
Assumption 10.2.1; let q be one such and abbreviate n := n(q) ≥ N . If αn ∈ TestK(VD, π,O/ϖn) is the
image of α, then:

(11.7) ordϖ locq αn,∗ ◦ ∂AJ,mj∗

(
h ·

(
s∏
i=1

T ◦
ℓi

)
[ShK⋄(V ⋄

D)]

)
≥ n− C1.

We have:

Claim 2. ordϖh(T
◦2
q − 4q2⟨q⟩) ≤ C2.

Proof of Claim 2. In Case 1, we have

h(T ◦2
q − 4q2⟨q⟩) = tr ρσ,ι(Frob

2
q)− 4 det ρσ,ι(Frob

2
q) ≡ tr ρσ,ι(g

2)− 4 det ρσ,ι(g
2) (mod ϖn),

so this follows from the choice of C2. In Case 2, we have h(T ◦
q ) = (q2 + 1)χ0(⟨q⟩) and h(⟨q⟩) = χ0(⟨q⟩),

so h(T ◦2
q − 4q2⟨q⟩) = (q2 − 1)2χ0(⟨q⟩), which is a ϖ-adic unit because q is admissible. □

Now, by Corollary 10.5.9 we have

ordϖλ
D
n (q) ≥ ordϖ locq αn,∗ ◦ ∂AJ,mj∗

(
(T ◦2
q − 4q2⟨q⟩)h

(
s∏
i=1

T ◦
ℓi

)
[ShK⋄(V ⋄

D)]

)
− C3

= ordϖ locq αn,∗ ◦ ∂AJ,mj∗

(
h(T ◦2

q − 4q2⟨q⟩)h

(
s∏
i=1

T ◦
ℓi

)
[ShK⋄(V ⋄

D)]

)
− C3

≥ ordϖ locq αn,∗ ◦ ∂AJ,mj∗

(
h

(
s∏
i=1

T ◦
ℓi

)
[ShK⋄(V ⋄

D)]

)
− C3 − ordϖh(T

◦2
q − 4q2⟨q⟩).

By Claim 2 and (11.7), we conclude that

(11.8) ordϖλ
D
n (q) ≥ n− C1 − C2 − C3.

Since j∗
(
h ·
(∏s

i=1 T
◦
ℓi

)
[ShK⋄(V ⋄

D)]
)
∈ CH2(ShK(VD), O) lies in SC2

K(VD, O) by Remark 3.1.6, (11.7)
and (11.8) together show the theorem. □

In the endoscopic case, we similarly obtain:

Theorem 11.2.7. Suppose π is endoscopic associated to a pair (π1, π2), such that π1 and π2 are not both
CM for the same imaginary quadratic field. For j = 1 or 2, assume κD(1)(j) ̸= 0 and admissible primes
exist which are BD-admissible for ρπj . Then there exists a constant C ≥ 0 such that, for all N , there exist
infinitely many admissible primes q which are N -BD-admissible for ρπj , such that

ordϖ locq κ
D
n(q)(1)

(j) ≥ n(q)− C

and
ordϖ λ

D
n(q)(q) ≥ n(q)− C.

Proof. By using Corollary 5.6.7 in place of Corollary 5.6.6, we can refine Lemma 11.2.2 to obtain the same
conclusion where α : H3

ét(ShK(VD)Q, O(2))m → Tπ is required to factor through Tπj . From here, the rest
of the proof follows that of Theorem 11.2.6, substituting Proposition C.5.4 for Proposition C.5.3. □
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12. Main result: rank one case

12.1. Setup and notation. Let π, S, and E0 be as in Notation 4.0.1, and fix a prime p of E0 satisfying
Assumption 4.1.1, with residue characteristic p.

Definition 12.1.1. An automorphic representation π of GL4(A) is of general type if it is neither an auto-
morphic induction nor a symmetric cube lift.

For this section, we shall assume:

Hypothesis (⋆). If π is non-endoscopic, then BC(π) is either of general type, or a symmetric cube lift of a
non-CM automorphic representation π0 of GL2(A), or induced from a non-CM automorphic representation
π0 of GL2(AK) with K/Q real quadratic; in the latter two cases E0 is also a strong coefficient field of π0.

12.2. Choosing Chebotarev primes.

12.2.1. Let Lπ ⊂ EndO(Tπ) be the underlying O-module of ad0 ρπ = ad0 ρπ,p, which is free of rank 10
over O. In general, Lπ ⊗Qp is not absolutely irreducible, even if Vπ is. In the endoscopic case, we also let
Lπi be the underlying O-module of ad0 ρπi , for i = 1, 2.

Proposition 12.2.2. Suppose π is not endoscopic. We have the following cases for Lπ:
(1) If BC(π) is an automorphic induction of π0 as in Hypothesis (⋆), then

Lπ = Ind
GQ
GK

ad0 Tπ0 ⊕
(
⊗− Ind

GQ
GK

Tπ0

)
(−1).

Both direct summands are absolutely irreducible after inverting p.
(2) If BC(π) is a symmetric cube lift of π0 as in Hypothesis (⋆), then

Lπ = ad0 Tπ0 ⊕ Sym6(Tπ0)(−3),

with each summand absolutely irreducible after inverting p.
(3) If BC(π) is of general type, then Lπ ⊗Qp is absolutely irreducible.

Proof. In the first case, Tπ0 exists by Lemma 2.2.19, and we have

Tπ = Ind
GQ
GK

Tπ0 ;

so the claimed decomposition follows from, e.g., the discussion in [13, §7.5.16]. For the irreducibility, if πtw0
is the Gal(K/Q) twist, then one checks using Hodge-Tate weights that Vπ0 ̸≃ Vπtw

0
⊗ χ for any character

χ of GK . It follows that ⊗ − Ind
GQ
GK

Vπ0 is absolutely irreducible, since if it reduces it must have a one-
dimensional constituent. Similarly, if IndGQ

GK
ad0 Vπ0 is not absolutely irreducible, then ad0 Vπ0

∼= ad0 Vπtw
0

,
so by Corollary C.3.7, Vπ0 |GL = Vπtw

0
|GL for a finite extension L/K, and this is a contradiction by Lemma

C.3.4.
In the second case, Tπ0 exists by Lemma 2.2.18, and by definition, Tπ = Sym3 Tπ0(−1). Then we have

End(Tπ) = Sym6(Tπ0)(−3)⊕ Sym4(Tπ0)(−2)⊕ Sym2(Tπ0)(−1)⊕O

as an O[GQ]-module, and by dimension counting, Lπ consists of the first and third summands. The ir-
reducibility of each summand of Lπ after inverting p is clear because the Zariski closure (over E) of the
projective image of ρπ0 is PGL2(E) by Theorem C.3.2.

The third case follows from Lemma C.4.3, noting that p > 3 by Remark 4.1.2. □
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12.2.3. We write Lπ,n = Lπ/ϖ
nLπ for all n ≥ 1 and likewise for Lπi,n when π is endoscopic. We will

be applying the results and notations of Appendix B to ρπ (and ρπi when π is endoscopic), using Lemmas
8.2.1 and 8.3.7 to check the relevant assumptions. The notion of admissible primes for Notation B.2.4 is as
explained in (8.2.5) and (8.3.10). In particular, if π is not endoscopic and q is an n-admissible prime for ρπ,
let H1

ord(Qq, Lπ,n) ⊂ H1(Qq, Lπ) be the subspace defined in Definition B.2.5.

Lemma 12.2.4. Suppose π satisfies Hypothesis (⋆) and is not endoscopic. There exists a GQ-stable de-
composition Lπ = L♡

π ⊕ L◦
π such that L♡

π ⊗ Qp and L◦
π ⊗ Qp are absolutely irreducible and distinct, and

moreover, if q is an n-admissible prime:
(1) We have H1(Qq, L

♡
π,n) +H1

ord(Qq, Lπ,n) = H1(Qq, Lπ,n).
(2) We have H1

unr(Qq, L
◦
π,n) = H1(Qq, L

◦
π,n).

(3) If Tπ,n|GQq =M0,n ⊕M1,n is the decomposition of Lemma 4.2.2, then the composite

L♡
π,n ↪→ Lπ,n ↠ ad0M0,n

is surjective.

Here L♡
π,n = L♡

π /ϖ
nL♡

π , and likewise for L◦
π,n.

Proof. In case (3) of Proposition 12.2.2, the lemma is clear, taking L◦
π = 0. Suppose we are in case (1)

of Proposition 12.2.2. Then if q is admissible for ρπ, we have tr ρπ(Frobq) ̸≡ 0 (mod ϖ), which im-
plies q splits in K. Let πtw0 be the Gal(K/Q)-twist. Because det ρπ0 = χcyc

p , comparing the decompo-
sition Tπ,n = M0,n ⊕M1,n with Tπ|GK = Tπ0 ⊕ Tπtw

0
shows that, up to replacing π0 with πtw0 , we have

M0,n = Tπ0,n. Now note that H1
(
Qq,

(
⊗− Ind

GQ
GK

Tπ0,n

)
(−1)

)
= 0 because the Frobq eigenvalues on(

⊗− Ind
GQ
GK

T π0

)
(−1) are q/α, α/q, α, and 1/α for some α ̸= q2, q−1,±1,±q. Hence the lemma holds

in this case with L♡
π = Ind

GQ
GK

ad0 Tπ0 and L◦
π =

(
⊗− Ind

GQ
GK

Tπ0

)
(−1).

Now suppose we are in case (2) of Proposition 12.2.2, and take L♡
π = Sym6(Tπ0)(−3), L◦

π = ad0 Tπ0 . If
Frobq acts on T π0 with generalized eigenvalues {α, β}, then the admissibility of Frobq implies that (up to
reordering) we have β3 = q and α = β2. Choose a basis for Tπ such that

Frobq =


α2/β

α
β

β2/α

 =


q

β2

β
1

 .

One sees immediately that the eigenvalues of Frobq on ad0 T π0 are
{
1, β, β−1

}
, which are all distinct from

q−1, so H1
unr(Qq, L

◦
π,n(1)) = 0, and this implies (2) by local Poitou-Tate duality.

To prove (1) and (3), we use the following:

Claim. The two decompositions into one-dimensional O/ϖ-vector spaces

L
Frobq=1
π,1 = (L◦

π,1)
Frobq=1 ⊕ (L♡

π,1)
Frobq=1 = (ad0M0,1)

Frobq=1 ⊕ (ad0M1,1)
Frobq=1

are both orthogonal with respect to the Killing form, and not the same.

Before proving the claim, we show it implies (1) and (3). Indeed, by (2), we can rewrite (1) as asserting
the surjectivity of

H1
unr(Qq, ad

0M1,n) = H1
unr(Qq, Lπ,n) ∩H1

ord(Qq, Lπ,n)→ H1
unr(Qq, L

◦
π,n).

SinceFrobq acts onLπ with eigenvalues that are all either 1 or not congruent to 1 moduloϖ, this is equivalent
to the surjectivity of

(ad0M1,1)
Frobq=1 → (L◦

π,1)
Frobq=1,
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which follows from the claim.
For (3), we can take n = 1. Since Frobq acts with distinct eigenvalues

{
1, q, q−1

}
on ad0M0,1, and

the eigenvalues q and q−1 do not appear in L◦
π,1 = ad0 T π0 , it again suffices to consider the Frobq = 1

eigenspaces. In particular, it suffices to show that (L♡
π,1)

Frobq=1 is not contained in the kernel of the map
L
Frobq=1
π,1 → (ad0M0,1)

Frobq=1, which again follows from the claim.
Now we return to the proof of the claim. In our basis of Tπ, (ad0M1,1)

Frobq=1 consists of the matrices
0

x
−x

0

, and (ad0M0,1)
Frobq=1 consists of the matrices


x

0
0

x

. This decomposition is

plainly orthogonal for the Killing form.
Meanwhile, (L◦

π,1)
Frobq=1 = (ad0 T π0)

Frobq=1 consists of the matrices of the form
3y

y
−y

−3y

 .

The decomposition L◦
π ⊕ L♡

π is necessarily orthogonal for the Killing form because the form is Galois-
invariant, and the claim follows.

□

Lemma 12.2.5. Suppose π is not endoscopic and satisfies Hypothesis (⋆). Then:
(1) The action of GQ on Tπ contains a scalar of infinite order.
(2) The projective image of ρπ is a compact p-adic Lie group with semisimple Lie algebra.

Proof. If BC(π) is not an automorphic induction, then the lemma follows from Corollary C.2.6 combined
with Lemma C.2.2(4,5). If BC(π) is an automorphic induction of the kind in Hypothesis (⋆), it follows
from Corollary C.3.7. □

Lemma 12.2.6. Suppose π satisfies Hypothesis (⋆). Then:
(1) If π is not endoscopic, there exists a constant C ≥ 0 such that

ϖCH1(Q(ρπ)/Q, Lπ,n) = ϖCH1(Q(ρπ)/Q, Lπ,n(1)) = 0

for all n ≥ 1.
(2) If π is endoscopic, then for j = 1 or 2 such that πj is non-CM, there exists a constant C ≥ 0 such

that
ϖCH1(Q(ρπ)/Q, Lπj ,n) = ϖCH1(Q(ρπ)/Q, Lπj ,n(1)) = 0

for all n ≥ 1.

Proof. We start with the non-endoscopic case. For i = 0 or 1, consider the inflation-restriction exact se-
quence:

0→ H1(Q(ad0 ρπ)/Q, Lπ,n(i)GQ(ad0 ρπ))→ H1(Q(ρπ)/Q, Lπ,n(i))→
HomGQ(Gal(Q(ρπ)/Q(ad0 ρπ)), Lπ,n(i)).

(12.1)

We claim the third term vanishes. Indeed, theGQ action onGal(Q(ρπ)/Q(ad0 ρπ)) by conjugation is trivial,
so the third term is

Hom(Gal(Q(ρπ)/Q(ad0 ρπ)), Lπ,n(i)
GQ) = 0
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because the absolute irreducibility of T π implies Lπ(i)GQ = 0. If i = 1, the first term is uniformly bounded
in n by Lemma 12.2.5(1), because any g ∈ GQ that acts as a scalar z on Tπ lies in GQ(ad0 ρπ)

and acts by z2

on Lπ(1), so the lemma is proved in this case.
For the case i = 0, we have L

GQ(ad0 ρπ)
π,n = Lπ,n. By Lemma 12.2.5(2) combined with [29, Lemma B.1],

the first term in (12.1) is uniformly bounded in n, which proves the lemma when π is non-endoscopic.
Now consider the endoscopic case. Using Theorem C.3.2 to replace Lemma 12.2.5, the same argument

as above shows
ϖCH1(Q(ρπj )/Q, Lπj ,n) = ϖCH1(Q(ρπj )/Q, Lπj ,n(1)) = 0

for some constant C ≥ 0. By inflation-restriction, it suffices to show

HomGQ(Gal(Q(ρπ)/Q(ρπj )), Lπj ,n(i))

is uniformly bounded in n for i = 0, 1. By the same argument as for the claim in Lemma 9.2.2, any Galois-
invariant group homomorphism Gal(Q(ρπ)/Q(ρπj ))→ Lπj ,n(i) lies in the proper subspace on which com-
plex conjugation acts by −1; since Lπj ⊗Qp is absolutely irreducible by Theorem C.3.2 again, this suffices
by [69, Lemma 2.3.3]. □

Lemma 12.2.7. Let L = L1 ⊕ L2 be a free O-module of finite rank with GQ action, where Li ⊗ Qp are
absolutely irreducible and distinct. Then there is a constant C ≥ 0 with the following property: for any
GQ-stable O-submodule H ⊂ L/ϖnL, we have

H ⊃ ϖC pr1(H)⊕ϖC pr2(H).

Here pri : L/ϖnL→ Li/ϖ
nLi is the natural projection.

Proof. Write Li,n = Li/ϖ
n and note that we have isomorphisms
pr1(H)

H ∩ L1,n

∼←− H

H ∩ L2,n ⊕H ∩ L1,n

∼−→ pr2(H)

H ∩ L2,n
.

In particular, it is enough to show that any isomorphic O[GQ]-module subquotients of L1 and L2 are
ϖC-torsion for some universal constant C. Suppose on the contrary that for all integers m ≥ 0, there exist
submodulesBm

i ⊂ Ami ⊂ Li withAm1 /Bm
1
∼= Am2 /B

m
2 notϖm-torsion. Rescaling, we may assume without

loss of generality that Ami has nonzero image in ϖLi, so by [69, Lemma 2.3.3] we know ϖC0Li ⊂ Ami for
some constant C0 depending on L1 and L2.

For each m, let Ni(m) be the maximal integer such that

Bm
i ⊂ ϖNi(m)L,

which implies

(12.2) ϖNi(m)+C0L ⊂ Bm
i ⊂ ϖNi(m)L.

In particular, for Ami /Bm
i not to be ϖm-torsion, we must have

(12.3) Ni(m) + C0 > m

for all m. Now consider the chain of maps:
(12.4)
ϖC0L1/ϖ

N1(m)+C0L1 ↠ ϖC0L1/(B
m
1 ∩ϖC0L1) ↪→ Am1 /B

m
1

∼−→ Am2 /B
m
2 ↪→ L2/B

m
2 ↠ L2/ϖ

N2(m)L2.

The two injections in the diagram have cokernel annihilated by ϖC0 , so in particular the composite has
cokernel annihilated by ϖ2C0 . By (12.3), after reindexing, we may assume without loss of generality that
Ni(m) is increasing in m. Then by compactness of HomO(L1, L2), up to passing to a subsequence, the
maps in (12.4) fit together and give in the inverse limit a Galois-equivariant map

ϖC0L1 → L2
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with cokernel annihilated byϖ2C0 . This is absurd because there are no nontrivial mapsL1⊗Qp → L2⊗Qp,
so we have a contradiction and the lemma is proved. □

Lemma 12.2.8. Suppose π is not endoscopic and satisfies Hypothesis (⋆), and admissible primes exist
for ρπ. There is a constant C ≥ 0 with the following property: suppose given integers n,m and cocycles
c ∈ H1(Q, Tπ,n), φ ∈ H1(Q, Lπ,m), ψ ∈ H1(Q, Lπ,m(1)). Let (φ♡, φ◦) be the decomposition of φ with
respect to

H1(Q, Lπ,m) = H1(Q, L♡
π,m)⊕H1(Q, L◦

π,m),

and likewise for ψ. Then for any N ≥ max {n,m}, there are infinitely many N -admissible primes q such
that all of the cocycles are unramified at q and:

• ordϖ locq c ≥ ordϖc− C.
• We have

ordϖ

(
Resq φ,

H1
unr(Qq, Lπ,m)

H1
unr(Qq, Lπ,m) ∩H1

ord(Qq, Lπ,m)

)
≥ ordϖφ

♡ − C.

• We have

ordϖ

(
Resq ψ,

H1
unr(Qq, Lπ,m(1))

H1
unr(Qq, Lπ,m(1)) ∩H1

ord(Qq, Lπ,m(1))

)
≥ ordϖψ

♡ − C.

Proof. By Lemma 12.2.6(1), Corollary C.2.8, and inflation-restriction, the restrictions of c, φ, and ψ corre-
spond to GQ-invariant homomorphisms

Res(c) : GQ(Tπ,N ) → Tπ,n,

Res(φ) = Res(φ♡)⊕ Res(φ◦) : GQ(Tπ,N ) → Lπ,m,

Res(ψ) = Res(ψ♡)⊕ Res(ψ◦) : GQ(Tπ,N ) → Lπ,m(1)

satisfying
(12.5)
ordϖ Res(c) ≥ ordϖ(c)− C0, ordϖ Res(φ?) ≥ ordϖ(φ

?)− C0, ordϖ Res(ψ?) ≥ ordϖ(ψ
?)− C0

where ? = ♡ or ◦ and C0 ≥ 0 is a constant. We combine these homomorphisms into a map

H : GQ(Tπ,N ) → Tπ,n ⊕ Lπ,m ⊕ Lπ,m(1).

Let pr1, pr2, pr3 be the projections onto each of the three factors.
For any g ∈ GQ that acts on Tπ as a scalar z, we have

im(H) ⊃ (g − 1)(g − z2) im(H) + (g − z)(g − z2) im(H) + (g − 1)(g − z) im(H)

= (z − 1)(z2 − 1) pr1 im(H)⊕ (z − 1)(z2 − 1) pr2 im(H)⊕ (z2 − 1)(z − 1) pr3 im(H)

= (z − 1)(z2 − 1) (imRes(c)⊕ imRes(φ)⊕ imRes(ψ).)

By Lemma 12.2.7 combined with Lemma 12.2.5(1), this also implies

im(H) ⊃ ϖC1

(
imRes(c)⊕ imRes(φ♡)⊕ imRes(φ◦)⊕ imRes(ψ♡)⊕ imRes(ψ◦)

)
for some constantC1 ≥ 0 indepedent of n amdm. In particular, by (12.5) combined with [69, Lemma 2.3.3],
there exists a constant C ≥ 0 independent of n and m, such that

(12.6) O · im(H) ⊃ ϖn−ordϖ(c)+CTπ,n ⊕ϖm−ordϖ(φ♡)+CL♡
π,m ⊕ϖm−ordϖ(ψ♡)+CL♡

π,m(1).

Now fix an admissible element g ∈ GQ, which is possible by Lemma 4.2.3. By repeatedly raising g to pth
powers and taking the limit, we may assume without loss of generality that ρπ(g) has finite order coprime to
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p. Choose a basis {e1, e2, e3, e4} for Tπ with respect to which we have

ρπ(g) =


χcyc
p (g)

1
∗ ∗
∗ ∗

 ,

and setM0 = SpanO {e1, e2}, M1 = SpanO {e3, e4}. Note that, by Lemma 12.2.4(3), L♡
π surjects onto the

direct summand ad0M0 of Lπ.
Hence, using (12.6), we may choose h ∈ GQ(ρπ) as follows:
(1) The e2-component of c(h) has order at least ordϖ(c)− C.

(2) The component of φ(h) in the g-invariant line



x
−x

0
0


 ⊂ Lπ has order at least

ordϖ(φ
♡)− C.

(3) The component ofψ(h) in the g-invariant line



0 0
∗ 0


 ⊂ Lπ(1) has order at least ordϖ(ψ♡)−

C.
In particular, because g has finite order coprime to p, the same is also true for the corresponding components
of c(gh), φ(gh), and ψ(gh), with respect to any choice of cocycle representatives.

Now suppose q ̸∈ S∪{p} has Frobenius conjugate to g in Gal(Q(Tπ,N , c, φ, ψ)). To show that q satisfies
the conclusion of the lemma, it suffices to observe that the O-modules

H1
unr(Qq, Lπ,m)

H1
unr(Qq, Lπ,m) ∩H1

ord(Qq, Lπ,m)
,

H1
unr(Qq, Lπ,m(1))

H1
unr(Qq, Lπ,m(1)) ∩H1

ord(Qq, Lπ,m(1))
,

which are both free of rank one over O/ϖm, are generated by the cocyles

Frobq 7→


1
−1

0
0

 , Frobq 7→


0 0
1 0

 ,

respectively. □

The Selmer groups in the next lemma (and the rest of this section) are the ones from Definition B.2.5.

Lemma 12.2.9. Suppose π is non-endoscopic and satisfies Hypothesis (⋆), and let C be the constant of
Lemma 12.2.8. If

SelF (Q, Lπ,m) = 0

for some m ≥ max {1, C}, and q1 is an N -admissible prime for some N ≥ 5m, then either:
(1) SelF(q1)(Q, Lπ,5m) = 0; or:
(2) For any cocycle c ∈ H1(Q, Tπ,n) with n ≤ N , and any M ≥ N , there exist infinitely many M -

admissible primes q2 such that

SelF(q1q2)(Q, Lπ,5m) = 0

and
ordϖ locq2 c ≥ ordϖc− C.
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Proof. Without loss of generality, assume (1) does not hold, and let φ ∈ SelF(q1)(Q, Lπ,5m) be an el-
ement whose image in SelF(q1)(Q, Lπ,5m) is nonzero; it follows from Lemma B.2.7(1,2) that ordϖφ =
5m. Similarly, by Lemma B.2.8, there exists an element ψ ∈ SelF(q1)(Q, Lπ,5m(1)) whose image in
SelF(q1)(Q, Lπ,5m(1)) is nonzero, and we have ordϖψ = 5m. Write

φ = φ♡ ⊕ φ◦, ψ = ψ♡ ⊕ ψ◦

as in the statement of Lemma 12.2.8.

Claim 1. We have ordϖφ♡ ≥ 4m and ordϖψ
♡ ≥ 4m.

Proof of claim 1. Suppose that ordϖφ♡ < 4m; then by Lemma B.2.7(1,2), the images of φ and φ◦ coincide
in H1(Q, Lπ,m). However, by Lemma 12.2.4(2) we have

H1
unr(Qq1 , L

◦
π,m) = H1(Qq1 , L

◦
π,m),

so it follows that the image of φ lies in SelF (Q, Lπ,m); this contradicts the assumption SelF (Q, Lπ,m) = 0.
Similarly, if ordϖψ♡ < 4m, then ψ and ψ◦ have the same image in H1(Q, Lπ,m(1)). However, the local

Tate dual of Lemma 12.2.4(1) shows that H1(Qq1 , L
◦
π,m(1)) ∩H1

ord(Qq1 , Lπ,m(1)) = 0, so then the image
of ψ lies in SelF (Q, Lπ,m(1)), and this contradicts Lemma B.2.8. □

By Claim 1 combined with Lemma 12.2.8, there are infinitely many M -admissible primes q2 such that:
• ordϖ locq2 c ≥ ordϖc− C.
• We have

ordϖ

(
Resq2 φ,

H1
unr(Qq2 , Lπ,5m)

H1
unr(Qq2 , Lπ,5m) ∩H1

ord(Qq2 , Lπ,5m)

)
≥ ordϖφ

♡ − C ≥ 3m.

• We have

ordϖ

(
Resq2 ψ,

H1
unr(Qq2 , Lπ,5m(1))

H1
unr(Qq2 , Lπ,5m(1)) ∩H1

ord(Qq2 , Lπ,5m(1))

)
≥ ordϖψ

♡ − C ≥ 3m.

Put
SelFq2 (q1)(Q, Lπ,5m) = SelF(q1)(Q, Lπ,5m) ∩ SelF(q1q2)(Q, Lπ,5m)

and
SelFq1 (Q, Lπ,5m) = SelF (Q, Lπ,5m) ∩ SelF(q1)(Q, Lπ,5m).

Our next claim is:

Claim 2. We have
ϖ3m−1 SelFq2 (q1)(Q, Lπ,5m) = 0.

Proof of claim 2. First, we have the exact sequence
(12.7)

0→ SelFq1 (Q, Lπ,5m)→ SelF(q1)(Q, Lπ,5m)→
H1

ord(Qq1 , Lπ,5m)

H1
ord(Qq1 , Lπ,5m) ∩H1

unr(Qq1 , Lπ,5m)
≃ O/ϖ5m,

where the final isomorphism is by Lemma 8.2.11. Because SelFq1 (Q, Lπ,5m) is ϖm−1-torsion by Lemma
B.2.7(3), but ϖ5m−1 SelF(q1)(Q, Lπ,5m) ̸= 0 by assumption, from (12.7) we have an isomorphism of O-
modules

(12.8) SelF(q1)(Q, Lπ,5m) ≃ O/ϖ
5m ⊕ T
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where T is ϖm−1-torsion. In particular, for any x ∈ SelFq2 (q1)(Q, Lπ,5m), ϖ
m−1x = ϖaφ for some a ≥ 0.

We conclude

(12.9) 0 = ordϖ

(
Resq2(ϖ

m−1x),
H1

unr(Qq2 , Lπ,5m)

H1
unr(Qq2 , Lπ,5m) ∩H1

ord(Qq2 , Lπ,5m)

)
≥ 3m− a,

so a ≥ 3m, hence ϖ3m−1x = 0. □

Now we are ready to complete the proof of the lemma. We have the exact sequence
(12.10)

0→ SelFq2 (q1)(Q, Lπ,5m)→ SelF(q1q2)(Q, Lπ,5m)→
H1

ord(Qq2 , Lπ,5m)

H1
ord(Qq2 , Lπ,5m) ∩H1

unr(Qq2 , Lπ,5m)
≃ O/ϖ5m.

On the other hand, for any φ′ ∈ SelF(q1q2)(Q, Lπ,5m), we can compute the global Tate pairing

0 =
∑
v

⟨φ′, ψ⟩v = ⟨φ′, ψ⟩q2

by the definition of the local conditions for F(q1q2) and F(q1). Now, the induced local Tate pairing
O/ϖ5m ×O/ϖ5m ≃

H1
ord(Qq2 , Lπ,5m)

H1
ord(Qq2 , Lπ,5m) ∩H1

unr(Qq2 , Lπ,5m)
×
H1

ord(Qq2 , Lπ,5m(1)) +H1
unr(Qq2 , Lπ,5m(1))

H1
ord(Qq2 , Lπ,5m(1))

→ O/ϖ5m

is perfect, so we conclude

ordϖ

(
Resq2 φ

′,
H1

ord(Qq2 , Lπ,5m)

H1
ord(Qq2 , Lπ,5m) ∩H1

unr(Qq2 , Lπ,5m)
≃ O/ϖ5m

)
≤ 5m− ordϖ

(
Resq2 ψ,

H1
ord(Qq2 , Lπ,5m(1)) +H1

unr(Qq2 , Lπ,5m(1))

H1
ord(Qq2 , Lπ,5m(1))

)
≤ 2m.

In particular, the image of the final map in (12.10) is ϖ2m-torsion, so we have
ϖ5m−1 SelF(q1q2)(Q, Lπ,5m) = 0

by Claim 2. Hence by Lemma B.2.7(1,2), SelF(q1q2)(Q, Lπ,5m) = 0, as desired. □

We also have an endoscopic analogue:

Lemma 12.2.10. Suppose π is endoscopic associated to a pair (π1, π2), and let j = 1 or 2. Suppose πj is
non-CM. Then there exists a constant C with the following property: if

SelF (Q, Lπj ,m) = 0

for some m ≥ max {1, C}, and q1 is an N -admissible prime for some N ≥ 5m which is BD-admissible for
πj , then either:

(1) SelF(q1)(Q, Lπj ,5m) = 0; or:
(2) For any cocycle c ∈ H1(Q, Tπj ,n) with n ≤ N , and for any M ≥ N , there exist infinitely many

M -admissible primes q2, BD-admissible for πj , such that

SelF(q1q2)(Q, Lπj ,5m) = 0

and
ordϖ locq2 c ≥ ordϖc− C.

Proof. The same argument used to prove Lemma 12.2.9 applies formally, taking L◦
π := 0 and L♡

π := Lπj .
When proving the appropriate analogue of Lemma 12.2.8, one uses the claim in the proof of Lemma 9.2.2
in place of Corollary C.2.8, Lemma 12.2.6(2) in place of Lemma 12.2.6(1), and Theorem C.3.2 in place of
Lemma 12.2.5(1). □



BLOCH-KATO FOR SOME FOUR-DIMENSIONAL SYMPLECTIC GALOIS REPRESENTATIONS 145

12.3. Proof of the main results.

Theorem 12.3.1. Suppose π is non-endoscopic and satisfies Hypothesis (⋆), and let p be a prime of E0

satisfying Assumption 4.1.1, such that admissible primes exist for ρπ,p. Then for all D ≥ 1 squarefree with
σ(D) even,

κD(1)p ̸= 0 =⇒ dimH1
f (Q, Vπ,p) = 1.

Proof. Let N be a large integer to be specified later, and let M ≥ N be the number from Lemma 1.6.3(3)
applied to Tπ and n = N . By Theorem 11.2.6, there exists a constant C0 ≥ 0 independent of N and an
M -admissible prime q1 such that

ordϖ locq1 κ
D
n(q1)

(1) ≥ n(q1)− C0

and
ordϖλ

D
n(q1)

(q1) ≥ n(q1)− C0.

Because κD(1) ⊂ H1(Q, Tπ) is a free O-module by Lemma 4.1.6(1), we may fix a class κD(1)0 ∈ κD(1),
with image κDm(1)0 in H1(Q, Tπ,m) for all m ≥ 1, such that

(12.11) ordϖ locq1 κ
D
m(1)0 ≥ m− C0

for all m ≤ n(q1).

Claim. Suppose dimH1
f (Q, Vπ) > 1. Then there exists a class c ∈ H1

f (Q, Tπ), with images cm ∈
H1
f (Q, Tπ,m) for all m ≥ 1, such that:

(1) ordϖcm = m for all m.
(2) ordϖ locq1 cm ≤ C0 for all m ≤ n(q1).

Proof of claim. By the assumption dimH1
f (Q, Vπ) > 1, we may choose c ∈ H1

f (Q, Tπ) such that

(12.12) c+ ακD(1)0 ̸∈ ϖH1
f (Q, Tπ), ∀α ∈ O.

Adjusting c by an O-multiple of κD(1)0 and using (12.11), we can ensure that (2) holds. By definition, we
have an injection

H1(Q, Tπ)
H1
f (Q, Tπ)

↪→
∏
v

H1(Qv, Vπ)

H1
f (Qv, Vπ)

,

hence the quotient H1(Q, Tπ)/H1
f (Q, Tπ) is O-torsion-free, and in particular c ̸∈ ϖH1(Q, Tπ) by (12.12).

Then (1) holds as well by Lemma 4.1.6(2).
□

By Theorem 9.1.3 and Lemma B.3.6, there exists a constant m0 ≥ 1 such that SelF (Q, ad0 ρm0) = 0.
Without loss of generality, we assume N ≥ 10m0 and m0 ≥ max {1, C}, for the constant C of Lemma
12.2.8. Now consider the following two cases:

(1) If SelF(q1)(Q, Lπ,10m0−1) = 0, then we choose (by Lemma 9.1.2 and (1) of the claim) an n(q1)-
admissible prime q2 such that ordϖ locq2 cn(q1) ≥ n(q1)−C1 for a constant C1 ≥ 0 independent of
N , q1, and q2.

(2) If SelF(q1)(Q, Lπ,10m0−1) ̸= 0, then a fortiori we have SelF(q1)(Q, Lπ,5m0) ̸= 0. We choose (by
Lemma 12.2.9) an (n(q1) + 5m0)-admissible prime q2 ̸= q1 such that SelF(q1q2)(Q, Lπ,5m0) = 0
and ordϖ locq2 cn(q1) ≥ ordϖn(q1)− C1 for a constant C1 ≥ 0 independent of N , q1, and q2.

By Theorem 8.5.1 combined with Corollary B.4.3, in either case we can conclude – as long asN is sufficiently
large in a manner depending only on π, p, and m0 – that

∂q2κ
D
n(q1)

(q1q2) ⊃ λDn(q1)(q1) · (ϖ
C2)
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for a constant C2 that is independent of N , q1, and q2. Hence we may choose an element κDn(q1)(q1q2)0 ∈
κDn(q1)(q1q2), with images κDm(q1q2)0 ∈ H1(Q, Tπ,m) for all m ≤ n(q1), such that

(12.13) ordϖ∂q2κ
D
m(q1q2)0 ≥ m− C0 − C2.

We now compute the Tate pairing

(12.14) ⟨cN , κDN (q1q2)0⟩ =
∑
v

⟨cN , κDN (q1q2)0⟩v = 0 ∈ O/ϖN .

Arguing as in the proof of Theorem 9.1.4 and using that M ≤ n(q1), there is a constant C3 ≥ 0 so that

ordϖ⟨cN , κDN (q1q2)0⟩v ≤ C3, ∀v ̸∈ {q1, q2} .
By (2) of the claim, we also have

ordϖ⟨cN , κDN (q1q2)0⟩q1 ≤ C0.

In particular, (12.14) implies

ordϖ⟨cN , κDN (q1q2)0⟩q2 ≤ max {C0, C3} .
However, by Proposition 4.2.8, (12.13) combined with the choice of q2 implies

ordϖ⟨cN , κDN (q1q2)0⟩q2 ≥ N − C0 − C1 − C2.

This is a contradiction if we choose N > C0 + C1 + C2 +max {C0, C3} , and the proof of the theorem is
complete. □

Theorem 12.3.2. Suppose π is endoscopic, associated to a pair (π1, π2) of automorphic representations
of GL2(A) (in any order), and p is a prime of E0 satisfying Assumption 4.1.1, such that H1

f (Q, Vπ1,p ⊗
Vπ2,p(−1)) = 0. Assume as well that κD(1)(1)p ̸= 0 for some squarefree D with σ(D) even. Then the
following hold:

(1) If π1 is non-CM and there exist admissible primes which are BD-admissible for ρπ1,p, then

dimH1
f (Q, Vπ1,p) = 1.

(2) If for each j = 1, 2, there exist admissible primes which are BD-admissible for ρπj ,p, then

dimH1
f (Q, Vπ2,p) = 0.

In particular, if for each j = 1, 2, πj is non-CM and there exist admissible primes which are BD-admissible
for ρπj ,p, then

κD(1)p ̸= 0 =⇒ dimH1
f (Q, Vπ,p) = 1.

Remark 12.3.3. The existence of admissible primes which are BD-admissible for each ρπj ,p is considered
in Proposition C.4.12.

Proof. LetN be a large integer to be specified later, and letM ≥ N be the number from Lemma 1.6.3(3) for
Tπ and n = N . By Theorem 11.2.7, there exists a constant C0 ≥ 0 independent of N and an M -admissible
prime q1, BD-admissible for ρπ1 , such that

ordϖ locq1 κ
D
n(q1)

(1)(1) ≥ n(q1)− C0

and
ordϖλ

D
n(q1)

(q1) ≥ n(q1)− C0.

As in Theorem 12.3.1, we fix a class κD(1)0 ∈ κD(1)(1), with image κDm(1)0 ∈ H1(Q, Tπ1,m) for allm ≥ 1,
such that

(12.15) ordϖ locq1 κ
D
m(1)0 ≥ m− C0
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for all m ≤ n(q1).
Now we suppose we are in case (1) of the theorem; assume for contradiction dimH1

f (Q, Vπ1) > 1.
By the same argument as for the claim in Theorem 12.3.1, we have a class c ∈ H1

f (Q, Tπ1), with images
cm ∈ H1

f (Q, Tπ1,m), such that:
(1) ordϖcm = m for all m ≥ 1.
(2) ord locq1 cm ≤ C0 for all 1 ≤ m ≤ n(q1).

By Proposition 9.2.3 and Lemma B.3.6, there exists a constant m0 ≥ 1 such that

SelF (Q, ad0 ρπ1,m0) = 0.

Increasing N if necessary, we assume N > 10m0. Now consider the following cases:
(1) If SelF(q1)(Q, ad

0 Tπ1,10m0−1) = 0, then choose (by Lemma 9.2.2) q2 to be n(q1)-admissible and
BD-admissible for ρπ1 such that

ordϖ locq2 cn(q1) ≥ n(q1)− C1

for a constant C1 ≥ 0 independent of N , q1, and q2.
(2) If SelF(q1)(Q, ad

0 Tπ1,10m0−1) ̸= 0, then a fortiori we have

SelF(q1)(Q, ad
0 Tπ1,5m0) ̸= 0.

We choose, by Lemma 12.2.10, an (n(q1)+5m0)-admissible prime q2 ̸= q1, BD-admissible for π1,
such that

SelF(q1q2)(Q, ad
0 Tπ1,5m0) = 0

and ordϖ locq2 cn(q1) ≥ n(q1)− C1 for a constant C1 ≥ 0 independent of N , q1, and q2.
By Theorem 8.5.2 and Corollary B.4.3, in either case we can conclude

∂q2κ
D
n(q1)

(q1q2) ⊃ λDn(q1)(q1) · (ϖ
C2)

for all N sufficiently large in a manner depending only on π, p, and m0, and for a constant C2 ≥ 0 that is
independent of N , q1, and q2. The remainder of the proof of (1) is now identical to Theorem 12.3.1.

Now we suppose we are in case (2), and assume for contradiction that there exists a non-torsion class
c ∈ H1

f (Q, Tπ2) with images cm ∈ H1(Q, Tπ2,m) for all m ≥ 1. By the proof of the claim in Theorem
12.3.1, we may assume ordϖcm = m for allm. Then we choose (by Lemma 9.2.2) q2 to be n(q1)-admissible
and BD-admissible for ρπ2 , such that ordϖ locq2 cn(q1) ≥ n(q1)− C1 for a constant C1 ≥ 0 independent of
N , q1, and q2. By Proposition 9.2.3 and Lemma B.3.6, there exists a constant m0 ≥ 1 such that

SelF (Q, ad0 ρπ2,m0) = 0.

By Theorem 8.5.2(1) and Corollary B.4.3, we can conclude that

∂q2κ
D
N (q1q2) ⊃ λDN (q1) · (ϖC2)

for allN sufficiently large and for a constantC2 ≥ 0 that is independent ofN , q1, and q2. The remainder of the
proof of (2) now follows the proof of Theorem 12.3.1, using that locq1 cN = 0 becauseH1

f (Qq1 , Tπ2,N ) = 0.
□

Appendix A. Cohomology of GSpin4 Shimura varieties

A.1. The auxiliary quaternionic Shimura variety.
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A.1.1. For this section, let V be a quadratic space over Q of signature (2, 2) and nontrivial discriminant
character χ. Then by [50, Appendix A], C+(V ) = B ⊗Q F =: BF , where B is an indefinite quaternion
algebra over Q and F/Q is the real quadratic field associated to χ. We abbreviate G := GSpin(V ), G̃ :=
ResF/QB

×
F . Then we have an exact sequence of algebraic groups over Q:

(A.1) 1→ G→ G̃→ (ResF/QGm)/Gm → 1.

Let K =
∏
Kℓ ⊂ G(Af ) be a neat compact open subgroup, and let S be a nonempty set of primes such

that Kℓ is hyperspecial for ℓ ̸∈ S. Fix a neat compact open subgroup K̃ =
∏
K̃ℓ ⊂ G̃(Af ) satisfying the

following conditions:

(1) For all ℓ ̸∈ S, K̃ℓ is hyperspecial.
(2) K̃ ∩GSpin(V )(Af ) = K.
(3) We have ν(K̃) ∩O×

F,+ = (O×
F ∩ K̃)2, where ν : G̃→ ResF/QGm is the norm character and O×

F,+

is the group of totally positive units of F .

Such a K̃ exists because S is nonempty. Let S̃h
K̃
(V ) be the Shimura variety for G̃ at level K̃.

Proposition A.1.2. Under conditions (1) - (3) above, the natural map

(A.2) ShK(V )→ S̃h
K̃
(V )

is an open and closed embedding.

Proof. This follows from [68, Proposition 2.10, Remark 2.11]. □

A.1.3. Hecke algebras. For a prime ℓ ̸∈ S and a ring R, let Tℓ,R (resp. T̃ℓ,R) denote the spherical Hecke
algebra of Kℓ-biinvariant (resp. K̃ℓ-biinvariant) R-valued functions on G(Qℓ) (resp. G̃(Qℓ)). If S′ ⊃ S is
a finite set of primes, then we set

TS
′

R := ⊗′
ℓ̸∈S′Tℓ,R, T̃S

′
R := ⊗′

ℓ̸∈S′T̃ℓ,R.

When R = Z we drop it from the notation.

Proposition A.1.4. Fix an isomorphism ι : Qp
∼−→ C. There is a decomposition of T̃S-modules:

H2
ét,!(S̃hK̃(V )Q,Qp) =

⊕
πf

H2
ét,!(S̃hK̃(V )Q,Qp)πf⊗ι

−1πK̃f ⊕
⊕
χ

H2
ét,!(S̃hK̃(V )Q,Qp)χ◦det⊗ι−1(χ◦det)K̃ ,

where πf runs over finite parts of cuspidal, infinite-dimensional automorphic representations π ofBF (AF )×
with discrete series archimedean components of parallel weight 2, and χ runs over finite order characters of
F×\A×

F . As GQ-representations, we have

H2
ét,!(S̃hK̃(V )Q,Qp)

ss
πf

= ⊗− Ind
GQ
GF

ρJL(π),ι

and
H2

ét,!(S̃hK̃(V )Q,Qp)
ss
χ◦det = ι−1 rec(χ|A×

Q
)(−1)⊕ ι−1 rec(χ|A×

Q
) · ωF/Q(−1),

where ωF/Q is the quadratic character of GQ associated to F .

Proof. When BF is split, this follows from the discussion in [112, §XI.2]. In the nonsplit case, the Hecke
module decomposition is clear from Matsushima’s formula, and the Galois actions follow from [58]. □
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A.1.5. Let ℓ ̸∈ S be a prime; then we may identifyB⊗Qℓ ≃M2(Qℓ) in such a way that K̃ℓ = GL2(OF⊗Zℓ)
and G(Qℓ) ⊂ G̃(Qℓ) ≃ GL2(F ⊗ Qℓ) consists of those matrices having determinant in Q×

ℓ . Let T (Qℓ)

and T̃ (Qℓ) be the standard diagonal tori inG(Qℓ) and G̃(Qℓ), respectively, and letB(Qℓ) and B̃(Qℓ) be the
upper triangular Borel subgroups.

Proposition A.1.6. Let χ0 : T̃ (Qℓ) → C× be an unramified character. Then
(
Ind

G̃(Qℓ)
B̃(Qℓ)

χ0

)
|G(Qℓ) has a

uniqueKℓ-spherical constituent, which is isomorphic to the unique spherical constituent of IndG(Qℓ)
B(Qℓ)

(χ0|T (Qℓ)).

Proof. This is clear from the observation that B̃(Qℓ) · Kℓ = B̃(Qℓ) · K̃ℓ = G̃(Qℓ); indeed, Kℓ · (K̃ℓ ∩
T̃ (Qℓ)) = K̃ℓ because ν(T̃ (Qℓ) ∩ K̃ℓ) = ν(K̃ℓ). □

It follows immediately that:

Corollary A.1.7. Let π̃ be an irreducible admissible representation of G̃(Qℓ) which is K̃ℓ-spherical, and
let χπ̃ : T̃ℓ → C be the character giving the Hecke action on π̃K̃ℓ . Then, viewing π̃ as an admissible
representation of G(Qℓ), Tℓ stabilizes the one-dimensional space π̃K̃ℓ and acts on it via the composite of
χπ̃ with the homomorphism Tℓ → T̃ℓ determined by the Satake transform and the map of dual groups
LResF/QB

×
F ↠ LGSpin(V ).

A.2. Hecke action on Tate classes forGSpin4. For an automorphic representionπ ofGL2(AQ), letBCF/Q(π)
denote the base change to GL2(AF ).

Lemma A.2.1. Continue the notation of Proposition A.1.4.

(1) IfH2
ét,!(S̃hK̃(V )Q,Qp(1))

GQ
πf ̸= 0, then there exists an automorphic representation π0 of GL2(AQ),

with π0,∞ discrete series of weight 2, and a finite-order character χ of F×\A×
F , such that JL(π) =

BCF/Q(π0)⊗ χ.
(2) If H2

ét,!(S̃hK̃(V )Q,Qp(1))
GQ
χ◦det ̸= 0, then χ|A×

Q
= ωF/Q or 1.

Proof. Part (2) is obvious from Proposition A.1.4. Part (1) follows from the proof of [112, Theorem XI.4.6(i)],
except for the assertion about π0,∞; but this is clear by [3, Chapter 3, Theorem 5.1] and the archimedean
condition on π in Proposition A.1.4. □

Corollary A.2.2. The TS-module H2
ét,!(ShK(V ),Qp(1))

GQ decomposes completely into a direct sum of
characters h : TS → Qp, each of which arises from the action of TS on either:

• A newform in an automorphic representation π of BF (AF )×, unramified outside S, such that π
satisfies the conclusion of Lemma A.2.1(1).
• The automorphic characterχ0◦ν ofGSpin(V )(AQ), whereχ0 is either trivial or the Hecke character

associated to F/Q.

Proof. Because (A.2) is an open and closed embedding, we have a split inclusion of TS-modules

H2
ét,!(ShK(V )Q,Qp(1)) ⊂ H2

ét,!(S̃hK̃(V )Q,Qp(1))

and so the corollary is immediate from Lemma A.2.1 and Corollary A.1.7. □
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Appendix B. Relative deformation theory and level-raising

In this appendix, we recall the relative deformation theory of Fakhruddin, Khare, and Patrikis [29] in a
format useful for characteristic zero level-raising. In the hope that this discussion will be helpful in future
work, we work with representations valued in more general groups than are needed for the main text.

B.1. Notation.

B.1.1. The group. Let G be a smooth, split group scheme over the ring of integers O of a finite extension
E of Qp, such that the neutral component of G is a connected reductive group. Let Gder be the derived
subgroup of G. Write ϖ for the uniformizer of O. We suppose p > 2 and G satisfy [29, Assumption 2.1].
When G = GSp4 or GL2, which are the cases relevant for the main text, loc. cit. is satisfied for all odd p.
Let dG be the dimension of LieGder.

B.1.2. The Galois representation. Let k be a number field, and fix a Galois representation ρ : Gk → G(O).
For an integer n ≥ 1, let ρn : Gk → G(O/ϖn) be the reduction of ρ, and let ρ := ρ1. Also write ad0ρ,
ad0ρn, and ad0ρ for the naturalGk-representations on LieGder, LieGder⊗OO/ϖn, and LieGder⊗OO/ϖ,
respectively. Let Σp and Σ∞ be the set of places of k lying above p and ∞, respectively. We will always
suppose fixed a finite set S of nonarchimedean places of k such that Σp ∩ S = ∅ and ρ|Gkv is unramified for
v ̸∈ S ∪ Σp. We make the following assumptions on ρ:

Assumption B.1.3.
(1) H0(k, ad0ρ) = H0(k, ad0ρ(1)) = 0.
(2) ρ is odd in the sense of [29, Definition 1.2].
(3) For all primes v ∈ Σp, ρ|Gkv is potentially semistable with regular Hodge-Tate cocharacter µv :

Gm → G.

Notation B.1.4. Recall the category CNLO from (1.1.3). Let µ : G → H = G/Gder be the maximal
abelian quotient of G, and let

χ : Gk
ρ−→ G(O)

µ−→ H(O)

be the multiplier character of ρ. For all primes v of k, let Dv be the functor on CNLO defined by

(B.1) Dv(A) = {ρA : Gkv → G(A) : ρA ⊗A (O/ϖ) = ρ, µ ◦ ρA = χ} .

The functor Dv is represented by a universal deformation ring R̃v. For v ∈ Σp, let Rv be the quotient of R̃v
corresponding to potentially semistable deformations with fixed Hodge type µv [4, Proposition 3.0.12]; for
v ̸∈ Σp, set Rv := R̃v.

Our final assumption on ρ is:

Assumption B.1.5. For all primes v ∈ S ∪ Σp, the point yv of SpecRv[1/ϖ] defined by ρ|Gkv : Gkv →
G(O)→ G(E) is formally smooth.

In particular, Assumption B.1.5 implies that yv lies on a unique irreducible component of SpecRv[1/ϖ].
Let Rv ↠ Rv be the quotient corresponding to the Zariski closure of this irreducible component. We have
the following simple criterion for Assumption B.1.5 to hold:

Lemma B.1.6. For all v, yv is a formally smooth point of SpecRv[1/ϖ] if and only if

H0(WD(ad0 ρ|Gkv )(1)) = 0.

Proof. This is immediate from [6, Corollary 3.3.4]; note that, in the notation of loc. cit., adWD(ρ|Gkv ) is
by definition the Weil-Deligne representation associated to ad ρ|Gkv , cf. [6, §2]. □
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B.2. Selmer groups and relative deformation theory. Recall that a Selmer structure F for an O[Gk]-
module M is a collection of O-submodules (the “local conditions”)

H1
F (kv,M) ⊂ H1(kv,M)

for all nonarchimedean13 places v of k, such that H1
F (kv,M) = H1

unr(kv,M) for all but finitely many v.
The associated Selmer group is

H1
F (k,M) = ker

(
H1(k,M)→

∏
v

H1(kv,M)

H1
F (kv,M)

)
.

If M is finite and M ′ = Hom(M, (E/O)(1)) is the Cartier dual, then H1(kv,M) and H1(kv,M
′) are

dual under the local Tate pairing. The dual Selmer structure F∗ to F is the Selmer structure for M ′ defined
by the orthogonal complement local conditions.

Proposition B.2.1. Let v be a nonarchimedean place of k. There exists a nonempty open setYv ⊂ SpecRv(O)
containing the point corresponding to ρv, and a collection of submodules Zr,v ⊂ Z1(Gkv , ad

0ρr) with the
following properties.

(1) Zr,v is free over O/ϖr of rank dimSpecRv[1/ϖ] (= dG if v ̸∈ Σp).
(2) Let Y v

n be the image of Yv in SpecRv(O/ϖ
n) and denote by φYvn,r : Y v

n+r → Y v
n the reduction maps

for n, r ≥ 1. Then given r0 ≥ 1, there exists n0 ≥ 1 such that, for all n ≥ n0 and all 0 ≤ r ≤ r0,
the fibers of φYvn,r are nonempty principal homogeneous spaces for Zr,v.

(3) The natural O-module maps ad0ρr ↠ ad0ρr−1 and ad0ρr−1 ↪→ ad0ρr induce surjections Zr,v ↠
Zr−1,v and inclusions Zr−1,v ↪→ Zr,v.

(4) Zr,v contains all coboundaries in Z1(Gkv , ad
0ρr).

Proof. See [29, Proposition 4.7]. □

Remark B.2.2. Although Yv ⊂ SpecRv(O) is not uniquely determined by the properties in Proposition
B.2.1, the property (2) shows that Zr,v depends only on ρ|Gkv (by considering the fiber over ρn|Gkv ).

Definition B.2.3. For all n ≥ 1, we define a Selmer structure F for ad0 ρn by

H1
F (kv, ad

0 ρn) =

{
im
(
Zn,v → H1(kv, ad

0 ρn)
)
, v ∈ S ∪ Σp,

H1
unr(kv, ad

0 ρn), v ̸∈ S ∪ Σp ∪ Σ∞.

Notation B.2.4. Now suppose given a set Q of finite primes q of k called admissible, and, for each q ∈ Q,
a quotient Rord

q of Rq with the following properties:
(1) Rord

q is formally smooth of dimension dG.
(2) Rord

q is stable under the conjugation action by
ker (G(O)→ G(O/ϖ)) .

We also suppose Q ∩ (S ∪ Σp) = ∅.

Definition B.2.5.
(1) A lift τq : Gkq → G(A) of ρ|Gkq , for a complete local Noetherian O-algebra A, is called ordinary if

the corresponding map Rq → A factors through Rord
q .

(2) For an admissible prime q ∈ Q, a global lift τ : Gk → G(A) of ρ is called q-ordinary if τ |Gkq is
ordinary.

(3) For q ∈ Q, we say q is n-admissible if ρn is q-ordinary.
13Since p ̸= 2, for all v|∞ we have H1(kv,M) = 0.
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(4) If q is n-admissible, then we define Z1
ord(Gkq , ad

0ρn) ⊂ Z1(Gkq , ad
0 ρn) as the relative tangent

space to SpecRord
q ⊗O O/ϖn at the point corresponding to ρn|Gkq . Let

H1
ord(kq, ad

0 ρn) = Im
(
Z1
ord(Gkq , ad

0 ρn)→ H1(kq, ad
0 ρn)

)
,

and letH1
ord(kq, ad

0 ρn(1)) ⊂ H1(kq, ad
0 ρn(1)) be the orthogonal complement ofH1

ord(kq, ad
0 ρn).

(5) If Q is a finite set of n-admissible primes, then we define a Selmer structure F(Q) for ad0ρn by

H1
F(Q)(kv, ad

0ρn) =

{
H1

F (kv, ad
0ρn), v ̸∈ Q,

H1
ord(kq, ad

0ρn), v = q ∈ Q.

(6) If Q is a finite set of n-admissible primes, then we define the relative Selmer groups by

SelF(Q)(k, ad
0ρn) = Im

(
SelF(Q)(k, ad

0ρn)→ SelF(Q)(k, ad
0ρ)
)

and, dually,

SelF(Q)∗(k, ad
0ρn(1)) = Im

(
SelF(Q)∗(k, ad

0ρn(1))→ SelF(Q)∗(k, ad
0ρ(1))

)
.

Proposition B.2.6. Suppose q is n-admissible.
(1) Z1

ord(Gkq , ad
0ρn) is free of rank dG over O/ϖn and contains all coboundaries.

(2) For all 1 < r ≤ n, the natural maps ad0 ρr ↠ ad0 ρr−1 and ad0 ρr−1 ↪→ ad0 ρr induce surjections
Z1
ord(Gkq , ad

0ρr) ↠ Z1
ord(Gkq , ad

0 ρr−1) and injectionsZ1
ord(Gkq , ad

0ρr−1) ↪→ Z1
ord(Gkq , ad

0 ρr).
(3) Let Yq,n,ord ⊂ SpecRord

q (O) be the set of points reducing to ρn|Gkq moduloϖn, and let Y q
m,n,ord be

the image in SpecRord
q (O/ϖm) for all m ≥ n. Then for any 1 ≤ r ≤ n, the fibers of Y q

m+r,n,ord →
Y

q
m,n,ord are nonempty principal homogeneous spaces over Z1

ord(Gkq , ad
0 ρr).

Proof. Parts (1) and (3) are immediate from the conditions on Rord
q in Notation B.2.4. For (2), it is clear

from the definition that

Z1
ord(Gkq , ad

0 ρr−1) ⊇ Im
(
Z1
ord(Gkq , ad

0 ρr)→ Z1
ord(Gkq , ad

0 ρr−1)
)
,

and equality holds by (1) and counting. A similar argument shows the compatibility with

Z1(Gkq , ad
0 ρr−1) ↪→ Z1(Gkq , ad

0 ρr).

□

Lemma B.2.7. Let Q be a finite set of n-admissible primes. Then:
(1) For all a, b ≥ 0 with a+ b ≤ n, there are natural exact sequences

0→ SelF(Q)(k, ad
0ρa)→ SelF(Q)(k, ad

0ρa+b)→ SelF(Q)(k, ad
0ρb)

and

0→ SelF(Q)∗(k, ad
0ρa(1))→ SelF(Q)∗(k, ad

0ρa+b(1))→ SelF(Q)∗(k, ad
0ρb(1)).

(2) The exact sequences in (1) identify

SelF(Q)(k, ad
0 ρa) = SelF(Q)(k, ad

0 ρn)[ϖ
a]

and
SelF(Q)∗(k, ad

0 ρa(1)) = SelF(Q)∗(k, ad
0 ρn(1))[ϖ

a]

for all a ≤ n.
(3) If SelF(Q)(k, ad

0ρm) = 0 for some integerm ≤ n, then for allm′ withm−1 ≤ m′ ≤ n, the natural
map induces an isomorphism

SelF(Q)(k, ad
0ρm−1)

∼−→ SelF(Q)(k, ad
0ρm′).
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Proof. Using Proposition B.2.6(1,2), the first part is [29, Lemma 6.1], except for the injectivity on the
left, which follows from Assumption B.1.3(1). Part (2) is a corollary of (1), because the kernel of ϖa :
SelF(Q)(k, ad

0 ρn)→ SelF(Q)(k, ad
0 ρn) coincides with the kernel of SelF(Q)(k, ad

0 ρn)→ SelF(Q)(k, ad
0 ρn−a),

and likewise for dual Selmer groups. So we show (3). For any m′ with m− 1 < m′ ≤ n, the map

SelF(Q)(k, ad
0ρm′)→ SelF(Q)(k, ad

0
ρ)

factors through SelF(Q)(k, ad
0ρm), hence vanishes; in particular, we have an isomorphism

SelF(Q)(k, ad
0ρm′−1)

∼−→ SelF(Q)(k, ad
0ρm′)

by (1). The claim follows by downwards induction on m′.
□

Lemma B.2.8. Suppose Q is a finite set of n-admissible primes. Then for all m ≤ n,

dimO/ϖ SelF(Q)(k, ad
0ρm) = dimO/ϖ SelF(Q)∗(k, ad

0ρm).

Proof. This is [29, Lemma 6.3]. Note that the local conditions are balanced in the sense of loc. cit.: for
v ̸∈ Q, this is [29, Proposition 4.7(3)], and for q ∈ Q the same calculation applies because by Proposition
B.2.6(1). □

Remark B.2.9. The proof of [29, Lemma 6.3] uses Assumption B.1.3(1).

Definition B.2.10. For any finite set of primesQ disjoint fromS∪Σp, we define the Shafarevich-Tate groups:

(B.2) X2
Q(ad

0ρn) := ker

H2(kS∪Σp∪Q/k, ad0ρn)→
∏

v∈S∪Σp∪Q
H2(kv, ad

0ρn)


and

(B.3) X1
Q(ad

0ρn(1)) := ker

H1(kS∪Σp∪Q/k, ad0ρn(1))→
∏

v∈S∪Σp∪Q
H1(kv, ad

0ρn(1))

 ,

for all n ≥ 1.

Lemma B.2.11. Suppose given a finite set Q of n-admissible primes such that

SelF(Q)(k, ad
0ρn) = 0.

Then the natural map
X2

Q(ad
0ρ)→X2

Q(ad
0ρn)

is identically zero.

Proof. In the commutative diagram

X1
Q(ad

0ρn(1)) X1
Q(ad

0ρ(1))

SelF(Q)∗(k, ad
0ρn(1)) SelF(Q)∗(k, ad

0ρ(1)),

the bottom map is identically zero because SelF(Q)∗(k, ad
0ρn(1)) = 0 by Lemma B.2.8. Hence the top map

is identically zero as well. But by global Poitou-Tate duality, the top map is canonically dual to the map

X2
Q(ad

0ρ)→X2
Q(ad

0ρn),
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so this shows the lemma. □

Theorem B.2.12 (Fakhruddin-Khare-Patrikis, [29]). Fixm ≥ 1. Then there exists a constantn0 = n0(m, ρ) ≥
1 with the following property. For any N ≥ n0, if Q is a finite set of N -admissible primes and

SelF(Q)(k, ad
0ρm) = 0,

then there exists a representation
ρQ : Gk → G(O)

satisfying:
(1) ρ ≡ ρQ (mod ϖN−m+1).
(2) ρQ is unramified outside S ∪ Σp ∪ Q.
(3) For all v ∈ S ∪Σp, the points of SpecRv[1/ϖ] corresponding to ρQ|Gkv and ρ|Gkv lie on the same

irreducible component.
(4) For all q ∈ Q, ρQ is q-ordinary.

Proof. For all primes v ∈ S∪Σp, apply Proposition B.2.1 with r0 = m to obtain an integer n0,v and a subset
Yv ⊂ Rv(O). Then let

n0 = max
{
maxv∈S∪Σp {n0,v}+m, 2m

}
.

We construct ρQ as the inverse limit of representations ρQn : Gk → G(O), compatible under reduction
maps, with the following properties for all n ≥ 1:

(i) For all v ̸∈ S ∪ Σp ∪ Q, ρQn |Gkv is unramified.
(ii) For q ∈ Q, ρQn |Gkq is ordinary.
(iii) For v ∈ S ∪ Σp, ρQn |Gkv lies in the set Y v

n (cf. Proposition B.2.1(2)).

This suffices because Yv ⊂ SpecRv(O) ⊂ SpecRv(O) and SpecRord
q (O) ⊂ SpecRq(O) are both closed

in the ϖ-adic topology, for all v ∈ S ∪ Σp and q ∈ Q. The representations ρQn are constructed inductively,
but, when constructing ρQn+1, we will allow ourselves to modify the representations

ρQn−m+2, · · · , ρQn−1, ρ
Q
n .

The base case of the induction is ρQn ≡ ρn for n ≤ N .
For the inductive step, first fix local lifts ρQn+1,v of ρQn−m+1|Gkv for v ∈ S ∪ Σp ∪ Q, with the following

property: if v ∈ S∪Σp, then ρQn+1,v lies in Y v
n+1, and if v = q ∈ Q, then ρQn+1,q lies in SpecRord

q (O/ϖn+1).
Such choices are possible by Proposition B.2.1(2) and the formal smoothness of SpecRord

q . Now let c ∈
H2(kS∪Σp∪Q/k, ad0ρ) denote the obstruction class defined by choosing a set-theoretic lift

ρ̃Qn+1 : Gk,S∪Σp∪Q → G(O/ϖn+1)

of ρQn ; we have

(B.4) c ∈X2
Q(ad

0ρ)

since the local lifts ρQn+1,v exist for all v ∈ S ∪ Σp ∪ Q.
Then by Lemma B.2.11, c has trivial image cm inX2

Q(ad
0ρm). But, becausen−m+1 ≥ N−m+1 ≥ m,

cm is precisely the obstruction to lifting ρQn−m+1 modulo ϖn+1. Thus we may choose a lift

ρ̃Qn+1 : Gk,S∪Σp∪∪Q → G(O/ϖn+1)

with
ρ̃Qn+1 ≡ ρQn−m+1 (mod ϖn−m+1).
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For each place v ∈ S ∪Q∪Σp, comparing ρ̃Qn+1|Gkv to ρQn+1,v as lifts of ρQn−m+1|Gkv produces a collection
of local classes

(fv) ∈
∏

v∈S∪Q∪Σp

H1(kv, ad
0ρm)

H1
F(Q)(kv, ad

0ρm)
.

Now consider the commutative diagram with exact rows coming from the Poitou-Tate long exact sequence:
(∗)

H1(kS∪Q∪Σp/k, ad0ρm)
∏
v∈S∪Q∪Σp

H1(kv ,ad
0ρm)

H1
F(Q)

(kv ,ad
0ρm)

SelF(Q)∗(k, ad
0ρm(1))

∨

H1(kS∪Q∪Σp/k, ad0ρm−1)
∏
v∈S∪Q∪Σp

H1(kv ,ad
0ρm−1)

H1
F(Q)

(kv ,ad
0ρm−1)

SelF(Q)∗(k, ad
0ρm−1(1))

∨,

locm

locm−1

where the superscript ∨ denotes Pontryagin duality. The injectivity of the rightmost map, or equivalently the
surjectivity of its dual SelF(Q)∗(k, ad

0ρm−1(1))→ SelF(Q)∗(k, ad
0ρm(1)), follows from Lemma B.2.7(1),

Lemma B.2.8, and the vanishing of SelF(Q)∗(k, ad
0ρm(1)).

Our next claim is that the image of (fv) under the central vertical map of (∗) lies in the image of locm−1.
Indeed, because ρQn satisfies (i)-(iii) above, it follows from Propositions B.2.1(2) and B.2.6(3) that the image
of (fv) coincides with the image of the global cocycle formed by comparing ρ̃Qn+1 (mod ϖn) and ρQn as lifts
of ρQn−m+1. Then because the rows of (∗) are exact, we conclude that (fv) lies in the image of locm. Picking
a preimage, we may then modify ρ̃Qn+1 to a representation ρ′n+1 : Gk → G(O/ϖn+1) with

ρ′n+1 ≡ ρQn−m+1 (mod ϖn−m+1).

Properties (i)-(iii) hold for ρ′n+1 by Propositions B.2.1(2), B.2.6(3) again. To complete the inductive step,
we set ρQn+1 := ρ′n+1, and relabel ρQn−m+2, · · · , ρQn to be the reductions of ρ′n+1. □

B.3. Relation to Bloch-Kato Selmer groups.

Notation B.3.1. Let Σcris
p ⊂ Σp be the set of places v|p of k such that ρ|Gkv is crystalline. For v ∈ Σcris

p ,
we write Rcris

v for the crystalline quotient of Rv (constructed in [4]).

Remark B.3.2. Recall that SpecRcris
v [1/ϖ] is a union of irreducible components of SpecRv[1/ϖ]; in

particular, Rv is a quotient of Rcris
v , and SpecRcris

v [1/ϖ] is equidimensional of the same dimension as
SpecRv[1/ϖ].

Definition B.3.3. For all finite places v of k, and all r ≥ 0, define

Zrel
r,v ⊂ Z1(kv, ad

0 ρr)

to be the subspace of cocycles c corresponding to lifts ρc : Gkv → G(O[ϵ]/(ϵ2, ϖrϵ)) such that the corre-
sponding map fc : R̃v → O[ϵ]/(ϵ2, ϖrϵ) factors through Rv (resp. Rcris

v ) if v ̸∈ Σcris
p (resp. v ∈ Σcris

p ). In
particular, Zrel

r,v = Z1(kv, ad
0 ρr) if v ̸∈ Σp.

Proposition B.3.4. Fix a place v of k.
(1) For all r ≥ 1, we have Zr,v ⊂ Zrel

r,v.

(2) The cardinality of Zrel
r,v/Zr,v is uniformly bounded in r.

Proof. Let I ⊂ R̃v be the kernel of the map to Rv (resp. Rcris
v ) if v ̸∈ Σcris

p (resp. v ∈ Σcris
p ). For (1),

suppose given a cocycle c ∈ Zr,v which corresponds to a lift

fc : R̃v → O[ϵ]/(ϵ2, ϖrϵ)
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of the map f : R̃v → O determined by ρ|Gkv . Because c ∈ Zr,v, for all n sufficiently large the map

R̃v
fc−→ O[ϵ]/(ϵ2, ϖrϵ)

ϵ7→ϖn−−−−→ O/ϖn+r

factors through R̃v/I; hence

fc(I) ⊂ (ϖn − ϵ) ∩ (ϵ) in O[ϵ]/(ϵ2, ϖrϵ)

for all n sufficiently large. We conclude fc(I) = 0, hence c lies in Zrel
r,v, which proves (1).

For (2), let p ⊂ R̃v be the kernel of f , and note that Zrel
r,v is canonically identified with

HomO(p/(p
2, I), O/ϖr).

Since R̃v is Noetherian, p/(p2, I) is a finitely-generated O-module, hence

lgO Z
rel
r,v = r · rankO(p/(p2, I)) + O(1)

as r varies. But because ρ|Gkv defines a formally smooth point of SpecRv[1/ϖ], the O-rank of p/(p2, I) is
also dimSpecRv[1/ϖ] (which equals dimSpecRcris

v [1/ϖ] for v ∈ Σcris
p ). Moreover

lgO Zr,v = r dimSpecRv[1/ϖ]

by Proposition B.2.1(1), so (2) follows.
□

Proposition B.3.5. For all places v of k, let

H1
F (kv, ad

0 ρ) = lim←−
n

H1
F (kv, ad

0 ρn) ⊂ H1(kv, ad
0 ρ).

Then we have
H1

F (kv, ad
0 ρ)⊗O E = H1

f (kv, ad
0 ρ⊗O E).

Proof. Suppose first that v ̸∈ Σp. Then

dimH1(kv, ad
0 ρ⊗O E)− dimH1

f (kv, ad
0 ρ⊗O E) = dimH0(kv, ad

0 ρ(1)⊗O E) = 0

by the local Euler characteristic formula, local duality, and Lemma B.1.6 (under Assumption B.1.5). By
Proposition B.2.1(1,3), we also have

dimH1
F (kv, ad

0 ρ)⊗O E = dG − dimH0(kv, ad
0 ρ⊗O E)

= dimE LieGder ⊗O E − dimH0(kv, ad
0 ρ⊗O E)

= dimH1
f (kv, ad

0 ρ⊗O E),

and the proposition follows.
Now we consider the case v ∈ Σp. By Proposition B.2.1(1), we have

dimH1
F (kv, ad

0 ρ)⊗O E = dimSpecRv[1/ϖ] + dimad0 ρ⊗O E − dimH0(kv, ad
0 ρ⊗O E)

= dimDdR(ad
0 ρ⊗O E)/Fil0DdR(ad

0 ρ⊗O E)− dimH0(kv, ad
0 ρ⊗O E),

where the latter equality is by the proof of [6, Theorem 3.3.2] and by Assumption B.1.5. In particular, by [9,
Corollary 3.8.4], we have

dimH1
F (kv, ad

0 ρ)⊗O E = dimH1
f (kv, ad

0 ρ⊗O E).

It therefore suffices to show that H1
f (kv, ad

0 ρ⊗O E) ⊂ H1
F (kv, ad

0 ρ)⊗O E.
By Proposition B.3.4, we have

(lim←−
r

Zr,v)⊗O E = (lim←−
r

Zrel
r,v)⊗O E ⊂ Z1(kv, ad

0 ρ⊗O E).



BLOCH-KATO FOR SOME FOUR-DIMENSIONAL SYMPLECTIC GALOIS REPRESENTATIONS 157

In particular, by the definition ofZrel
r,v,H1

F (kv, ad
0 ρ)⊗OE consists of cocycles c such that the corresponding

G-valued deformation ρc of ρ to E[ϵ]/(ϵ2) is crystalline (resp. potentially semistable) with Hodge type µv
if v ∈ Σcris

p (resp. v ∈ Σp − Σcris
p ). By [4, Proposition 2.3.2], it suffices to check this condition for

the representation σ ◦ ρc : Gkv → GLn(E[ϵ]/(ϵ2)) obtained by composing ρc with any faithful algebraic
representation σ : G→ GLn,E .

Consider the case when v ∈ Σp − Σcris
p . Suppose given a cocycle c ∈ H1

f (kv, ad
0 ρ⊗O E); a fortiori, c

lies in the kernel of the map
H1(kv, ad

0 ρ⊗O E)→ H1(kv, ad
0 ρ⊗O BdR),

hence the cocycle corresponding to the deformation σ ◦ ρc of σ ◦ ρ lies in the kernel of the map
H1(kv, ad

0(σ ◦ ρ))→ H1(kv, ad
0(σ ◦ ρ)⊗BdR).

In particular, σ ◦ ρc is potentially semistable by the argument of [2, Lemma 1.2.5], and this completes the
proof. When v ∈ Σcris

p , an analogous argument applies, using that c lies in the kernel of the map

H1(kv, ad
0 ρ⊗O E)→ H1(kv, ad

0 ρ⊗O Bcris)

by definition of H1
f (kv, ad

0 ρ⊗O E). □

Lemma B.3.6. Suppose H1
f (k, ad

0 ρ⊗O E) = 0. Then for all n sufficiently large,

SelF (k, ad
0 ρn) = 0.

Proof. We first claim:

Claim. We have SelF (k, ad0 ρ) = lim←−n SelF (k, ad
0 ρn).

Proof of claim. Set Zn,v = Z1
unr(Gkv , ad

0 ρn) for all finite v ̸∈ S ∪ Σp, and set Zv := lim←−n Zn,v for
all finite v. It follows from Proposition B.2.1(1,3) and a direct calculation in the unramified case that
Z1(Gkv , ad

0 ρ)/Zv is torsion-free and Zn,v is the image of the map Zv → Z1(Gkv , ad
0 ρn) for all n ≥ 1.

Then the claim follows from [75, Lemma 3.7.1]. □

Now we return to the proof of the lemma. By Proposition B.3.5, the assumption H1
f (k, ad

0 ρ⊗O E) = 0

implies that SelF (k, ad0 ρ) is torsion, hence trivial because H1(k, ad0 ρ) is ϖ-torsion-free by Assumption
B.1.3(1). So by the claim, we have

lim←−
n

SelF (k, ad
0 ρn) = 0,

which implies
lim←−
n

SelF (k, ad
0 ρn) = ∩nSelF (k, ad0 ρn) = 0.

Hence SelF (k, ad0 ρn) = 0 for n sufficiently large. □

B.4. Controlling congruences for level-raised representations.

Definition B.4.1. (1) For each place v of k, we define

Cv := sup
r

#
(
Zrel
r,v/Zr,v

)
,

which is finite by Proposition B.3.4.
(2) If Q is a finite set of n-admissible primes for some n ≥ 1, define a Selmer structure F(Q)rel for

ad0 ρn by

H1
F(Q)rel(kv, ad

0ρn) =

{
im
(
Zrel
n,v → H1(kv, ad

0 ρn)
)
, v ∈ S ∪ Σp,

H1
F(Q)(kv, ad

0 ρn), otherwise.
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Proposition B.4.2. Let C1 =
∑

v∈S∪Σp Cv, where Cv is as in Definition B.4.1. Then

lgO SelF(Q)rel(k, ad
0 ρn) ≤ lgO SelF(Q)(k, ad

0 ρn) + C1

for all n ≥ 1 and all n-admissible Q.

Proof. This follows from the exactness of the sequence

(B.5) 0→ SelF(Q)(k, ad
0ρn)→ SelFrel(Q)(k, ad

0ρn)→
∏

v∈S∪Σp

H1
Frel(kv, ad

0ρn)

H1
F (kv, ad

0ρn)
.

□

Corollary B.4.3. Fix c ≥ 0. There exists a constant C2 ≥ 0, depending only on c and ρ, with the following
property: for all n ≥ m− 1 ≥ 0 and all n-admissible Q with |Q| = c,

SelF(Q)(k, ad
0 ρm) = 0 =⇒ lgO SelF(Q)rel(k, ad

0 ρn) ≤ C2(m− 1) + C1,

where C1 is the constant in Proposition B.4.2.

Proof. By Lemma B.2.7(3), if SelF(Q)(k, ad
0 ρm) = 0 then

ϖm−1 SelF(Q)(k, ad
0 ρn) = 0.

Hence
lgO SelF(Q)(k, ad

0 ρn) ≤
(
dimO/ϖ SelF(Q)(k, ad

0 ρn)[ϖ]
)
(m− 1)

=
(
dimO/ϖ SelF(Q)(k, ad

0 ρ)
)
(m− 1)

≤

dimO/ϖ SelF (k, ad
0 ρ) +

∑
q∈Q

dimO/ϖ
H1(kq, ad

0 ρ)

H1
F (kq, ad

0 ρ)

 (m− 1);

(B.6)

in the second line we have used Lemma B.2.7(2). By the local Euler characteristic formula, dimO/ϖH
1(kq, ad

0 ρ)
is uniformly bounded in q, so (B.6) becomes

(B.7) lgO SelF(Q)(k, ad
0 ρn) ≤ C2(m− 1)

for a constant C2 depending only on c = |Q| and ρ. Combined with Proposition B.4.2, this proves the
corollary. □

Notation B.4.4. Let Σ be a finite set of places of k.
(1) Let A ∈ CNLO. A lift ρA : Gk → G(A) of ρ is called Σ-good if:

(i) µ ◦ ρA = χ (notation as in Notation B.1.4);
(ii) ρA is unramified outside S ∪ Σp ∪ Σ∞ ∪ Σ;
(iii) For all v ∈ Σcris

p (resp. v ∈ Σp − Σcris
p ), the map R̃v → A defined by ρA|Gkv factors through

Rcris
v (resp. Rv).

(2) Let Dglobal
Σ be the functor on CNLO defined by

Dglobal
Σ (A) = {ρA : Gk → G(A) : ρA ⊗A (O/ϖ) = ρ and ρA is Σ-good} / ∼,

where the equivalence relation is ker (G(A)→ G(O/ϖ))-conjugacy. By (the same argument of)
[25, Proposition 2.2.9], Dglobal

Σ is represented by a global deformation ring which we denote RΣ.
(3) Now suppose Σ = Q for some finite subset Q ⊂ Q. Let Dglobal

Q-ord ⊂ D
global
Q be the subfunctor

consisting of deformations which are q-ordinary for all q ∈ Q. By (the same argument of) [25,
Proposition 2.2.9], Dglobal

Q-ord is represented by the Q-ordinary quotient of RQ, which we denote RQ.
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(4) Given a homomorphism fQ : RQ → O, define the congruence ideal
(B.8) ηfQ ⊂ O := fQ(AnnRQ

(ker fQ)) ⊂ O.

Lemma B.4.5. Let m ≥ 1 be an integer. Then we may choose the integer n0(m, ρ) ≥ 1 in Theorem B.2.12
such that the following holds: suppose n ≥ n0(m, ρ), and Q is an n-admissible set such that

SelF(Q)(ad
0ρm) = 0.

Let fQ : RQ → O be the homomorphism corresponding to the representation ρQ from Theorem B.2.12. Then
ordϖ ηfQ ≤ lgOSelF(Q)rel(ad

0ρn−m+1).

Proof. Let n1(m, ρ) ≥ 1 satisfy the conclusion of Theorem B.2.12, and let C1 be the constant from Propo-
sition B.4.2. We set n0(m, ρ) := max {n1(m, ρ), C1 + 2m− 1}, and check the claimed property. Write
I := ker fQ. We have

FittRQ
(I) ⊂ AnnRQ

(I),

so by base change for Fitting ideals,
FittRQ/I(I/I

2) ⊂ ηfQ .
Because RQ/I = O, it therefore suffices to bound lgOI/I

2.
Now note that O-module maps I/I2 → O/ϖs, for any integer s ≥ 1, are canonically in bijection with

lifts RQ → O[ϵ]/(ϵ2, ϖsϵ) of fQ. Taking s = n−m+1 and using that ρQ ≡ ρ (mod ϖn−m+1), such lifts
are in bijection with classes in SelF(Q)rel(k, ad

0ρn−m+1). Hence

(B.9) Hom(I/I2, O/ϖn−m+1) ∼= SelF(Q)rel(k, ad
0 ρn−m+1).

Now, by Lemma B.2.7(3), SelF(Q)(k, ad
0ρn−m+1) is ϖm−1-torsion. In particular, (B.5) shows that

SelF(Q)rel(k, ad
0ρn−m+1) is ϖm+C1−1-torsion, hence a fortiori ϖn−m-torsion. Since I is finitely gener-

ated over RQ, we conclude that I/I2 is ϖn−m-torsion.
Thus

lgO I/I
2 = lgO HomO(I/I

2, O/ϖn−m+1),

and the lemma follows from (B.9). □

We remark that essentially the same argument shows:

Remark B.4.6. The map fQ : RQ → O is an isomorphism if and only if SelF(Q)rel(k, ad
0 ρ) = 0.

Definition B.4.7. Let q be n-admissible. We say that q is standard if:
(1) There exists a representation τq : Gkq → G(O) which is both ordinary and unramified.
(2) For all m ≤ n, both

H1
unr(kq, ad

0ρm) +H1
ord(kq, ad

0ρm)

H1
unr(kq, ad

0ρm)

and
H1

unr(kq, ad
0ρm) +H1

ord(kq, ad
0ρm)

H1
ord(kq, ad

0ρm)

are free of rank one over O/ϖm.

Lemma B.4.8. Fix an integer m ≥ 1 and let n0 = n0(m, ρ) be the integer of Theorem B.2.12. Let n ≥
max {n0, 3m} be an integer and suppose given a finite setQ of (n+m)-admissible primes and two additional
n-admissible primes p, q ̸∈ Q, such that:

(1) q is standard and not (n+ 1)-admissible.
(2) SelF(Q)(k, ad

0ρm) = SelF(Qqp)(k, ad
0ρm) = 0 but SelF(Qq)(k, ad

0ρ2m−1) ̸= 0.
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Then the representation ρQqp constructed in Theorem B.2.12 is ramified at p modulo ϖn+m.

Proof. Let ρQ and ρQqp be the representations afforded by Theorem B.2.12, so that ρQ ≡ ρ (mod ϖn+1)
and ρQqp ≡ ρ (mod ϖn−m+1). Modulo ϖn+m, ρQ and ρQqp differ by a cocycle c ∈ H1(k, ad0ρ2m−1).
(This make sense because 2m − 1 ≤ n −m + 1.) Also let d ∈ SelF(Qq)(k, ad

0ρ2m−1(1)) be an element
whose image in SelF(Qq)∗(k, ad

0ρ2m−1(1)) is nonzero, which exists Lemma B.2.8. By global Poitou-Tate
duality, we have

(B.10)
∑
v

⟨c, d⟩v = 0,

where ⟨c, d⟩v is the local Tate pairing. By Proposition B.2.1(2) and by the choice of n0, locv c lies in
H1

F(Qq)(kv, ad
0ρ2m−1) for all v ̸= p, q. In particular,

(B.11) ⟨c, d⟩p ̸= 0 ⇐⇒ ⟨c, d⟩q ̸= 0.

Our next claim is that:

(B.12) ⟨c, d⟩q ̸= 0.

Indeed, Resq c lies in H1
unr(kq, ad

0ρ2m−1) +H1
ord(kq, ad

0ρ2m−1); one can see this by comparing both ρQ
and ρQqp to the representation τq in Definition B.4.7(1). Because q is not (n + 1)-admissible, ρQ is not
ordinary at q modulo ϖn+1, so

Resq c ∈
H1

unr(kq, ad
0 ρ2m−1) +H1

ord(kq, ad
0 ρ2m−1)

H1
ord(kq, ad

0 ρ2m−1)
≈ O/ϖ2m−1

is nonzero modulo ϖm. On the other hand,

Resq d ∈
H1

ord(kq, ad
0ρ2m−1(1))

H1
ord(kq, ad

0ρ2m−1(1)) ∩H1
unr(kq, ad

0ρ2m−1(1))

=
H1

ord(kq, ad
0ρ2m−1(1)) +H1

unr(kq, ad
0ρ2m−1(1))

H1
unr(kq, ad

0ρ2m−1(1))
≈O/ϖ2m−1

is also nonzero modulo ϖm. Otherwise, the image of d modulo ϖm would lie in SelF(Q)∗(k, ad
0ρm(1)),

which contradicts the assumption that SelF(Q)∗(k, ad
0ρm(1)) = 0. Since local Poitou-Tate duality gives a

perfect pairing

H1
unr(kq, ad

0ρ2m−1) +H1
ord(kq, ad

0ρ2m−1)

H1
ord(kq, ad

0ρ2m−1)
×

H1
ord(kq, ad

0ρ2m−1(1))

H1
ord(kq, ad

0ρ2m−1(1)) ∩H1
unr(kq, ad

0ρ2m−1(1))
→

O/ϖ2m−1,

we indeed have (B.12). Then by (B.11), we conclude

⟨c, d⟩p ̸= 0.

Since locp d is unramified, we must have

Resp c ̸∈ H1
unr(kp, ad

0ρ2m−1).

Since ρQ|Gkp is unramified, and Resp c measures the difference between ρQ|Gkp and ρQqp|Gkp modulo
ϖn+m, this proves the lemma. □

Appendix C. Large image results

Throughout this appendix, let E be a finite extension of Qp, with ring of integers OE ⊂ E.
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C.1. Generalities on p-adic Lie groups.

Lemma C.1.1. Let h be a simple Lie algebra over E.
(1) If g ⊂ h⊕n is a Lie subalgebra that surjects onto each factor, then g is isomorphic to h⊕m for some

integer m ≤ n. Up to an automorphism of h⊕n, the map g ∼= h⊕m → h⊕n is given by

(h1, . . . , hm) 7→ (h1, . . . , h1︸ ︷︷ ︸
n1 times

, h2, . . . , h2︸ ︷︷ ︸
n2 times

, . . . , hm, · · · , hm︸ ︷︷ ︸
nm times

)

with n1 + · · ·+ nm = n.
(2) The only ideal I ⊂ h⊕n that surjects onto each factor is I = h⊕n.

Proof. We prove (1) by induction on n, with the case n = 1 being trivial. Supposing we know (1) for n− 1,
let g ⊂ h⊕n be a subalgebra surjective onto each factor, and let g′ be the image of g under the projection
h⊕n = h⊕(n−1) ⊕ h→ h⊕(n−1). Then by the inductive hypothesis, g′ ∼= h⊕m for some integer m ≤ n− 1.
Now, g ⊂ g′ ⊕ h is a subalgebra surjective onto each factor, so by Goursat’s Lemma for Lie algebras, g is
either g′ ⊕ h or the graph of isomorphism between h and a simple factor of g′. In particular, g is isomorphic
to either g′ ∼= h⊕m or g′⊕h ∼= h⊕(m+1), and it is easy to check that the embedding g→ h⊕n is of the desired
form using that g′ → h⊕(n−1) is. For (2), it suffices to check that the subalgebras in (1) are never ideals unless
n = m (and hence n1 = n2 = · · · = nm = 1). Indeed, it suffices to check that the diagonal subalgebra
h ⊂ h⊕ h is not an ideal, but this is clear: since h is simple, it is not abelian, so for some h1, h2 ∈ h we have
[h1, h2] ̸= 0. In particular, the bracket [(h1, h1), (h2, 0)] is not contained in the diagonal subalgebra, which
witnesses that the latter is not an ideal. □

Corollary C.1.2. Let h be an absolutely simple Lie algebra over Qp. Then for any finite extension E/Qp:
(1) The base change hE := h⊗Qp E is simple as a Lie algebra over Qp.
(2) For any Qp-Lie subalgebra g ⊂ hE such that E · g = hE , g is simple.

Proof. For any subalgebra g ⊂ hE , consider the extension of scalars

g⊗Qp Qp ⊂ hE ⊗Qp Qp
∼= h

[E:Qp]
Qp

.

For (1), suppose g is an ideal; then the image of g⊗QpQp in each factor of h[E:Qp]
Qp

is a Qp-stable ideal, hence

either 0 or hQp . Now, g⊗Qp Qp ⊂ hE ⊗Qp Qp is stable under the action ofGQp , which transitively permutes

the factors of h[E:Qp]
Qp

. Hence if g ̸= 0, then g⊗Qp Qp surjects onto each factor of h[E:Qp]
Qp

. Then by Lemma

C.1.1(2), g ⊗Qp Qp = hE ⊗Qp Qp, so g = hE . This proves (1). For (2), if g · E = hE , then g ⊗Qp Qp

generates hE ⊗Qp Qp
∼= h

[E:Qp]
Qp

under the action of E ⊗Qp Qp
∼= Q[E:Qp]

p , so g ⊗Qp Qp surjects onto each

factor. By Lemma C.1.1(1), we conclude g⊗Qp Qp
∼= h⊕mQp

for some m ≤ [E : Qp].

If I ⊂ g is a nonzero ideal, then I ·E is a nonzero ideal of g ·E = hE , so I ·E = hE . But then I ⊗Qp Qp

is an ideal of g⊗Qp Qp that surjects onto each factor of h[E:Qp]
Qp

, and, inspecting the possible embeddings

g⊗Qp Qp
∼= h⊕mQp

↪→ h
[E:Qp]
Qp

from Lemma C.1.1(1), we conclude that I ⊗Qp Qp surjects onto each factor of g ⊗Qp Qp
∼= h⊕mQp

. But by

Lemma C.1.1(2), I ⊗Qp Qp = g⊗Qp Qp, so then I = g. This proves (2). □

C.2. Strongly irreducible representations. For the following definition only, we allowE to be an arbitrary
algebraic extension of Qp.
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Definition C.2.1. Suppose V is a finite-dimensional E-vector space, G is a group, and ρ : G → GLE(V )
is a representation. Then V (or ρ) is said to be strongly irreducible if, for any finite-index subgroup H ⊂ G,
(ρ, V ) is absolutely irreducible as a representation of H .

Lemma C.2.2. Let V be an E-vector space of finite dimension, and let G ⊂ GLE(V ) be a compact p-adic
Lie subgroup. If V is strongly irreducible as a representation of G, then:

(1) No nontrivial element ofG/ZG is fixed under conjugation by an open subgroupU ⊂ G; in particular
G/ZG has trivial center.

(2) The group G/ZG contains no finite normal subgroup.
(3) If g ∈ G acts unipotently on LieG, then g has only one eigenvalue on V .
(4) The Lie algebra LieG/ZG is semisimple.
(5) The natural maps G ∩ SLE(V )→ G/ZG and ZG → detG induce isomorphisms on Lie algebras.
(6) V is absolutely irreducible as a representation of Lie(G ∩ SLE(V )).

Proof. (1) Let h ∈ G be an element whose image in G/ZG is invariant under conjugation by U . Then
for all g ∈ U , hgh−1g−1 lies in ZG, so by Schur’s Lemma

(C.1) hgh−1 = gλh(g) for a scalar λh(g) ∈ E×.

It is easy to check that g 7→ λh(g) is a group homomorphism U → E×. On the other hand,
if dimE V = n, then (C.1) implies that λh(g) lies in µn(E) for all g ∈ U . In particular, the
homomorphism g 7→ λh(g) has open kernel, so h commutes with an open subgroup of U . By strong
irreducibility and Schur’s Lemma again, h is scalar, so has trivial image in G/ZG.

(2) Let H ⊂ G/ZG be a finite normal subgroup. Then the map G → Aut(H) has open kernel, so (1)
implies that H is trivial.

(3) Let g = gssgu be the Jordan decomposition in GLE(V ). Then

ad(g)− 1 = (ad(gss)− 1)(ad(gu)− 1) + (ad(gu)− 1) + (ad(gss)− 1)

as operators on glE(V ). In particular, if ad(g)−1 is nilpotent on g ⊂ glE(V ), then forN sufficiently
large, g lies in the kernel of (ad(gss)− 1)N .

But since adgss−1 is diagonalizable over Qp as an operator on glE(V ), we conclude g lies in the
kernel of ad(gss)− 1; hence gss commutes with an open subgroup of G, so by Schur’s Lemma gss
is a scalar in GLE(V ). In particular, g = gssgu has a single eigenvalue on V .

(4) By [11, §6, Proposition 5], g is a direct sum g = h ⊕ s, with h semisimple and s abelian. Since
Lie(G/ZG) has trivial center by (1), it follows that the natural maps induce isomorphisms h

∼−→
Lie(G/ZG) and LieZG

∼−→ s. In particular, Lie(G/ZG) is semisimple.
(5) The map Lie(G ∩ SLE(V )) → Lie(G/ZG) = h is injective with abelian cokernel; hence it is an

isomorphism. Since g = h⊕s, it follows that the determinant identifiesLieZG = s
∼−→ Lie(det(G)).

(6) By (5), g is a direct sum g = Lie(ZG)⊕ Lie(G ∩ SLE(V )). So if Lie(G ∩ SLE(V )) stabilized any
subspace of V after extending scalars, g would as well, which contradicts strong irreducibility.

□

Lemma C.2.3. Let V be a symplectic E-vector space of dimension 2 or 4, and let G ⊂ GSpE(V ) be a
compact p-adic Lie subgroup. If V is strongly irreducible as a representation of G, then every nontrivial
closed normal subgroup of G/ZG has finite index.

Proof. AbbreviateG = G/ZG and g = LieG. Then g is a Lie subalgebra (over Qp) of spn,E , with n = 2 or
4. After replacing E with a finite extension, we may assume E · g ⊂ spn,E is split. It is also semisimple (by
Lemma C.2.2(4)) of rank at most 2, soE ·g is isomorphic to sl2,E , sl2,E×sl2,E , or sp4,E . The second case is
impossible by Lemma C.2.2(5, 6), since sl2,E×sl2,E admits no faithful irreducible two- or four-dimensional
symplectic representation. Hence E · g is simple, so g is simple by Corollary C.1.2(2). Now if H ⊂ G is
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any closed normal subgroup, it has the structure of a compact p-adic Lie subgroup by [59, Ch. III, Théorème
3.2.3]. In particular, h := LieH is an ideal of g, hence h = 0 or h = g. By arguing with the exponential
map, we see that H is either finite or has finite index; but if finite it is trivial by Lemma C.2.2(2), so the
lemma is proved. □

In fact, we extract the following more precise statement in the four-dimensional case.

Proposition C.2.4. Let G ⊂ GSp4(E) be a compact p-adic Lie subgroup, such that the defining represen-
tation is strongly irreducible. Write h := Lie(G/ZG) ⊂ sp4,E . Then after a finite extension of E:

(1) E · h is isomorphic to either sp4,E or sl2,E .
(2) In the latter caseG is contained in the image of the symmetric cube representation Sym3 : GL2(E)→

GL4(E) up to GL4(E)-conjugacy.

Proof. We have seen (1) in the proof of Lemma C.2.3, so we prove (2). Let V be the four-dimensional
defining representation ofG; as a representation ofE ·h ∼= sl2,E , V is isomorphic to the symmetric cube. In
particular, after extendingE if necessary, the embeddingE ·h ∼= sl2,E ↪→ sp4,E is conjugate to Lie Sym3 by
some g ∈ GL4(E). We may assume without loss of generality that g = 1. Let S ⊂ GSp4(E) be the image
of the symmetric cube embedding over Qp; we first claim that G is contained in S ·E× ⊂ GL4(E). Indeed,
for any g ∈ G, Ad(g) preserves sl2,E = E ·h. Since the automorphism group of sl2,E is PGL2(E), for each
g ∈ G there exists h ∈ S such that Ad(h) = Ad(g) on sl2,E . In particular h−1g ∈ GL4(E) commutes with
an open subgroup ofG (by arguing with the exponential map), so by Schur’s Lemma and strong irreducibility
h−1g is scalar. So G ⊂ S · E×, as desired.

If E′ denotes the compositum of the finitely many cubic extensions of E, then S ·E× is contained in the
image of the symmetric cube map GL2(E

′)→ GL4(E
′), and this completes the proof. □

The following lemma is a corollary of [16, Lemma 4.3].

Lemma C.2.5. Fix a number field F , and let ρ : GF → GLE(V ) be a continuous, absolutely irreducible
representation of GF . Assume there exists a place p|p of F such that V |GFp is Hodge-Tate with distinct
weights. Then, after possibly replacing E by a finite extension, there exists a number field K ⊃ F and a
strongly irreducible, continuous representation ρ0 : GK → GLE(V0) such that ρ ∼= IndGFGK ρ0.

Proof. After taking a finite extension of E, there exists a Galois extensionK of F such that each constituent
of ρ|GK is strongly irreducible. Write

ρ|ssGK =

j⊕
i=0

ρi

for some 0 ≤ j < n. Then the ρi are all distinct because ρ has distinct Hodge-Tate weights, so there is
a well-defined action of Gal(K/F ) on the set of ρi’s. This action must be transitive or else ρ would be
reducible; hence ρ|GK is semisimple and each ρi has the same dimension m. Replacing K by the fixed field
of the stabilizer of ρ0, it follows that ρ = IndGFGK ρ0. □

Corollary C.2.6. Let π be a relevant, non-endoscopic automorphic representation of GSp4(AQ) such that
BC(π) (Lemma 2.2.17) is not an automorphic induction. Then for each isomorphism ι : Qp

∼−→ C with
p > 3, Vπ,ι is strongly irreducible.

Proof. By Lemma 2.2.12, Vπ,ι is absolutely irreducible. Suppose for contradiction that it is not strongly
irreducible. By Lemma C.2.5, we may assume that Vπ,ι = Ind

GQ
GK

ρ0, where K/Q is either quartic or
quadratic and ρ0 is strongly irreducible and Hodge-Tate. If K is quartic, ρ0 corresponds to Hecke character



164 NAOMI SWEETING

of K with algebraic infinity type via the usual recipe, and BC(π) is the automorphic induction of χ| · |−1/2,
a contradiction.

IfK is quadratic, then Vπ,ι ∼= Vπ,ι⊗ωK/Q where ωK/Q is the quadratic character ofGQ corresponding to
K. Hence BC(π) ∼= BC(π)⊗ ωK/Q by strong multiplicity one for GL4, so by [3, Theorem 4.2(b)] BC(π)
is an automorphic induction. This is a contradiction, so indeed Vπ,ι is strongly irreducible, as desired. □

C.2.7. For the next corollary, we use the following notation. Let ϖ ∈ OE be a uniformizer; then for an
OE-lattice T in an E-vector space V , we write Tn := T/ϖnT for all n ≥ 1.

Corollary C.2.8. LetF be a number field, and let (ρ, V ) be as in Lemma C.2.5 above. Assume, if dimV = 1,
that there exists a place p|p of F such that the character ρ|GFp has nonzero Hodge-Tate weight. Then for any
Galois-stable OE-lattice T ⊂ V , there exists a constant C ≥ 0 such that

ϖCH1(F (ρ)/F, Tn) = 0

for all n ≥ 1.

Proof. Without loss of generality, we can extend E so that the conclusion of Lemma C.2.5 holds, for some
finite extensionK/F and some ρ0 : GK → GLE(V0). LetKc be the Galois closure ofK; then by inflation-
restriction, it suffices to show

(C.2) H1(Kc(ρ)/Kc, Tn) is uniformly bounded in n.

We label the Gal(Kc/F )-conjugates of (ρ0, V0) as (ρi, Vi), for 0 ≤ i < dimV/ dimV0, and let

G ⊂
∏
i

GLE(Vi)

be the image of GKc under ρ. We assume without loss of generality that T = ⊕Ti for Galois-stable OE-
lattices Ti ⊂ Vi. Hence to show (C.2), it suffices to show H1(G,T0,n) is uniformly bounded in n.

Case 1. ZG contains an element z that acts nontrivially on V0.

Then by inflation-restriction, we have an exact sequence

0→ H1(G/⟨z⟩, T z0,n)→ H1(G,T0,n)→ H1(⟨z⟩, T0,n)G/⟨z⟩.

The outer terms are clearly uniformly bounded, so we are done in this case.

Case 2. ZG acts trivially on V0.

For this case, note that G/ZG is a compact p-adic Lie group with semisimple Lie algebra; indeed, if
Gi = ρi(GKc) with center ZGi ⊂ Gi, then we have an injection

(C.3) Lie(G/ZG) ↪→
∏
i

Lie(Gi/ZGi),

and the semisimplicity of Lie(G/ZG) follows by Goursat’s Lemma and Lemma C.2.2(4). In particular, by
[29, Lemma B.1],H1(G/ZG, T0,n) is uniformly bounded in n. By inflation-restriction again, it then suffices
to show

H1(ZG, T0,n)
G/ZG = HomG(ZG, T0,n)

is uniformly bounded. SinceG acts trivially onZG and V0 is strongly irreducible, it suffices to ensureV0 is not
the trivial representation of G. However, if this occurs then ρ0 : GK → GLE(V0) is a finite-order character,
so all its Galois conjugates ρi also have finite order. This would mean that ρ|GFv has trivial Hodge-Tate
weights, which is ruled out by our assumptions on ρ.

□
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Lemma C.2.9. Let F be a number field, and let ρ : GF → GLE(V ) be as in Lemma C.2.5 above, so after
an extension of scalars we can write

ρ ∼= IndGFGK ρ0

for a number field K ⊃ F and a strongly irreducible representation ρ0 : GK → GLE(V0). Let L be an
abelian Galois extension ofF (possibly infinite) which is disjoint fromK; then ρ|GL is absolutely irreducible.

Proof. Let Kc be the Galois closure of K; then

ρ|GKc =
⊕

ρσ0 |GKc ,

where ρσ0 runs over the distinct Gal(Kc/K)-conjugates of ρ0. In particular, if v is a prime of Kc lying over
the p from Lemma C.2.5, then

(C.4) ρσ0 |GKcv and ρ0|GKcv have distinct Hodge-Tate weights if ρσ0 ̸∼= ρ0.

If ρ|GL is reducible (after replacing E by any finite extension), then

1 < dimE HomE[GL]

(
(IndGFGK ρ0)|GL , (Ind

GF
GK

ρ0)|GL
)

= dimE HomE[GL]

(
IndGLGKL ρ0|GKL , Ind

GL
GKL

ρ0|GKL
)

= dimE HomE[GKL]

(
ρ0|GKL ,Res

GL
GKL

IndGLGKL ρ0|GKL
)

≤ dimE HomE[GKcL]

(
ρ0|GKcL ,

⊕
ρσ0 |GKcL

)
.

In particular, we may fix σ ∈ Gal(Kc/K) such that ρσ0 ̸∼= ρ0 but

HomE[GKcL](ρ0|GKcL , ρ
σ
0 |GKcL) ̸= 0.

We claim ρ0|GKcL is absolutely irreducible; indeed, if G0 = ρ0(GKc), then H = ρ0(GKcL) is a normal
subgroup ofG0 with abelian cokernel. Then Lie(H∩SLE(V0)) ⊂ Lie(G0∩SLE(V0)) has abelian cokernel,
which implies Lie(H ∩ SLE(V0)) = Lie(G0 ∩ SLE(V0)) by Lemma C.2.2(4, 5). Then H ∩ SLE(V0) acts
strongly irreducibly on V0 by Lemma C.2.2(6), so a fortiori ρ0|GKcL is absolutely irreducible, as desired.

This implies that HomE[GKcL](ρ0, ρ
σ
0 ), which is nonzero by assumption, is in fact one-dimensional. It

is also preserved by the natural action of GKc on HomE(ρ0, ρ
σ
0 ), because GKcL is normal in GKc . Hence

Gal(KcL/Kc) acts on HomE[GKcL](ρ0, ρ
σ
0 ) by scalars, and in particular we conclude that

(C.5) ρ0|GKc ∼= ρσ0 |GKc ⊗ χ

for a character χ of Gal(KcL/Kc) ⊂ Gal(L/F ). Because Gal(Kc/K) acts trivially by conjugation on
Gal(L/F ) and σ ∈ Gal(Kc/K) has finite order, (C.5) implies

ρ0 ∼= ρ0 ⊗ χn for some n ≥ 1,

hence χ has finite order. But then (C.5) contradicts (C.4), so the lemma is proved. □

C.3. Galois representations associated to Hilbert modular forms.

C.3.1. Fix a totally real field F . The following result is due to Nekovar:

Theorem C.3.2. Let π be an automorphic representation of GL2(AF ) corresponding to a non-CM Hilbert
modular form of weight (2kv)v|∞, with each kv ≥ 1. If E0 is a strong coefficient field for π, then there exists
a subfield E1 ⊂ E0 and a quaternion algebraD over E1, along with a finite abelian extensionK of F , such
that for all primes p of E0, with residue characteristic p:
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(1) The image of ρπ,p contains an open subgroup of

Hp :=
{
x ∈ (D ⊗E1 E1,p)

× : Nm(x) ∈ Q×
p

}
,

where the embeddingHp ↪→ GL2(E0,p) is induced by the natural embeddingD⊗E1E1,p ↪→ D⊗E1

E0,p and an isomorphism D ⊗E1 E0,p ≃M2(E0,p).
(2) The image ρπ,p(GK) is contained in Hp.

Moreover, for any finite abelian extension K ′/K and all but finitely many p, the image of ρπ,p(GK′) is a
conjugate of {

g ∈ GL2(OE1,p) : det g ∈ Z×
p

}
.

Proof. Let K be the field written FΓ in [80, Theorem B.5.2]. Then the first two claims, and the last part
when K ′ = K, follow from loc. cit.

For the general case, note that det ρπ,p|GK = χp,cyc. IfK ′/K is a finite abelian extension, restrict to those
primes p such that ρπ,p(GK) contains SL2(OE1,p) andK ′∩Q(µp∞) = K∩Q(µp∞). Then det ρπ,p(GK) =
det ρπ,p(GK′). On the other hand, ρπ,p(GK′) is a normal subgroup of ρπ,p(GK)with abelian cokernel, which
necessarily contains SL2(OE1,p); it follows that ρπ,p(GK) = ρπ,p(GK′), which completes the proof. □

C.3.3. Now let π1 and π2 be two automorphic representations as in Theorem C.3.2, with E0 a common
strong coefficient field. For the rest of this section we will always write p for the residue characteristic of a
prime p of E0. Also, let E1, D1, K1, H1,p, E2, D2, K2, and H2,p be as in the conclusion of Theorem C.3.2
applied to π1 and π2, respectively; we can and do fix a finite abelian extension K ⊃ K1 ·K2 such that

(C.6) det ρπ1,p|GK = det ρπ2,p|GK = χp,cyc

for all p, and the conclusions of Theorem C.3.2 hold for this choice of K.
We will also consider the joint representation

(C.7) ρπ1,π2,p : GF
ρπ1,p×ρπ2,p−−−−−−−→ GL2(E0,p)×GL2(E0,p).

Lemma C.3.4. Suppose there exists a prime p of E0 and a finite extension L/F such that

ρπ1,p|GL ∼= ρπ2,p|GL .

Then π1 is the twist of π2 by a finite-order automorphic character of A×
F .

Proof. By [90, Theorem 2], we have
ρπ1,p = ρπ2,p ⊗ χ

for some character χ of GF , which is of finite order because it vanishes on GL. Viewing χ as a finite-order
character of F×\A×

F via class field theory, we conclude that ρπ1,p = ρπ2⊗χ,p, and hence π1 = π2 ⊗ χ. □

C.3.5. If π is as in Theorem C.3.2, corresponding to a holomorphic Hilbert modular form f , then for any
σ ∈ Gal(Q/Q) we write πσ for the automorphic representation corresponding to fσ. The following result
generalizes [70] to the setting of Theorem C.3.2.

Theorem C.3.6. In the setting of (C.3.3), suppose π1 ̸= πσ2 ⊗χ for any σ ∈ Gal(Q/Q) and any finite-order
automorphic character χ of A×

F . Then:
(1) For all primes p of E0, ρπ1,π2,p(GK) contains an open subgroup of H1,p ×Q×

p
H2,p.

(2) For all but finitely many p, the image of ρπ1,π2,p(GK) contains a conjugate of{
(g1, g2) ∈ GL2(OE1,p)×GL2(OE2,p) : det g = deth ∈ Z×

p

}
.
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Proof. The proof is analogous to [70, Theorem 3.2.2, Proposition 3.3.2], where we replace Lemma 3.1.1 of
op. cit. with Lemma C.3.4 above. For completeness, we recall the argument. Let Gp = ρπ1,π2,p(GK), so
that we have a natural embedding

Gp ↪→ H1,p ×Q×
p
H2,p.

It follows from Goursat’s Lemma for Lie algebras that LieGp is either Lie
(
H1,p ×Q×

p
H2p

)
or LieG1,p =

LieH1,p, diagonally embedded by an isomorphism LieH1,p
∼−→ LieH2,p that preserves the linearized deter-

minant maps to Qp. To prove (1), we assume that we are in the latter case, and aim to show π1 is a conjugate
twist of π2.

By [70, Lemma 1.1.4], any isomorphism LieH1,p
∼−→ LieH2,p is induced by an isomorphism i : E1,p

∼−→
E2,p and an i-linear isomorphism D1 ⊗E1 E1,p

∼−→ D2 ⊗E2 E2,p. In particular, assuming without loss of
generality that E0 is Galois, there exists an automorphism σ ∈ Gal(E0/Q) that preserves p and induces
i : E1,p

∼−→ E2,p. Since all automorphisms of M2(E0,p) are inner, it follows from the description of the
embedding in Theorem C.3.2(1) that, after conjugating ρπ2,p, LieGp ⊂ gl2(E0,p) × gl2(E0,p) is contained
in a subalgebra of the form

{(X,σX) : X ∈ gl2(E0,p)} .
Exponentiating, for some finite extension L/K we have

ρπ1,p|GL = σ ◦ ρπ2,p|GL .
Since σ ◦ ρπ2,p = ρπσ2 ,p, Lemma C.3.4 concludes the proof of (1).

For (2), we restrict our attention to those p such that ρπi,p(GK) = GL2(OEi,p) (after conjugating) for
i = 1, 2, which eliminates only finitely many primes of E0 by Theorem C.3.2. Let S be the set of primes
p as above such that the conclusion of (2) does not hold; we assume for contradiction that S is infinite. By
[70, Proposition 3.2.1], for all p ∈ S, we have an element σ ∈ Gal(E0/Q) preserving p such that, after
conjugating ρπ2,p:
(C.8) ρπ1,p(g) = ±σ ◦ ρπ2,p(g) (mod p), ∀g ∈ GK .
If S is infinite, then there exists a single σ ∈ Gal(E0/Q) such that (C.8) holds for infinitely many of the
p ∈ S fixed by σ.

Let Σ be the set of primes v of F such that either π1,v or π2,v is ramified, and for v ̸∈ Σ, let a1,v and a2,v
be the eigenvalues of the standard Hecke operator at v on the spherical vectors of π1,v and π2,v, respectively.
By (C.8), for all v ̸∈ Σ that split completely in K/F , a21,v − σ(a2,v)2 ∈ OE0 is divisible by infinitely many
primes p ∈ S, hence vanishes. Now take a single p ∈ S fixed by σ such that (C.8) holds, and assume without
loss of generality that p ̸= 2. Let K ′ be the compositum of the fixed fields of ρπ1,p|GK and ρπ2,p|GK . Then
for all v ̸∈ Σ that split completely in K ′,

a1,v ≡ σ(a2,v) ̸≡ 0 (mod p),

so the identity a21,v − σ(a2,v)
2 = 0 implies a1,v = σ(a2,v). In particular, the traces of ρπ1,p|GK′ and

σ ◦ ρπ2,p|GK′ coincide, so we have ρπ1,p|GK′
∼= σ ◦ ρπ2,p|GK′ . Now we can conclude by Lemma C.3.4.

□

We also have the following complementary result.

Corollary C.3.7. In the setting of (C.3.3), there exists a finite abelian extension L of K with the following
property:

(1) For all primes p of E0, either ρπ1,π2,p(GL) is an open subgroup of H1,p ×Q×
p
H2,p, or there exists

an isomorphism σp : E1,p
∼−→ E2,p and a σp-linear isomorphism ip : D1 ⊗E1 E1,p

∼−→ D2 ⊗E2 E2,p

such that ρπ1,π2,p(GL) is an open subgroup of

H1,p

id,ip
↪−−→ H1,p ×Q×

p
H2,p.
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(2) For all but finitely many p, either the image of ρπ1,π2,p(GL) is a conjugate of{
(g1, g2) ∈ GL2(OE1,p)×GL2(OE2,p) : det g = deth ∈ Z×

p

}
,

or there exists an isomorphism σp : E1,p
∼−→ E2,p such that ρπ1,π2,p(GL) is a conjugate of{

(g, σp(g)) ∈ GL2(OE1,p)×GL2(OE2,p) : g ∈ GL2(OE1,p), det g ∈ Z×
p

}
.

Proof. By Theorem C.3.6, we may assume without loss of generality that π1 ∼= πσ2 ⊗ χ for some σ ∈
Gal(Q/Q) and some finite-order automorphic character χ of A×

F , which we also view as a character of GF
via class field theory. Then for all primes p of E0,

ρπ2,p ⊗E0,p,σ E0,σ(p)
∼= ρπσ2 ,σ(p)

∼= ρπ1,σ(p) ⊗ χ.

By [80, Theorem B.4.10], for all but finitely many p the image of ρπσ2 ,π2,p(GK0) is one of the groups listed
in part (2), for a certain abelian extension K0 of F such that detρπ2 ,p |GK0

= χp,cyc. If L is the compositum
of K0 with K and with the fixed field of the kernel of χ, it follows from the same argument as in Theorem
C.3.2 that the image of ρπσ2 ,π2,p(GL) = ρπ1,π2,p(GL) coincides with that of ρπσ2 ,π2,p(GK0) for all but finitely
many p, and this proves (2). □

C.4. Large image for relevant representations.

C.4.1. Fix a relevant automorphic representation π of GSp4(AQ), with trivial central character and with
strong coefficient fieldE0. In this subsection, we prove some results on the image of the Galois representation
ρπ,p associated to π, with an eye towards studying the existence of admissible elements (Definition 4.2.1) and
assumption (R1) from (9.3.1). Throughout this section we write p for the residue characteristic of a prime p
of E0.

Lemma C.4.2. Suppose π is not endoscopic, andBC(π) is the symmetric cube lift of a non-CM automorphic
representation π0 of GL2(AQ). Consider the map of algebraic groups

f = Sym3⊗det−1 : GL2 → GSp4 .

For all but finitely many primes p ofE0, the image of ρπ,p contains a conjugate of f(GL2(Zp)). In particular,
for all but finitely many p, admissible elements exist for ρπ,p.

Proof. By Lemma 2.2.18, π0,∞ is discrete series of weight 2. Without loss of generality, extend E0 so that
it is also a strong coefficient field for π0. Then for all primes p of E0, ρπ,p = Sym3 ρπ0,p(−1). Comparing
similitude characters, we see that the central character of π0 is cubic; by twisting, we may assume without
loss of generality that it is trivial. Then the claim about the image of ρπ,p follows from [94, Theorem 3.1].
Restricting to these p, if p is sufficiently large we may fix z ∈ Z×

p with

(C.9) z ̸≡ ±1,±z3, z6, z−3 (mod p), z12 ̸≡ 1 (mod p).

Then applying f to the diagonal matrix
(
z 0
0 z2

)
, it follows that the image of ρπ,p contains a matrix with

eigenvalues
{
1, z, z2, z3

}
; in particular, admissible elements exist for ρπ,p. □

Lemma C.4.3. Suppose π is not endoscopic, and BC(π) is neither a (weak) symmetric cube lift nor a (weak)
automorphic induction. For all but finitely many primes p of E0:

(1) The image of ρπ,p contains a conjugate of Sp4(Fp).
(2) If E0,p = Qp, the image of ρπ,p is a conjugate of GSp4(Fp).

Moreover, for all primes p with p > 3, the Zariski closure (over E0,p) of the image of ρπ,p is equal to
GSp4(E0,p).
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Proof. Part (1) is [123, Theorem 1.2(ii)]. Part (2) follows immediately. For the final claim, by Proposition
C.2.4(2) and Corollary C.2.6, it suffices to rule out the case that ρπ,p factors through the image of the sym-
metric cube representation. In this case, we can write ρπ,p(1) = Sym3 ρ0, for some ρ0 : GQ → GL2(E)/µ3
with Zariski-dense image (over E). By Lemma C.4.4 below, ρ0 lifts to

ρ0 : GQ → GL2(Qp).

Comparing similitude factors, we see that det ρ0/χp,cyc is cubic; so after twisting, we may assume without
loss of generality that det ρ0 = χp,cyc. For all but finitely many primes ℓ, we have ρ0(Iℓ) ⊂ µ3, so the
determinant condition implies ρ0 is unramified almost everywhere. By [87, Corollary 3.2.13], ρ0|GQp is
geometric. Since ρ0 is also clearly odd, [86, Theorem 1.0.4] implies ρ0 arises from a modular form, hence
BC(π) is a symmetric cube lift, and this concludes the proof of the final claim. □

Lemma C.4.4. For all n, we have H2(Q,Z/nZ) = 0.

Proof. This lemma is well-known, but we were unable to find a reference. Without loss of generality, n = p is
prime. By a theorem of Tate [87, Theorem 2.1.1],H2(Q,Zp/Qp) = 0. On the other hand, by the Kronecker-
Weber theorem,H1(Q,Qp/Zp) = Hom(Ẑ,Qp/Zp) is p-divisible. So the lemma follows from the long exact
sequence

· · · → H1(Q,Qp/Zp)
×p−−→ H1(Q,Qp/Zp)→ H2(Q,Z/pZ)→ H2(Q,Qp/Zp)→ · · · .

□

C.4.5. For an automorphic representation π0 of GL2(AK) as in Theorem C.3.2 withK/Q real quadratic, let
πtw0 denote the Gal(K/Q)-twist. We say π0 is exceptional if there exists σ ∈ Gal(Q/Q) and a finite-order
automorphic character χ of A×

K such that

πtw0
∼= πσ0 ⊗ χ.

Lemma C.4.6. Suppose π is not endoscopic, and BC(π) is the automorphic induction of a non-CM auto-
morphic representation π0 of GL2(AK) withK/Q real quadratic. Then for all but finitely many primes p of
E0, the following hold.

(1) The image of ρπ,p contains a conjugate of GL2(Zp), embedded diagonally via

GL2 ↪→ GL2×Gm GL2 ↪→ GSp4 .

(2) If p splits in K or π0 is not exceptional, the image of ρπ,p contains a conjugate of GL2(Zp) ×Z×
p

GL2(Zp).

Proof. Recall from Lemma 2.2.19 that π0 is the automorphic representation associated to a Hilbert modular
form of weights (2, 4). Assume without loss of generality that E0 is Galois and is also a strong coefficient
field for πtw0 ; then

ρπ,p|GK = ρπ0,p ⊕ ρπtw
0 ,p.

Hence part (1) follows from Corollary C.3.7(2). For part (2), the non-exceptional case is immediate from
Theorem C.3.6(2), so suppose without loss of generality that p splits inK. Then for any σ ∈ Gal(E0,p/Qp),
and any fixed embedding j : K ↪→ Qp, the Hodge-Tate weights of ρπ0,p and σ ◦ ρπ0,p with respect to
j coincide. This rules out that ρπtw

0 ,p|GL ∼= σ ◦ ρπ0,p|GL for any finite extension L/K, so by Corollary
C.3.7(2), we obtain (2). □

Lemma C.4.7. SupposeBC(π) is the automorphic induction of an automorphic representationπ0 ofGL2(AK)
withK/Q imaginary quadratic, and π0 is not an automorphic induction. Then for all but finitely many primes
p of E0:
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(1) The image of ρπ,p contains a conjugate of SL2(Zp), where SL2 ↪→ Sp4 is embedded into the Levi
factor of a Siegel parabolic.

(2) If p splits in K, then admissible elements exist for ρπ,p.

Proof. By Lemma 2.2.20, after possibly extending E0 we can write

(C.10) ρπ,p|GK = ρf,p ⊗ χp ⊕ ρf,p ⊗ χtw
p

for all p, where:
• ρf,p is the Galois representation attached to a classical modular form f of weight k = 2 or 3 with

coefficients in E0; here the normalization is as usual, i.e. det ρf,p = ωf · χk−1
p,cyc where ωf is the

nebentype character of f , viewed as a character of GQ via class field theory.
• χp is theGK-representation attached to an algebraic Hecke character χ′ of infinity type (−1, 3− k).
• χtw

p is the Gal(K/Q)-twist of χp, which is also associated to the twist (χ′)tw.
The symplectic form in (C.10) is given by the natural pairing

ρf,p ⊗ ρf,p ⊗ χp ⊗ χtw
p → det ρf,p ⊗ χpχ

tw
p = χp,cyc.

Let L be the fixed field of ωf , which is independent of p. After discarding finitely many primes p and
changing basis, we may assume by [94, Theorem 3.1] that

ρf,p(GL) =
{
g ∈ GL2(O) : det g ∈ (Z×

p )
k−1
}
,

where O is the ring of integers of a subfield of E0,p. Then the Galois group

Gal(L(ρf,p) ∩ LK(χp,cyc, χp, χ
tw
p , ωf )/L(det(ρf,p)))

is a solvable quotient of SL2(O), hence trivial if p is sufficiently large; so we have

(C.11) L(ρf,p) ∩ LK(χp,cyc, χp, χ
tw
p , ωf ) = L(det(ρf,p)).

In particular, this immediately implies (1).
For (2), we further restrict to those p such that χp is crystalline at all primes above p. Fix a prime v|p ofK,

and let v be its complex conjugate, with inertia subgroups Iv, Iv ⊂ Gab
K ; these are disjoint and each naturally

identified with Z×
p since we are assuming p is split (and unramified) in K. When restricted to inertia, the

characters χcyc
p , χp, and χtw

p have the form:

χcyc
p |Iv×Iv : Z×

p × Z×
p → Z×

p

(z1, z2) 7→ z1z2,

χp|Iv×Iv : Z×
p × Z×

p → Z×
p ⊂ O×

E,p

(z1, z2) 7→ z−1
1 z3−k2

χtw
p |Iv×Iv : Z×

p × Z×
p → Z×

p ⊂ O×
E,p

(z1, z2) 7→ z3−k1 z−1
2 .

In particular, one can calculate that, for p unramified in L, the image of

(χp, χ
tw
p , χp,cyc) : GL → O×

E0,p
×O×

E0,p
× Z×

p

contains a subgroup of {
(a, b, c) ∈ (Z×

p )
3 : ab = c2−k

}
with index at most 2. Comparing with (C.11), we see that the image of

(C.12) (ρf,p, χp, χ
tw
p ) : GL → GL2(O)×O×

E0,p
×O×

E0,p
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contains a subgroup of

(C.13)
{
(g, x, y) ∈ GL2(O)× Z×

p × Z×
p : det g ∈ (Z×

p )
k−1, (xy)(k−1) = (det g)2−k

}
with index at most 2. Let n := 2(k − 1) + 2(k − 2) = 4k − 6, and set

Sn :=
{
(g, c) ∈ GL2(Zp)× Z×

p : c,det g ∈ (Z×
p )

n
}
.

Then for any (g, c) ∈ Sn, there exists λ ∈ Z×
p satisfying

λn = (det g)k−2c1−k.

It follows from (C.13) that (gλ−1, λ, cλ)2 lies in the image of (C.12); hence (g, cg)2 lies in the image of
(ρf,p ⊗ χp, ρf,p ⊗ χtw

p ) : GL → GL2(E0,p) × GL2(E0,p) for all (g, c) ∈ Sn. If p is sufficiently large, this
immediately implies that admissible elements exist for ρπ,p. □

Lemma C.4.8. Suppose π is not endoscopic, and BC(π) is the (weak) automorphic induction of a Hecke
character χ0 of a quartic field K ⊂ C. Then there exists a constant n such that, for all but finitely many
primes p of E0, the following holds:

(1) ρπ,p(GQ) contains the scalar subgroup (Z×
p )

n ⊂ GSp4(Zp).
(2) If p splits completely in the Galois closure Kc of K, then ρπ,p(GQ) contains a conjugate of


x

y
z

xz/y

 : x, y, z ∈ (Z×
p )

n

 ⊂ GSp4(Zp).

Proof. Let χ := χ0| · |1/2. From Theorem 2.2.10(1), we see that the local component χv of χ takes algebraic
values onK×

v for cofinitely many primes v ofK; hence χ∞ is algebraic [117, Théorème 3.1]. ExtendingE0

if necessary, for all primes p ofE0 we have the p-adic character χp associated to χ, and ρπ,p = Ind
GQ
GK

χp for
all p. We restrict to those p such that Kc/Q is unramified at p, and χp is crystalline at all primes v|p. The
Hodge-Tate weights of χp with respect to the four embeddings i : K ↪→ Qp are {−1, 0, 1, 2} in some order
by Theorem 2.2.10(2); hence on the subgroup

Z×
p ↪→ (OK ⊗ Zp)× ↪→ Gab

K ,

χp is given by z 7→ z−1+0+1+2 = z2. In particular, on the subgroup

Z×
p ↪→ (OKc ⊗ Zp)× ↪→ Gab

Kc ,

χp is given by z 7→ z2[K
c:K]. The same is true for allGQ-conjugates of χp, so the image of ρπ,p|GKc contains

the scalar subgroup (Z×
p )

2[Kc:K], proving (1).
For (2), we decompose

(C.14) ρπ,p|GKc = χ1 ⊕ χ2 ⊕ χ3 ⊕ χ4,

where all of the characters χj are Galois conjugates of χp|GKc and
(C.15) χ1 · χ2 = χ3 · χ4 = χp,cyc.

For each g ∈ GQ, ρπ,p(GKc) contains the image of

(C.16)


g · χ1

g · χ2

g · χ3

g · χ4

 .

Fix an embedding i : Kc ↪→ Qp, and for any Hodge-Tate character ρ of GKc , let HT(ρ) denote the
Hodge-Tate weight with respect to i. Let Ip ⊂ GKc be the inertia subgroup for the prime induced by i. In
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particular, restricting (C.16) to Ip and using that each χj is crystalline at primes above p, ρπ,p(GKc) contains
the image of

Z×
p → GL4(Zp)

z 7→


zHT(g·χ1)

zHT(g·χ2)

zHT(g·χ3)

zHT(g·χ4)

 .

Let

(C.17) L ⊂
{
(x, y, z, w) ∈ Z4 : x+ y = z + w

}
be the sublattice spanned by the vectors (HT(g · χ1),HT(g · χ2),HT(g · χ3),HT(g · χ4)) for g ∈ GQ.

Claim. For a constant n ≥ 1 independent of p, the lattice L contains

n ·
{
(x, y, z, w) ∈ Z4 : x+ y = z + w

}
.

Note that the claim implies the lemma, because, as long as p is sufficiently large, there exists z ∈ (Z×
p )

n

satisfying (C.9); an element h ∈ GQ such that ρπ,p(h) has eigenvalues
{
1, z3, z, z2

}
is admissible for ρπ,p,

and the claim implies such elements exist.
Now we prove the claim. Let pr : Z4 → Z3 be the projection onto the first three factors, and note that

it suffices to show pr(L) contains n · Z3. Without loss of generality, suppose the Hodge-Tate weights of
χ1, χ2, χ3, and χ4 are 1, 0, 2, and −1 (in order). Because the action of GKc on the set {χ1, χ2, χ3, χ4}
is transitive, for each j ∈ 1, . . . , 4 we have some gj ∈ GQ such that HT(gjχj) = 1. In particular, using
(C.15), pr(L) contains (1, 0, 2); a vector e = (0, 1, 2) or e = (0, 1,−1); and a vector f = (2,−1, 1) or
f = (−1, 2, 1). In particular, the set {(1, 0, 2), e, f} is always linearly independent; and, since there are
only four total possibilities for this set, there exists n ∈ Z such that the Z-span of (1, 0, 2), e, and f always
contains nZ.

□

Now we are ready to consider assumption (R1) from the main text (see (9.3.1)).

Theorem C.4.9. Let π be a relevant, non-endoscopic automorphic representation ofGSp4(AQ), with strong
coefficient field E0. Then (R1) holds for all but finitely many primes p of E0.

The theorem is also true in the endoscopic case, but not used in the main text; the proof uses Lemma
C.4.13 below.

Proof. This is an immediate consequence of Lemmas C.4.2 through C.4.8.
□

Proposition C.4.10. Suppose π is not endoscopic, and there exists a prime ℓ such that πℓ is of type IIa. Then
for all but finitely many primes p of E0, admissible elements exist for ρπ,p.

Proof. The Weil-Deligne representation recGT(πℓ) is tamely ramified; under the embedding GSp4 ↪→ GL4

from (1.1.4), it is given by

Frobℓ =


±ℓ1/2

α

±ℓ−1/2

ℓ/α

 ∈ GSp4(C), N =


1
 ∈ GSp4(C)
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By the purity assertion in Theorem 2.2.10(1) (for any prime p of E0), we know |α| = 1. Extend E0 if
necessary so that α2 ∈ E0. Then for all but finitely many primes p of E0, we have:

ℓ8 ̸≡ 1 (mod p),

α2ℓ ̸≡ ±1,±ℓ2, ℓ−2, ℓ4 (mod p).

Suppose p satisfies the above conditions, and letFrobℓ ∈ GQ be any lift of Frobenius. By Theorem 2.2.10(1),
ρπ,p(Frob

2
ℓ ) has eigenvalues

{
ℓ2, α2ℓ, 1, ℓ2/α2

}
, hence Frob2ℓ is an admissible element for ρπ,p. □

Combining Lemmas C.4.2 through C.4.8 with Proposition C.4.10, we obtain:

Theorem C.4.11. Let π be a relevant, non-endoscopic automorphic representation of GSp4(AQ), with
strong coefficient field E0. There is a set S of rational primes of positive Dirichlet density such that for
all p ∈ S and all p|p, admissible elements exist for ρπ,p. There exists such an S containing all but finitely
many p if π satisfies any of the following:

(i) There exists a prime ℓ such that πℓ is of type IIa.
(ii) BC(π) is a symmetric cube lift.
(iii) BC(π) is the automorphic induction of a non-CM automorphic representation π0 of GL2(AK) with

K real quadratic, and πtw0 ̸= πσ0 ⊗ χ for all σ ∈ Gal(Q/Q) and all quadratic Hecke characters χ
of K.

□
Finally, we handle the endoscopic case separately.

Proposition C.4.12. Suppose π is endoscopic, associated to a pair (π1, π2) of automorphic representations
of GL2(AQ) (in any order). Then:

(1) If π1 does not have CM, then for all but finitely many p and all p|p, there exist admissible primes for
ρπ,p that are BD-admissible for ρπ1,p.

(2) If π1 has CM by a field K and π2 does not have CM by K, then for all but finitely many p split in K
and all p|p, there exist admissible primes for ρπ,p that are BD-admissible for ρπ1,p.

Proof. Let S be the set of all rational primes in case (1) and all rational primes p split inK in case (2). Then
there exists a constant n ≥ 1 such that, for all but finitely many p ∈ S and all p|p, ρπ1,p(GQ) contains the
diagonal subgroup {(

x
y

)
: x, y ∈ (Z×

p )
n

}
.

In the non-CM case this follows from Theorem C.3.2 (with n = 1), and in the CM case it follows from
either [80, Proposition B.6.3] or a similar argument to Lemma C.4.8. On the other hand, there exists a
constant n ≥ 1 such that, for all but finitely many p and all p|p, ρπ2,p(GQ) contains the scalar subgroup
(Z×

p )
n ⊂ GL2(Zp).

By Lemma C.4.13 below, after enlarging n if necessary, for all but finitely many p ∈ S and all p|p,
(ρπ1,p × ρπ2,p) (GQ) contains{(

x 0
0 y

)
,

(
z 0
0 z

)
: x, y, z ∈ (Z×

p )
n, z2 = xy

}
;

and this implies the proposition. □

Lemma C.4.13. Suppose π is endoscopic, associated to a pair (π1, π2) of automorphic representations of
GL2(AQ) which do not both have CM by the same imaginary quadratic field. Then as p varies over primes
of E0, Q(ρπ1,p) ∩Q(ρπ2,p) has bounded degree over Q(µp).
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Proof. If both π1 and π2 are non-CM, then the lemma follows from [70, Theorem 3.2.2], or equivalently from
Theorem C.3.6(2) above. Now suppose π1 is CM and π2 is not. Since SL2(Fq) is simple for q sufficiently
large and ρπ1,p is dihedral for all p, it follows from [94, Theorem 3.1] that Q(ρπ1,p)∩Q(ρπ2,p) = Q(µp) for
all but finitely many p.

If π1 and π2 are CM with respect to two different imaginary quadratic fields K1 and K2, fix elements
τ1, τ2 ∈ GQ such that τi is a complex conjugation on Ki but acts trivially on Kj , i ̸= j. The abelian group
H := Gal(Q(ρπ1,p)/K1) is a subgroup of k× for a quadratic étale algebra k over the residue field of p; in par-
ticular, H is the product of at most two cyclic groups. Let G := Gal(K1K2(ρπ1,p)∩K1K2(ρπ2,p)/K1K2).
Because G is a subquotient of H , the conjugation actions on G of both τ1 and τ1τ2 are by inversion, so the
conjugation action of τ2 is trivial; arguing symmetrically, the conjugation action of τ1 is also trivial, so G is
2-torsion and generated by at most two elements. We conclude that |G| is uniformly bounded, which implies
the lemma. □

C.5. Complements for the second reciprocity law. In this subsection, we prove some auxiliary results
needed in §11. Let us fix a relevant automorphic representation π of GSp4, and an isomorphism ι : Qp

∼−→ C
with p > 3.

Lemma C.5.1. Let τ be a cuspidal automorphic representation ofGL2(AQ)whose archimedean component
is discrete series of even weight k ≥ 2. Let F be a number field such that τ does not have CM by any
quadratic imaginary subfieldK ⊂ F (ρπ,ι). If F (ρπ,ι)∩F (ad0 ρτ,ι) is infinite, then F (ad0 ρτ,ι) ⊂ F (ρπ,ι),
and moreover one of the following occurs:

(i) π is not endoscopic, and if g ∈ GQ is admissible for ρπ,ι, then ρτ,ι(g2) has distinct eigenvalues.
(ii) π is endoscopic associated to a pair (π1, π2) of automorphic representations of GL2(AQ), and for

j = 1 or 2, πj ∼= τσ⊗χ for some finite-order Hecke character χ and automorphism σ ∈ Aut(Q/Q).

Proof. First, we claim that τ does not have CM. Indeed, if τ has CM by a quadratic imaginary field K, then
it is easy to check that any infinite subfield of F (ad0 ρτ,ι) contains K; so if F (ρπ,ι)∩ F (ad0 ρτ,ι) is infinite
then K ⊂ F (ρπ,ι), which contradicts the hypotheses of the lemma.

Since τ does not have CM, ρτ,ι is strongly irreducible by Theorem C.3.2. Hence by Lemma C.2.3, the
normal, infinite-index subgroup

Gal
(
F (ad0 ρτ,ι)/F (ad

0 ρτ,ι) ∩ F (ρπ,ι)
)
⊴ Gal

(
F (ad0 ρτ,ι)/F

)
must be trivial; equivalently, we have F (ad0 ρτ,ι) ⊂ F (ρπ,ι).

Suppose first that π is not endoscopic, so Vπ,ι is absolutely irreducible by Lemma 2.2.12. Without loss of
generality, we assume that F is Galois and that

(C.18) Vπ,ι|GF =
⊕
i

Vi

for some strongly irreducible representations Vi, all of the same dimension n (Lemma C.2.5). Let G =
ρπ,ι(GF ), and let H = ad0 ρτ,ι(GF ); then the inclusion F (ad0 ρτ,ι) ⊂ F (ρπ,ι) corresponds to a surjection
G/ZG ↠ H (recall here that H has trivial center by Lemma C.2.2(1)). In particular, n > 1. Write g =
Lie(G/ZG) and h = LieH , and recall that h is simple by Theorem C.3.2 and Corollary C.1.2(2). We have
a surjection

(C.19) g ↠ h

which identifies h with a simple factor of g.
Suppose first that n = 2. Then the decomposition (C.18) has exactly two factors, and g is either simple,

or isomorphic to g0 × g0, with g0 simple and the factors interchanged by the action of GQ. Since (C.19)
is GQ-equivariant, g is simple, and (C.19) is an isomorphism. If ρτ,ι(g2) has only one eigenvalue for some
g ∈ GQ, then g2 acts unipotently on h, hence also on g. Since g2 is a square, it preserves the decomposition
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(C.18), so by Lemma C.2.2(3), we see that g2 has at most two eigenvalues on Vπ,ι, which contradicts g being
admissible.

We are now reduced to the case n = 4, i.e. BC(π) is not an automorphic induction. Hence g is simple
by Proposition C.2.4(1) and Corollary C.1.2(2), and again (C.19) is an isomorphism. If ρτ,ι(g2) had only
one eigenvalue, then g2 ∈ GQ would act unipotently on h, hence also on g; but by Lemma C.2.2(3), this
contradicts the admissibility of g.

It remains to consider the case when π is endoscopic associated to a pair (π1, π2) of cuspidal automorphic
representations of GL2(AQ). We let Gπ = ρπ,ι(GQ), Gπj = ρπj ,ι(GQ), gπ = Lie(Gπ/ZGπ), gπj =

Lie(Gπj/ZGπj ), for j = 1, 2. The assumption F (ad0 ρτ,ι) ⊂ F (ρπ,ι) implies that GQ does not have open
image in the productGπ/ZGπ ×H . By Goursat’s Lemma, the Lie algebra of the image ofGQ is the graph of
an isomorphism between simple factors of gπ ⊂ gπ1 ⊕ gπ2 and h. Since τ is non-CM, we conclude that for
j = 1 or 2, πj is non-CM and GQ has non-open image in Gπj/Zπj ×H . Hence by [70, Proposition 3.3.2],
there exists an automorphism σ ∈ Aut(Q/Q) and a Hecke character χ such that τ ∼= πσj ⊗ χ, for j = 1 or
2; this concludes the proof of the lemma.

□

For the rest of the section, we fix a strong coefficient field E0 for π and let p be the prime of E0 induced
by ι.

Lemma C.5.2. Let τ be a cuspidal automorphic representation ofGL2(AQ)whose archimedean component
is discrete series of even weight k ≥ 2. If τ does not have CM by any quadratic imaginary subfield K ⊂
Q(ρπ,ι), then for any number fieldF and anyOp-stable latticeTπ ⊂ Vπ,p,H1(Gal(F (ρπ,ι, ad

0 ρτ,ι)/Q), Tπ)
is finite.

Proof. By inflation-restriction, we may assume without loss of generality that F = Q. Applying Corollary
C.2.8 and inflation-restriction again, to prove the lemma it suffices to show

(C.20) H1(Gal(Q(ρπ,ι, ad
0 ρτ,ι)/Q(ρπ,ι), Tπ) = HomGQ(Gal(Q(ρπ,ι, ad

0 ρτ,ι)/Q(ρπ,ι)), Tπ) = 0.

By Lemma C.5.1, we may assume without loss of generality that Q(ρπ,ι)∩Q(ad0 ρτ,ι) is finite. Since χp,cyc
has infinite order, there exists g ∈ GQ such that ad0 ρτ,ι(g) = 1 and χp,cyc(g) has infinite order, meaning
in particular that ρπ,ι(g) ̸= 1. Then g acts trivially by conjugation on Gal

(
Q(ρπ,ι, ad

0 ρτ,ι)/Q(ρπ,ι)
)
↪→

ad0 ρτ,ι(GQ). In particular, any GQ-invariant homomorphism h : Gal
(
Q(ρπ,ι, ad

0 ρτ,ι)/Q(ρπ,ι)
)
→ Tπ

has image contained in T g=1
π ⊊ Tπ. If π is non-endoscopic, this shows h = 0 by Lemma 2.2.12; if π

is endoscopic associated to (π1, π2), the same argument applies because we cannot have ρπ1,ι(g) = 1 or
ρπ2,ι(g) = 1 under the assumption that χp,cyc(g) has infinite order. This shows (C.20). □

Proposition C.5.3. Let π, ι, E0, and p be as above with π non-endoscopic, and suppose admissible primes
exist for ρπ = ρπ,p. Suppose given the following data:

◦ A quadratic field F ̸⊂ Q(ρπ).
◦ A cuspidal automorphic representation τ of GL2(AQ) whose archimedean component is discrete

series of even weight k ≥ 2, such that τ does not have CM by any quadratic field K ⊂ F (ρπ).
◦ A GQ-stable Op-lattice Tπ ⊂ Vπ,p, and a non-torsion cocycle c ∈ H1(Q, Tπ).

Then there exists an element g ∈ GQ such that:
(1) g is is admissible for ρπ and has nontrivial image in Gal(F/Q).
(2) ρτ,ι(g2) has distinct eigenvalues.
(3) c(g) has nonzero component in the 1-eigenspace for g.

Note the last condition is independent of the choice of cocycle representative for c.
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Proof. First choose g satisfying (1), and with the additional property that g has trivial image in Gal(K/Q)
if τ has CM by a quadratic field K. (This choice is possible because we have F ̸⊂ Q(ρπ) and K ̸⊂ F (ρπ).)

Claim. There exists h ∈ GF (ρπ) such that hg satisfies (2).

Proof of claim. If F (ρπ) ∩ F (ad0 ρτ,ι) is infinite then taking h = 1 suffices by Lemma C.5.1, so we may
assume without loss of generality that F (ρπ) ∩ F (ad0 ρτ,ι) is finite. If τ is non-CM, then because F (ρπ) ∩
F (ad0 ρτ,ι) is finite, Theorem C.3.2 implies that the image of ρτ,ι|GF (ρπ)

contains a compact open subgroup
of
{
x ∈ D× : Nm(x) ∈ Q×

p

}
↪→ GL2(Qp), for a quaternion algebra D over a finite extension E of Qp.

Since xρτ,ι(g)xρτ,ι(g) having distinct eigenvalues is an open condition on x ∈ D×, the claim follows when
τ is non-CM.

If on the other hand τ has CM by an imaginary quadratic fieldK, then because ρτ,ι|GQp has distinct Hodge-
Tate weights, there exists h0 ∈ GK such that ρτ,ι(h0) has eigenvalues whose ratio is of infinite order. After
replacing h0 with a finite power, it acts trivially on F (ρπ)∩F (ad0 ρτ,ι); thus there exists h ∈ GK·F (ρπ) such
that ρτ,ι(h2) has distinct eigenvalues. Since g has trivial image in Gal(K/Q), ρτ,ι(g) and ρτ,ι(h) commute;
in particular, if ρτ,ι(g2) is scalar, then ρτ,ι(hghg) = ρτ,ι(h

2)ρτ,ι(g
2) has distinct eigenvalues. Hence either

g or hg satisfies (2), which shows the claim. □

Replacing g with hg as in the claim, we may now assume g satisfies both (1) and (2). By Lemma C.5.2
and inflation-restriction, c has nonzero image in

H1(F (ρπ, ad
0 ρτ,ι), Tπ)

GQ = HomGQ(Gal(Q/F (ρπ, ad0 ρτ,ι)), Tπ),

and because Vπ,p is absolutely irreducible, there exists h ∈ GF such that ad0 ρτ,ι(h) = ρπ(h) = 1 and c(h)
has nonzero component in the 1-eigenspace for g. Then either g or hg satisfies (1), (2), and (3), which proves
the proposition.

□

Finally, we have the endoscopic analogue of Proposition C.5.3.

Proposition C.5.4. Let π, ι, E0, and p be as above, with π endoscopic associated to pair (π1, π2) of auto-
morphic representations of GL2(AQ); and assume thatE0 is a common strong coefficient field of π1 and π2.
Let j = 1 or 2, and suppose there exist admissible primes for ρπ,p which are BD-admissible for ρπj = ρπj ,p.

Suppose given the following data:
◦ A quadratic field F ̸⊂ Q(ρπ).
◦ A cuspidal automorphic representation τ of GL2 whose archimedean component is discrete series

of weight at least 2, such that τ does not have CM by any quadratic field K ⊂ F (ρπ).
◦ A GQ-stable Op lattice Tπj ⊂ Vπj ,p, and a non-torsion cocycle c ∈ H1(Q, Tπj ).

Then there exists an element g ∈ GQ such that:
(1) g is is admissible for ρπ and BD-admissible for ρπj , and has nontrivial image in Gal(F/Q).
(2) ρτ,ι(g2) has distinct eigenvalues.
(3) c(g) has nonzero component in the 1-eigenspace for g.

Proof. Without loss of generality, suppose j = 1. Clearly there exists g ∈ GQ satisfying (1), such that, if τ
has CM by an imaginary quadratic field K, g has trivial image in Gal(K/Q). We next claim:

Claim. There exists g ∈ GQ satisfying (1) and (2).

Proof. If F (ρπ) ∩ F (ad0 ρτ,ι) is finite, then we conclude using the same argument as for the claim in the
proof of Proposition C.5.3. By Lemma C.5.1, we may therefore assume that, for i = 1 or 2, πi ∼= τσ ⊗χ for
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some finite-order Hecke character χ and automorphism σ ∈ Aut(Q/Q). In this case, τ is necessarily non-
CM (because its CM field would be contained in Q(ρπi)), so π1 and π2 cannot both be CM; and it suffices
to show there exists g ∈ GQ satisfying (1), such that ρπ2(g2) has distinct eigenvalues. Hence it suffices to
show that Q(ρπ1)∩Q(ρπ2) is finite over Q(µp∞); and this follows from an argument very similar to Lemma
C.4.13, using that π1 and π2 are not both CM. □

Now take g as in the claim. By Lemma C.5.2, c has nonzero image in

H1(F (ρπ, ad
0 ρτ,ι), Tπ1).

Arguing as in Proposition C.5.3 and using the absolute irreducibility of ρπ1 , the proposition follows. □
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